mcutils/xray/id9.py

203 lines
6.5 KiB
Python
Raw Normal View History

import logging
log = logging.getLogger(__name__)
import os
import collections
import numpy as np
from . import azav
from . import dataReduction
from . import utils
from . import storage
2017-02-09 17:17:22 +01:00
from . import filters
default_extension = ".npz"
def _conv(x):
try:
x = float(x)
except:
x = np.nan
return x
2017-02-09 17:17:22 +01:00
def _readDiagnostic(fname,retry=3):
ntry = 0
while ntry<retry:
try:
data = np.genfromtxt(fname,usecols=(2,3),\
dtype=None,converters={3: lambda x: _conv(x)},
names = ['fname','delay'])
return data
except Exception as e:
log.warn("Could not read diagnostic file, retrying soon,error was %s"%e)
ntry += 1
# it should not arrive here
raise ValueError("Could not read diagnostic file after %d attempts"%retry)
def readDelayFromDiagnostic(fname):
""" return an ordered dict dictionary of filename; for each key a rounded
value of delay is associated """
if os.path.isdir(fname): fname += "/diagnostics.log"
2017-02-09 17:17:22 +01:00
# try to read diagnostic couple of times
data = _readDiagnostic(fname,retry=4)
files = data['fname'].astype(str)
delays = data['delay']
# skip lines that cannot be interpreted as float (like done, etc)
idx_ok = np.isfinite( delays )
files = files[idx_ok]
delays = delays[idx_ok]
delays = np.round(delays.astype(float),12)
return collections.OrderedDict( zip(files,delays) )
2017-03-09 23:20:57 +01:00
def _findDark(line):
_,value = line.split(":")
return float(value)
def _delayToNum(delay):
if delay.decode('ascii') == 'off':
delay = -10
else:
delay=utils.strToTime(delay)
return delay
def findLogFile(folder):
files = utils.getFiles(folder,basename='*.log')
files.remove(os.path.join(folder,"diagnostics.log"))
logfile = files[0]
if len(files)>1: log.warn("Found more than one *.log file that is not diagnostics.log: %s"%files)
return logfile
def readLogFile(fnameOrFolder,subtractDark=False,skip_first=0,asDataStorage=True,last=None):
2017-03-09 23:20:57 +01:00
""" read id9 style logfile """
if os.path.isdir(fnameOrFolder):
fname = findLogFile(fnameOrFolder)
else:
fname = fnameOrFolder
f = open(fname,"r")
lines = f.readlines()
f.close()
lines = [line.strip() for line in lines]
darks = {}
for line in lines:
if line.find("pd1 dark/sec")>=0: darks['pd1ic'] = _findDark(line)
if line.find("pd2 dark/sec")>=0: darks['pd2ic'] = _findDark(line)
if line.find("pd3 dark/sec")>=0: darks['pd3ic'] = _findDark(line)
if line.find("pd4 dark/sec")>=0: darks['pd4ic'] = _findDark(line)
for iline,line in enumerate(lines):
if line.lstrip()[0] != "#": break
data=np.genfromtxt(fname,skip_header=iline-1,names=True,comments="%",dtype=None,converters = {'delay': lambda s: _delayToNum(s)})
if subtractDark:
for diode in ['pd1ic','pd2ic','pd3ic','pd4ic']:
if diode in darks: data[diode]=data[diode]-darks[diode]*data['timeic']
data = data[skip_first:last]
if asDataStorage:
# rstrip("_") is used to clean up last _ that appera for some reason in file_
data = storage.DataStorage( dict((name.rstrip("_"),data[name]) for name in data.dtype.names ) )
data.file = data.file.astype(str)
2017-03-09 23:20:57 +01:00
return data
2017-02-09 17:17:22 +01:00
def doFolder_azav(folder,nQ=1500,files='*.edf*',force=False,mask=None,
saveChi=True,poni='pyfai.poni',storageFile='auto',dark=9.9,zingerFilter=30,qlims=(0,10),
removeBack=False,removeBack_kw=dict()):
""" very small wrapper around azav.doFolder, essentially just reading
the diagnostics.log """
diag = dict( delays = readDelayFromDiagnostic(folder) )
if storageFile == 'auto' : storageFile = folder + "/" + "pyfai_1d" + default_extension
2017-02-09 17:17:22 +01:00
data = azav.doFolder(folder,files=files,nQ=nQ,force=force,mask=mask,
saveChi=saveChi,poni=poni,storageFile=storageFile,diagnostic=diag,dark=dark,save=False)
#try:
# if removeBack is not None:
# _,data.data = azav.removeBackground(data,qlims=qlims,**removeBack_kw)
#except Exception as e:
# log.error("Could not remove background, error was %s"%(str(e)))
if zingerFilter > 0:
data.data = filters.removeZingers(data.data,threshold=zingerFilter)
#data.save(storageFile); it does not save err ?
# idx = utils.findSlice(data.q,qlims)
# n = np.nanmean(data.data[:,idx],axis=1)
# data.norm_range = qlims
# data.norm = n
# n = utils.reshapeToBroadcast(n,data.data)
# data.data_norm = data.data/n
data.save(storageFile)
return data
def doFolder_dataRed(azavStorage,monitor=None,funcForAveraging=np.nanmean,
2017-02-09 17:17:22 +01:00
qlims=None,outStorageFile='auto',reference='min'):
""" azavStorage if a DataStorage instance or the filename to read """
if isinstance(azavStorage,storage.DataStorage):
data = azavStorage
2017-01-27 15:39:32 +01:00
folder = azavStorage.folder
elif os.path.isfile(azavStorage):
folder = os.path.dirname(azavStorage)
data = storage.DataStorage(azavStorage)
else:
# assume is just a folder name
folder = azavStorage
azavStorage = folder + "/pyfai_1d" + default_extension
data = storage.DataStorage(azavStorage)
2017-02-09 17:17:22 +01:00
#assert data.q.shape[0] == data.data.shape[1] == data.err.shape[1]
if qlims is not None:
idx = (data.q>qlims[0]) & (data.q<qlims[1])
data.data = data.data[:,idx]
2017-02-09 17:17:22 +01:00
data.err = data.err[:,idx]
data.q = data.q[idx]
2017-02-09 17:17:22 +01:00
# calculate differences
2017-02-09 17:17:22 +01:00
diffs = dataReduction.calcTimeResolvedSignal(data.delays,data.data,err=data.err,
q=data.q,reference=reference,monitor=monitor,
funcForAveraging=funcForAveraging)
# save txt and npz file
dataReduction.saveTxt(folder,diffs,info=data.pyfai_info)
if outStorageFile == 'auto':
outStorageFile = folder + "/diffs" + default_extension
diffs.save(outStorageFile)
return data,diffs
2017-02-09 17:17:22 +01:00
def doFolder(folder,azav_kw = dict(), datared_kw = dict(),online=True, retryMax=20):
import matplotlib.pyplot as plt
if folder == "./": folder = os.path.abspath(folder)
fig = plt.figure()
lastNum = None
keepGoing = True
lines = None
retryNum = 0
if online: print("Press Ctrl+C to stop")
while keepGoing and retryNum < retryMax:
try:
data = doFolder_azav(folder,**azav_kw)
# check if there are new data
if lastNum is None or lastNum<data.data.shape[0]:
data,diffs = doFolder_dataRed(data,**datared_kw)
if lines is None or len(lines) != diffs.data.shape[0]:
lines,_ = utils.plotdiffs(diffs,fig=fig,title=folder)
else:
utils.updateLines(lines,diffs.data)
plt.draw()
lastNum = data.data.shape[0]
retryNum = 0
else:
retryNum += 1
plt.pause(30)
except KeyboardInterrupt:
keepGoing = False
if not online: keepGoing = False
return data,diffs