more improvements (including some needed to work after background subtraction, see example on salen
This commit is contained in:
parent
852f883942
commit
1f652ab162
|
@ -1,7 +1,8 @@
|
|||
from __future__ import print_function,division
|
||||
|
||||
import logging as log
|
||||
log.basicConfig(level=log.INFO)
|
||||
import logging
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
import numpy as np
|
||||
np.seterr(all='ignore')
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
from __future__ import print_function,division
|
||||
|
||||
import logging as log
|
||||
log.basicConfig(level=log.INFO)
|
||||
import logging
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
import numpy as np
|
||||
np.seterr(all='ignore')
|
||||
|
@ -40,7 +41,7 @@ def subtractReferences(i,idx_ref, useRatio = False):
|
|||
# normal reference for an on chi, the weighted average
|
||||
iref[_i] = weight_before*ref_before + weight_after*ref_after
|
||||
if _i>=idx_ref_after: _ref += 1
|
||||
log.debug("For image %d : %d-%d"%(_i,idx_ref_before,idx_ref_after))
|
||||
log.debug("SubtractRederence For image %d : %d-%d"%(_i,idx_ref_before,idx_ref_after))
|
||||
if useRatio:
|
||||
i /= iref
|
||||
else:
|
||||
|
@ -170,6 +171,9 @@ def errorMask(data,threshold=5):
|
|||
# sqrt(len(temp)) = sqrt(numOfDiffs); it is needed to estimate error of single Diff
|
||||
idx = np.abs(temp-np.median(temp,axis=0)) > threshold*data.err[iscan]*np.sqrt(len(temp))
|
||||
idx_mask.append( idx )
|
||||
|
||||
log.debug("errorMask mask, scanpoint: %s, fraction of q points filtered out (average) %.4e [max %.4e])"%\
|
||||
(data.scan[iscan],idx.sum()/idx.size,max(np.sum(idx,axis=1)/idx.shape[1])) )
|
||||
if "masks" not in data: data['masks'] = dict()
|
||||
data['masks']['error'] = idx_mask
|
||||
return data
|
||||
|
@ -188,6 +192,8 @@ def chi2Mask(data,threshold=2):
|
|||
# expand along other axis (q ...)
|
||||
idx = utils.reshapeToBroadcast(idx,data.diffsInScanPoint[iscan])
|
||||
idx_mask.append(idx)
|
||||
log.debug("Chi2 mask, scanpoint: %s, curves filtereout out %d/%d (%.2f%%)"%\
|
||||
(data.scan[iscan],idx.sum(),len(idx),idx.sum()/len(idx)*100) )
|
||||
if "masks" not in data: data['masks'] = dict()
|
||||
data['masks']['chi2'] = idx_mask
|
||||
return data
|
||||
|
|
|
@ -0,0 +1,106 @@
|
|||
from __future__ import print_function,division
|
||||
import os
|
||||
|
||||
|
||||
# prepare logging
|
||||
import logging
|
||||
logfname = os.path.splitext(__file__)[0] + ".log"
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
|
||||
datefmt='%y-%m-%d %H:%M:%S',
|
||||
filename=logfname,
|
||||
filemode='w')
|
||||
import numpy as np
|
||||
import pylab as plt
|
||||
import mcutils as mc
|
||||
import mcutils.xray as xray
|
||||
from mcutils.xray import id9
|
||||
#id9 = xray.id9
|
||||
|
||||
from dualtree import dualtree
|
||||
|
||||
# use npz files (they can handle more stuff (list of arrays,unicode) than h5py)
|
||||
id9.default_extension = '.npz'
|
||||
#id9.default_extension = '.h5'
|
||||
|
||||
g_default_mask = '../masks/fesalen1_run8_careful.edf'
|
||||
|
||||
|
||||
def prepareLog():
|
||||
""" It allows printing to terminal on top of logfile """
|
||||
# define a Handler which writes INFO messages or higher to the sys.stderr
|
||||
console = logging.StreamHandler()
|
||||
console.setLevel(logging.INFO)
|
||||
# set a format which is simpler for console use
|
||||
formatter = logging.Formatter('%(message)s')
|
||||
# tell the handler to use this format
|
||||
console.setFormatter(formatter)
|
||||
# add the handler to the root logger
|
||||
logging.getLogger('').addHandler(console)
|
||||
|
||||
prepareLog()
|
||||
|
||||
def findCenter():
|
||||
files = xray.utils.getEdfFiles("../fesalen/fesalen1/run8/",nFiles=100)
|
||||
img = xray.azav.read(files).mean(axis=0) - 10.
|
||||
xray.azav.find_center(img)
|
||||
|
||||
|
||||
def azav(folder,nQ=1500,force=False,saveChi=True,mask=g_default_mask):
|
||||
if isinstance(mask,int):
|
||||
files = xray.utils.getFiles(folder,"*.edf*")
|
||||
img = xray.azav.pyFAIread(files[0])
|
||||
temp = np.ones_like(img,dtype=bool)
|
||||
temp[:mask] = False
|
||||
mask = temp
|
||||
return id9.doFolder_azav(folder,nQ=nQ,force=force,mask=mask,saveChi=saveChi)
|
||||
|
||||
|
||||
def removeBaseline(folder,qlims=(0.6,3),max_iter=30):
|
||||
data = azav(folder)
|
||||
idx = (data.q>qlims[0]) & (data.q<qlims[1])
|
||||
data['q'] = data.q[idx]
|
||||
data['data'] = data.data[:,idx]
|
||||
for i in range(len(data.data)):
|
||||
data['data'][i]=data.data[i]-dualtree.baseline(data.data[i],max_iter=max_iter)
|
||||
fname = os.path.splitext(data.filename)[0] + "_nobaseline" + id9.default_extension
|
||||
data.save(fname)
|
||||
return data
|
||||
|
||||
def datared(folder,monitor=(0.5,4),showPlot=True,errMask=5,chi2Mask=2,
|
||||
qlims=(0.6,3),withBaseline=False,storageFile='auto',force=False,**kw):
|
||||
# ice contributes to a lot of noise, filter to q<2
|
||||
if storageFile == 'auto':
|
||||
if withBaseline:
|
||||
storageFile = folder + "/" + "pyfai_1d" + id9.default_extension
|
||||
else:
|
||||
storageFile = folder + "/" + "pyfai_1d_nobaseline" + id9.default_extension
|
||||
if not os.path.exists(storageFile) or force: removeBaseline(folder)
|
||||
data = xray.storage.DataStorage(storageFile)
|
||||
data,diffs = id9.doFolder_dataRed(folder,storageFile=data,monitor=monitor,
|
||||
errMask=errMask,chi2Mask=chi2Mask,qlims=qlims,**kw)
|
||||
if showPlot:
|
||||
xray.utils.plotdiffs(diffs.q,diffs.data,t=diffs.scan,
|
||||
absSignal=diffs.dataAbsAvAll,absSignalScale=30)
|
||||
plt.title(folder + " norm %s" % str(monitor))
|
||||
plt.figure()
|
||||
xray.utils.plotdiffs(diffs.q,diffs.dataAbsAvScanPoint,t=diffs.scan)
|
||||
plt.title(folder + " norm %s" % str(monitor))
|
||||
return data,diffs
|
||||
|
||||
|
||||
def doall(folder,force=False,removeBaseline=True):
|
||||
azav(folder,force=force)
|
||||
return datared(folder)
|
||||
|
||||
def anaAmplitue(run=6):
|
||||
fname = "../tiox/tiox1/run%d/diffs.npz" % run
|
||||
data = xray.storage.DataStorage(fname)
|
||||
ranges = ( (1.75,1.85), (2.2,2.4), (3.25,3.4) )
|
||||
nPlot = len(ranges)
|
||||
fig,ax = plt.subplots(nPlot,1,sharex=True)
|
||||
for r,a in zip(ranges,ax):
|
||||
idx = (data.q>r[0]) & (data.q<r[1])
|
||||
amplitude = np.abs(data.data[:,idx]).mean(axis=1)
|
||||
a.plot(data.scan,amplitude,'-o')
|
||||
a.set_title("Range %s"%(str(r)))
|
13
xray/id9.py
13
xray/id9.py
|
@ -1,5 +1,5 @@
|
|||
import logging as log
|
||||
log.basicConfig(level=log.INFO)
|
||||
import logging
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
import os
|
||||
import collections
|
||||
|
@ -47,11 +47,16 @@ def doFolder_azav(folder,nQ=1500,force=False,mask=None,saveChi=True,
|
|||
|
||||
def doFolder_dataRed(folder,storageFile='auto',monitor=None,
|
||||
funcForAveraging=np.nanmean,errMask=5,chi2Mask=2,qlims=None):
|
||||
""" storageFile cab the the basename of the file (to look for in folder) or
|
||||
a DataStorage instance """
|
||||
|
||||
if storageFile == 'auto' : storageFile = folder + "/" + "pyfai_1d" + default_extension
|
||||
|
||||
# read azimuthal averaged curves
|
||||
data = storage.DataStorage(storageFile)
|
||||
if isinstance(storageFile,storage.DataStorage):
|
||||
data = storageFile
|
||||
else:
|
||||
# read azimuthal averaged curves
|
||||
data = storage.DataStorage(storageFile)
|
||||
|
||||
if qlims is not None:
|
||||
idx = (data.q>qlims[0]) & (data.q<qlims[1])
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
from __future__ import print_function
|
||||
import sys
|
||||
if sys.version_info.major == 2: input=raw_input
|
||||
import logging as log
|
||||
log.basicConfig(level=log.INFO)
|
||||
import logging
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
|
|
@ -7,8 +7,8 @@ import os
|
|||
import h5py
|
||||
import collections
|
||||
|
||||
import logging as log
|
||||
log.basicConfig(level=log.INFO)
|
||||
import logging
|
||||
log = logging.getLogger(__name__) # __name__ is "foo.bar" here
|
||||
|
||||
def unwrapArray(a,recursive=True,readH5pyDataset=True):
|
||||
""" This function takes an object (like a dictionary) and recursivively
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from __future__ import print_function,division
|
||||
|
||||
import logging as log
|
||||
log.basicConfig(level=log.INFO)
|
||||
import logging
|
||||
log = logging.getLogger(__name__) # __name__ is "foo.bar" here
|
||||
|
||||
import numpy as np
|
||||
np.seterr(all='ignore')
|
||||
|
|
Loading…
Reference in New Issue