more cleanup and improvements; storage can be chosen between npz and h5, data reduction is kind of tested
This commit is contained in:
parent
abf786ee62
commit
57a45da3c1
41
id9.py
41
id9.py
|
@ -5,6 +5,10 @@ import os
|
|||
import collections
|
||||
import numpy as np
|
||||
from .xray import azav
|
||||
from .xray import dataReduction
|
||||
from .xray import utils
|
||||
|
||||
storage_extension = ".npz"
|
||||
|
||||
def _conv(x):
|
||||
try:
|
||||
|
@ -13,20 +17,6 @@ def _conv(x):
|
|||
x = np.nan
|
||||
return x
|
||||
|
||||
def getFiles(folder,basename="*.edf*"):
|
||||
files = glob.glob(folder + "/" + basename)
|
||||
files.sort()
|
||||
return files
|
||||
|
||||
def getEdfFiles(folder):
|
||||
return getFiles(folder,basename="*.edf*")
|
||||
|
||||
def removeExt(fname):
|
||||
""" special remove extension meant to work with compressed files.edf and .edf.gz files """
|
||||
if fname[-3:] == ".gz": fname = fname[-3:]
|
||||
return os.path.splitext(fname)[0]
|
||||
|
||||
|
||||
def readDelayFromDiagnostic(fname):
|
||||
""" return an ordered dict dictionary of filename; for each key a rounded
|
||||
value of delay is associated """
|
||||
|
@ -34,7 +24,7 @@ def readDelayFromDiagnostic(fname):
|
|||
data = np.genfromtxt(fname,usecols=(2,3),\
|
||||
dtype=None,converters={3: lambda x: _conv(x)},
|
||||
names = ['fname','delay'])
|
||||
files = data['fname'].astype(np.str); # to avoid encoding problems
|
||||
files = data['fname'].astype(str)
|
||||
delays = data['delay']
|
||||
# skip lines that cannot be interpreted as float (like done, etc)
|
||||
idx_ok = np.isfinite( delays )
|
||||
|
@ -45,15 +35,24 @@ def readDelayFromDiagnostic(fname):
|
|||
|
||||
|
||||
def doFolder_azav(folder,nQ=1500,force=False,mask=None,saveChi=True,
|
||||
poni='auto',h5File='auto'):
|
||||
poni='auto',storageFile='auto'):
|
||||
""" very small wrapper around azav.doFolder, essentially just reading
|
||||
the diagnostics.log """
|
||||
|
||||
if h5File == 'auto': n5File = folder + "/" + "pyfai_1d.h5"
|
||||
|
||||
diag = dict( delays = readDelayFromDiagnostic(folder) )
|
||||
|
||||
if storageFile == 'auto' : storageFile = folder + "/" + "pyfai_1d" + storage_extension
|
||||
return azav.doFolder(folder,files="*.edf*",nQ=nQ,force=force,mask=mask,
|
||||
saveChi=saveChi,poni=poni,h5File=h5File,diagnostic=diag)
|
||||
|
||||
saveChi=saveChi,poni=poni,storageFile=storageFile,diagnostic=diag)
|
||||
|
||||
def doFolder_dataRed(folder,monitor=None,funcForEveraging=np.nanmean,errFilter=True):
|
||||
data = utils.data_storage(folder)
|
||||
scan = data.delays
|
||||
q = data.q
|
||||
i = data.data
|
||||
diffs = dataReduction.calcTimeResolvedSignal(scan,i,q=q,reference="min",
|
||||
monitor=monitor,funcForEveraging=funcForEveraging)
|
||||
if funcForEveraging == np.nanmean and errFilter:
|
||||
diffs = dataReduction.errorFilter(diffs)
|
||||
dataReduction.saveTxt(folder,diffs,info=data.pyfai_info)
|
||||
diffs.save(folder + "/" + "diffs" + storage_extension)
|
||||
return diffs
|
||||
|
|
22
mcutils.py
22
mcutils.py
|
@ -422,19 +422,17 @@ def bytesToHuman(bytes,units="auto",fmt="%.2f %s"):
|
|||
value = bytes/1024**u
|
||||
return fmt % (value,units)
|
||||
|
||||
def strToTime(s):
|
||||
""" convert 3us in 3e-6, ... """
|
||||
v = float(s[:-2])
|
||||
u = s[-2:]
|
||||
if (u=="ps"):
|
||||
v*=1e-12
|
||||
elif (u=="ns"):
|
||||
v*=1e-9
|
||||
elif (u=="us"):
|
||||
v*=1e-6
|
||||
_time_regex = re.compile("(-?\d+\.?\d*)((?:s|fs|ms|ns|ps|us)?)")
|
||||
def strToTime(delay) :
|
||||
_time2value = dict( fs = 1e-15, ps = 1e-12, ns = 1e-9, us = 1e-6, ms = 1e-3, s = 1)
|
||||
|
||||
match = _time_regex.search(delay)
|
||||
if match:
|
||||
n,t = float(match.group(1)),match.group(2)
|
||||
value = _time2value.get(t,1)
|
||||
return n*value
|
||||
else:
|
||||
pass
|
||||
return v
|
||||
return None
|
||||
|
||||
def memAvailable(asHuman=True):
|
||||
import psutil
|
||||
|
|
157
xray/azav.py
157
xray/azav.py
|
@ -9,7 +9,8 @@ import os
|
|||
import collections
|
||||
import glob
|
||||
import pathlib
|
||||
from . import storage as storage
|
||||
from . import storage
|
||||
from . import utils
|
||||
import pyFAI
|
||||
|
||||
try:
|
||||
|
@ -17,14 +18,6 @@ try:
|
|||
except ImportError:
|
||||
log.warn("Can't import matplotlib !")
|
||||
|
||||
def removeExt(fname):
|
||||
""" special remove extension meant to work with compressed files.edf and .edf.gz files """
|
||||
if fname[-3:] == ".gz": fname = fname[-3:]
|
||||
return os.path.splitext(fname)[0]
|
||||
|
||||
def getBasename(fname):
|
||||
return removeExt(os.path.basename(fname))
|
||||
|
||||
def pyFAIread(fname):
|
||||
""" read data from file using fabio """
|
||||
import fabio
|
||||
|
@ -43,6 +36,10 @@ def pyFAI_dict(ai):
|
|||
ret["detector"] = ai.detector.get_name()
|
||||
return ret
|
||||
|
||||
def pyFAI_info(ai):
|
||||
""" ai is a pyFAI azimuthal intagrator"""
|
||||
return "#" + str(ai).replace("\n","\n#")
|
||||
|
||||
def pyFAI1d(ai, imgs, mask = None, npt_radial = 600, method = 'csr',safe=True,dark=10., polCorr = 1):
|
||||
""" ai is a pyFAI azimuthal intagrator
|
||||
it can be defined with pyFAI.load(ponifile)
|
||||
|
@ -75,56 +72,6 @@ def pyFAI2d(ai, imgs, mask = None, npt_radial = 600, npt_azim=360,method = 'csr'
|
|||
out[_i] = i2d
|
||||
return q,azTheta,np.squeeze(out)
|
||||
|
||||
|
||||
def pyFAI_saveChi(fname,q,i,e=None,ai=None,overwrite=False):
|
||||
if os.path.exists(fname) and not overwrite:
|
||||
log.warn("File %s exists, returning",fname)
|
||||
return
|
||||
if ai is not None:
|
||||
if not isinstance(ai,dict): ai = pyFAI_dict(ai)
|
||||
header = [ "# %s : %s" %(k,v) for (k,v) in zip(ai.keys(),ai.values()) ]
|
||||
header = "\n".join(header)[1:]; # skip first #, will be added by np
|
||||
else:
|
||||
header = ""
|
||||
x = np.stack( (q,i,e) ) if e is not None else np.stack( (q,i) )
|
||||
np.savetxt(fname,x.T,fmt="%+10.5e",header=header)
|
||||
|
||||
class pyFAI_storage(dict):
|
||||
""" Storage for pyfai integrated info """
|
||||
def __init__(self,fileOrDict):
|
||||
if isinstance(fileOrDict,dict):
|
||||
self.filename = None
|
||||
d = fileOrDict
|
||||
else:
|
||||
assert isinstance(fileOrDict,str)
|
||||
self.filename = fileOrDict
|
||||
d = storage.read(fileOrDict)
|
||||
|
||||
# allow accessing with .data, .delays, etc.
|
||||
for k,v in d.items(): setattr(self,k,v)
|
||||
|
||||
# allow accessing as proper dict
|
||||
self.update( **dict(d) )
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
setattr(self,key,value)
|
||||
super().__setitem__(key, value)
|
||||
|
||||
def __delitem__(self, key):
|
||||
delattr(self,key)
|
||||
super().__delitem__(key)
|
||||
|
||||
def save(self,fname=None):
|
||||
if fname is None: fname = self.filename
|
||||
assert fname is not None
|
||||
storage.save(fname,dict(self))
|
||||
|
||||
#def asdict(self): return dict(self)
|
||||
|
||||
def readNpzFile(h5File):
|
||||
if os.path.isdir(h5File): h5File = "%s/pyfai_1d.h5" % h5File
|
||||
return pyFAI_storage(h5File)
|
||||
|
||||
def _getAI(poni,folder):
|
||||
if isinstance(poni,pyFAI.azimuthalIntegrator.AzimuthalIntegrator):
|
||||
ai = poni
|
||||
|
@ -150,7 +97,7 @@ def _getAI(poni,folder):
|
|||
|
||||
|
||||
def doFolder(folder,files='*.edf*',nQ = 1500,force=False,mask=None,
|
||||
saveChi=True,poni='auto',h5File='auto',diagnostic=None):
|
||||
saveChi=True,poni='auto',storageFile='auto',diagnostic=None):
|
||||
""" calc 1D curves from files in folder, returning a dictionary of stuff
|
||||
nQ : number of Q-points (equispaced)
|
||||
force : if True, redo from beginning even if previous data are found
|
||||
|
@ -171,13 +118,10 @@ def doFolder(folder,files='*.edf*',nQ = 1500,force=False,mask=None,
|
|||
n-1 in pwd
|
||||
n in homefolder
|
||||
"""
|
||||
if storageFile == 'auto': storageFile = folder + "/" + "pyfai_1d.h5"
|
||||
|
||||
if h5File == 'auto': h5File = folder + "/" + "pyfai_1d.h5"
|
||||
|
||||
if os.path.exists(h5File) and not force:
|
||||
print("Loading")
|
||||
saved = readNpzFile(h5File)
|
||||
print("done")
|
||||
if os.path.exists(storageFile) and not force:
|
||||
saved = utils.data_storage(storageFile)
|
||||
else:
|
||||
saved = None
|
||||
|
||||
|
@ -187,7 +131,7 @@ def doFolder(folder,files='*.edf*',nQ = 1500,force=False,mask=None,
|
|||
files = glob.glob("%s/%s"%(folder,files))
|
||||
files.sort()
|
||||
if saved is not None:
|
||||
files = [f for f in files if getBasename(f) not in saved["files"]]
|
||||
files = [f for f in files if utils.getBasename(f) not in saved["files"]]
|
||||
|
||||
if len(files) > 0:
|
||||
# work out mask to use
|
||||
|
@ -204,27 +148,27 @@ def doFolder(folder,files='*.edf*',nQ = 1500,force=False,mask=None,
|
|||
data[ifname] = i
|
||||
err[ifname] = e
|
||||
if saveChi:
|
||||
chi_fname = removeExt(fname) + ".chi"
|
||||
pyFAI_saveChi(chi_fname,q,i,e,ai=ai,overwrite=True)
|
||||
chi_fname = utils.removeExt(fname) + ".chi"
|
||||
utils.saveTxt(chi_fname,q,i,e,info=pyFAI_dict(ai),overwrite=True)
|
||||
|
||||
files = [ getBasename(f) for f in files ]
|
||||
files = [ utils.getBasename(f) for f in files ]
|
||||
files = np.asarray(files)
|
||||
if saved is not None:
|
||||
files = np.concatenate( (saved["files"] ,files ) )
|
||||
data = np.concatenate( (saved["data"] ,data ) )
|
||||
err = np.concatenate( (saved["err"] ,err ) )
|
||||
ret = dict(q=q,folder=folder,files=files,data=data,err=err,
|
||||
pyfai=pyFAI_dict(ai),mask=mask)
|
||||
pyfai=pyFAI_dict(ai),pyfai_info=pyFAI_info(ai),mask=mask)
|
||||
|
||||
# add info from diagnostic if provided
|
||||
if diagnostic is not None:
|
||||
for k in diagnostic:
|
||||
ret[k] = np.asarray( [diagnostic[k][f] for f in ret['files']] )
|
||||
|
||||
if h5File is not None: np.savez(h5File,**ret)
|
||||
ret = utils.data_storage(ret)
|
||||
if storageFile is not None: ret.save(storageFile)
|
||||
else:
|
||||
ret = saved
|
||||
return pyFAI_storage(ret)
|
||||
return ret
|
||||
|
||||
|
||||
def _calc_R(x,y, xc, yc):
|
||||
|
@ -279,6 +223,56 @@ def pyFAI_find_center(img,psize=100e-6,dist=0.1,wavelength=0.8e-10,**kwargs):
|
|||
print("Final values: (in pixels) %.3f %.3f"%(xc,yc))
|
||||
return ai
|
||||
|
||||
def plotdata(q,data,plot=True,showTrend=True,title=None,clim='auto'):
|
||||
if not (plot or showTrend): return
|
||||
if clim == 'auto': clim = np.nanpercentile(data,(1.5,98.5))
|
||||
one_plot = showTrend or plot
|
||||
two_plot = showTrend and plot
|
||||
if one_plot and not two_plot:
|
||||
fig,ax = plt.subplots(1,1)
|
||||
if two_plot:
|
||||
fig,ax = plt.subplots(1,2,sharey=True)
|
||||
ax = np.atleast_1d(ax)
|
||||
if showTrend:
|
||||
plt.sca(ax[0])
|
||||
plt.pcolormesh(np.arange(data.shape[0]),q,data.T)
|
||||
plt.xlabel("image number, 0 being older")
|
||||
plt.ylabel(r"q ($\AA^{-1}$)")
|
||||
plt.clim( *clim )
|
||||
if plot:
|
||||
if showTrend:
|
||||
ax[1].plot(data.mean(axis=0),q)
|
||||
else:
|
||||
ax[0].plot(q,data.mean(axis=0))
|
||||
if (plot or showTrend) and title is not None:
|
||||
plt.title(title)
|
||||
|
||||
def average(fileOrFolder,delays=slice(None),scale=1,norm=None,returnAll=False,plot=False,
|
||||
showTrend=False):
|
||||
data = utils.data_storage(fileOrFolder)
|
||||
if isinstance(delays,slice):
|
||||
idx = np.arange(data.delays.shape[0])[delays]
|
||||
elif isinstance(delays,(int,float)):
|
||||
idx = data.delays == float(delays)
|
||||
else:
|
||||
idx = data.delays < 0
|
||||
if idx.sum() == 0:
|
||||
print("No data with the current filter")
|
||||
return None
|
||||
i = data.data[idx]
|
||||
q = data.q
|
||||
if isinstance(norm,(tuple,list)):
|
||||
idx = ( q>norm[0] ) & (q<norm[1])
|
||||
norm = np.nanmean(i[:,idx],axis=1)
|
||||
i = i/norm[:,np.newaxis]
|
||||
if isinstance(norm,np.ndarray):
|
||||
i = i/norm[:,np.newaxis]
|
||||
title = "%s %s" % (fileOrFolder,str(delays))
|
||||
plotdata(q,i*scale,showTrend=showTrend,plot=plot,title=title)
|
||||
if returnAll:
|
||||
return q,i.mean(axis=0)*scale,i
|
||||
else:
|
||||
return q,i.mean(axis=0)*scale
|
||||
|
||||
#### Utilities for chi files ####
|
||||
def chiRead(fname,scale=1):
|
||||
|
@ -289,13 +283,12 @@ def chiPlot(fname,useTheta=False,E=12.4):
|
|||
q,i = chiRead(fname)
|
||||
lam = 12.4/E
|
||||
theta = 2*180/3.14*np.arcsin(q*lam/4/3.14)
|
||||
if useTheta:
|
||||
x = theta
|
||||
else:
|
||||
x = q
|
||||
x = theta if useTheta else q
|
||||
plt.plot(x,i,label=fname)
|
||||
|
||||
def chiAverage(folder,basename="",scale=1,returnAll=False,plot=False,showTrend=False,norm=None):
|
||||
|
||||
|
||||
def chiAverage(folder,basename="",scale=1,norm=None,returnAll=False,plot=False,showTrend=False,clim='auto'):
|
||||
files = glob.glob("%s/%s*chi"%(folder,basename))
|
||||
files.sort()
|
||||
print(files)
|
||||
|
@ -304,10 +297,14 @@ def chiAverage(folder,basename="",scale=1,returnAll=False,plot=False,showTrend=F
|
|||
return None
|
||||
q,_ = chiRead(files[0])
|
||||
i = np.asarray( [ chiRead(f)[1] for f in files ] )
|
||||
if norm is not None:
|
||||
if isinstance(norm,(tuple,list)):
|
||||
idx = ( q>norm[0] ) & (q<norm[1])
|
||||
norm = np.nanmean(i[:,idx],axis=1)
|
||||
i = i/norm[:,np.newaxis]
|
||||
if isinstance(norm,np.ndarray):
|
||||
i = i/norm[:,np.newaxis]
|
||||
title = "%s %s" % (folder,basename)
|
||||
plotdata(q,i,plot=plot,showTrend=showTrend,title=title,clim=clim)
|
||||
if (showTrend and plot): plt.subplot(1,2,1)
|
||||
if showTrend:
|
||||
plt.pcolormesh(np.arange(i.shape[0]),q,i.T)
|
||||
|
|
|
@ -5,7 +5,7 @@ log.basicConfig(level=log.INFO)
|
|||
|
||||
import numpy as np
|
||||
np.seterr(all='ignore')
|
||||
|
||||
from . import utils
|
||||
import os
|
||||
|
||||
def subtractReferences(i,idx_ref, useRatio = False):
|
||||
|
@ -70,10 +70,7 @@ def averageScanPoints(scan,data,isRef=None,lpower=None,useRatio=False,\
|
|||
|
||||
# normalize signal for laser intensity if provided
|
||||
if lpower is not None:
|
||||
assert lpower.shape[0] == data.shape[0]
|
||||
# expand lpower to allow broadcasting
|
||||
shape = [data.shape[0],] + [1,]*(data.ndim-1)
|
||||
lpower = lpower.reshape(shape)
|
||||
lpower = utils.reshapeToBroadcast(lpower,data)
|
||||
if useRatio is False:
|
||||
data /= lpower
|
||||
else:
|
||||
|
@ -84,20 +81,46 @@ def averageScanPoints(scan,data,isRef=None,lpower=None,useRatio=False,\
|
|||
ret = np.empty(shape_out)
|
||||
err = np.empty(shape_out)
|
||||
dataInScanPoint = []
|
||||
chi2_0 = []
|
||||
for i,t in enumerate(scan_pos):
|
||||
shot_idx = (scan == t)
|
||||
#if shot_idx.sum() > 0:
|
||||
ret[i] = funcForEveraging(data[shot_idx],axis=0)
|
||||
dataInScanPoint.append( data[shot_idx] )
|
||||
err[i] = np.std(data[shot_idx], axis = 0)/np.sqrt(shot_idx.sum())
|
||||
return dict(scan=scan_pos,data=ret,err=err,dataInScanPoint=dataInScanPoint)
|
||||
|
||||
# select data for the scan point
|
||||
data_for_scan = data[shot_idx]
|
||||
dataInScanPoint.append( data_for_scan )
|
||||
|
||||
# calculate average
|
||||
ret[i] = funcForEveraging(data_for_scan,axis=0)
|
||||
|
||||
# calculate std
|
||||
noise = np.nanstd(data[shot_idx], axis = 0)
|
||||
|
||||
# calculate chi2 of different repetitions
|
||||
chi2 = np.power( (data_for_scan - ret[i])/noise,2)
|
||||
# sum over all axis but first
|
||||
for _ in range(data_for_scan.ndim-1):
|
||||
chi2 = np.nansum( chi2, axis=-1 )
|
||||
|
||||
# store chi2_0
|
||||
chi2_0.append( chi2/ret[i].size )
|
||||
|
||||
# store error of mean
|
||||
err[i] = noise/np.sqrt(shot_idx.sum())
|
||||
|
||||
ret = dict(scan=scan_pos,data=ret,err=err,chi2_0=chi2_0,
|
||||
dataInScanPoint=dataInScanPoint)
|
||||
ret = utils.data_storage(ret)
|
||||
return ret
|
||||
|
||||
|
||||
def calcTimeResolvedSignal(scan,data,reference="min",monitor=None,q=None,**kw):
|
||||
def calcTimeResolvedSignal(scan,data,reference="min",monitor=None,q=None,
|
||||
saveTxt=True,folder="./",**kw):
|
||||
"""
|
||||
reference: can be 'min', 'max', a float|integer or an array of booleans
|
||||
q : is needed if monitor is a tuple|list (it is interpreted as
|
||||
q-range normalization)
|
||||
q : is needed if monitor is a tuple|list
|
||||
monitor : normalization vector (if it is interpreted a list it is
|
||||
interpreted as q-range normalization)
|
||||
saveTxt : will save txt outputfiles (diff_av_*) in folder
|
||||
other keywords are passed to averageScanPoints
|
||||
"""
|
||||
if reference == "min":
|
||||
|
@ -108,7 +131,6 @@ def calcTimeResolvedSignal(scan,data,reference="min",monitor=None,q=None,**kw):
|
|||
isRef = (scan == reference)
|
||||
else:
|
||||
isRef = reference
|
||||
|
||||
# normalize if needed
|
||||
if monitor is not None:
|
||||
if isinstance(monitor,(tuple,list)):
|
||||
|
@ -116,8 +138,57 @@ def calcTimeResolvedSignal(scan,data,reference="min",monitor=None,q=None,**kw):
|
|||
assert data.ndim == 2
|
||||
idx = (q>= monitor[0]) & (q<= monitor[1])
|
||||
monitor = np.nanmedian(data[:,idx],axis=1)
|
||||
monitor = utils.reshapeToBroadcast(monitor,data)
|
||||
data = data/monitor
|
||||
return averageScanPoints(scan,data,isRef=isRef,**kw)
|
||||
ret = averageScanPoints(scan,data,isRef=isRef,**kw)
|
||||
if q is not None: ret["q"] = q
|
||||
return ret
|
||||
|
||||
def errorFilter(data,threshold=4):
|
||||
""" Very simple but effective filter for zinger like noise
|
||||
The noise is in general lower when using nanmean instead than
|
||||
nanmedian but nanmean does not filter out 'spikes'.
|
||||
This filter mitigate this effect by using nanmedian for the q points
|
||||
that have an higher than usual error (proxy for spikes ...)
|
||||
tested with mi1245/dec2016/tiox/tiox1/run3
|
||||
"""
|
||||
assert data.data.ndim == 2
|
||||
for iscan in range(len(data.dataInScanPoint)):
|
||||
median_err = np.nanmedian(data.err[iscan])
|
||||
idx = data.err[iscan] > threshold*median_err
|
||||
data.data[iscan][idx] = \
|
||||
np.nanmedian( data.dataInScanPoint[iscan][:,idx],axis=0 )
|
||||
# data.err[iscan][idx] = median_err
|
||||
return data
|
||||
|
||||
def saveTxt(folder,data,delayToStr=True,info="",**kw):
|
||||
""" data must be a data_storage instance """
|
||||
q = data.q if "q" in data else np.arange(data.data.shape[-1])
|
||||
# save one file with all average diffs
|
||||
fname = "%s/diff_av_matrix.txt" % (folder)
|
||||
utils.saveTxt(fname,q,data.data,headerv=data.scan,**kw)
|
||||
for iscan,scan in enumerate(data.scan):
|
||||
scan = utils.timeToStr(scan) if delayToStr else "%+10.5e" % scan
|
||||
|
||||
# try retreiving info on chi2
|
||||
try:
|
||||
chi2_0 = data.chi2_0[iscan]
|
||||
info_delay = [ " # rep_num , chi2_0 ", ]
|
||||
for irep,value in enumerate(chi2_0):
|
||||
info_delay.append( "# %d : %.3f" % (irep,value))
|
||||
info_delay = "\n".join(info_delay)
|
||||
if info != '': info_delay = "%s\n%s" % (info,info_delay)
|
||||
except AttributeError:
|
||||
info_delay = info
|
||||
|
||||
# save one file per timedelay with average diff (and err)
|
||||
fname = "%s/diff_av_%s.txt" % (folder,scan)
|
||||
utils.saveTxt(fname,q,data.data[iscan],e=data.err[iscan],
|
||||
info=info_delay,**kw)
|
||||
|
||||
# save one file per timedelay with all diffs for given delay
|
||||
fname = "%s/diffs_%s.txt" % (folder,scan)
|
||||
utils.saveTxt(fname,q,data.dataInScanPoint[iscan],info=info_delay,**kw)
|
||||
|
||||
|
||||
def read_diff_av(folder,plot2D=False,save=None):
|
||||
|
|
|
@ -5,28 +5,38 @@ import os
|
|||
import h5py
|
||||
import collections
|
||||
|
||||
import logging as log
|
||||
log.basicConfig(level=log.INFO)
|
||||
|
||||
def dictToH5Group(d,group):
|
||||
""" helper function that transform (recursively) a dictionary into an
|
||||
hdf group """
|
||||
for key,value in d.items():
|
||||
if not isinstance(value,(dict,collections.OrderedDict)):
|
||||
# hack for special s...
|
||||
# hacks for special s...
|
||||
# h5py can't handle numpy unicode arrays
|
||||
if isinstance(value,np.ndarray) and value.dtype.char == "U":
|
||||
value = np.asarray([vv.encode('ascii') for vv in value])
|
||||
# h5py can't save None
|
||||
if value is None: value="NONE_PYTHON_OBJECT"
|
||||
group[key] = value
|
||||
try:
|
||||
group[key] = value
|
||||
except TypeError:
|
||||
log.error("Can't save %s"%(key))
|
||||
else:
|
||||
group.create_group(key)
|
||||
dictToH5Group(value,group[key])
|
||||
|
||||
def dictToH5(h5,d):
|
||||
""" Save a dictionary into an hdf5 file
|
||||
h5py is not capable of handling dictionaries natively"""
|
||||
h5 = h5py.File(h5,mode="w")
|
||||
# group = h5.create_group("/")
|
||||
dictToH5Group(d,h5["/"])
|
||||
h5.close()
|
||||
|
||||
def h5dataToDict(h5):
|
||||
""" Read a hdf5 group into a dictionary """
|
||||
if isinstance(h5,h5py.Dataset):
|
||||
temp = h5[...]
|
||||
# hack for special s...
|
||||
|
@ -35,6 +45,9 @@ def h5dataToDict(h5):
|
|||
temp=temp.item()
|
||||
# h5py can't handle None
|
||||
if temp == "NONE_PYTHON_OBJECT": temp=None
|
||||
# convert back from ascii to unicode
|
||||
if isinstance(temp,np.ndarray) and temp.dtype.char == "S":
|
||||
temp = temp.astype(str)
|
||||
return temp
|
||||
else:
|
||||
ret = dict()
|
||||
|
@ -42,6 +55,7 @@ def h5dataToDict(h5):
|
|||
return ret
|
||||
|
||||
def h5ToDict(h5):
|
||||
""" Read a hdf5 file into a dictionary """
|
||||
with h5py.File(h5,"r") as h:
|
||||
ret = h5dataToDict( h["/"] )
|
||||
return ret
|
||||
|
|
|
@ -0,0 +1,135 @@
|
|||
from __future__ import print_function,division
|
||||
|
||||
import logging as log
|
||||
log.basicConfig(level=log.INFO)
|
||||
|
||||
import numpy as np
|
||||
np.seterr(all='ignore')
|
||||
import os
|
||||
import glob
|
||||
import pathlib
|
||||
import re
|
||||
from . import storage as storage
|
||||
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
except ImportError:
|
||||
log.warn("Can't import matplotlib !")
|
||||
|
||||
_time_regex = re.compile( "(-?\d+\.?\d*(?:ps|ns|us|ms)?)")
|
||||
_timeInStr_regex = re.compile("_(-?\d+\.?\d*(?:ps|ns|us|ms)?)")
|
||||
|
||||
def getDelayFromString(string) :
|
||||
match = _timeInStr_regex_regex.search(string)
|
||||
return match and match.group(1) or None
|
||||
|
||||
_time_regex = re.compile("(-?\d+\.?\d*)((?:s|fs|ms|ns|ps|us)?)")
|
||||
def strToTime(delay) :
|
||||
_time2value = dict( fs = 1e-15, ps = 1e-12, ns = 1e-9, us = 1e-6, ms = 1e-3, s = 1)
|
||||
|
||||
match = _time_regex.search(delay)
|
||||
if match:
|
||||
n,t = float(match.group(1)),match.group(2)
|
||||
value = _time2value.get(t,1)
|
||||
return n*value
|
||||
else:
|
||||
return None
|
||||
|
||||
def timeToStr(delay,fmt="%+.0f"):
|
||||
a_delay = abs(delay)
|
||||
if a_delay >= 1:
|
||||
ret = fmt % delay + "s"
|
||||
elif 1e-3 <= a_delay < 1:
|
||||
ret = fmt % (delay*1e3) + "ms"
|
||||
elif 1e-6 <= a_delay < 1e-3:
|
||||
ret = fmt % (delay*1e6) + "us"
|
||||
elif 1e-9 <= a_delay < 1e-6:
|
||||
ret = fmt % (delay*1e9) + "ns"
|
||||
elif 1e-12 <= a_delay < 1e-9:
|
||||
ret = fmt % (delay*1e12) + "ps"
|
||||
elif 1e-15 <= a_delay < 1e-12:
|
||||
ret = fmt % (delay*1e12) + "fs"
|
||||
elif 1e-18 <= a_delay < 1e-15:
|
||||
ret = fmt % (delay*1e12) + "as"
|
||||
return ret
|
||||
|
||||
def removeExt(fname):
|
||||
""" special remove extension meant to work with compressed files.edf and .edf.gz files """
|
||||
if fname[-3:] == ".gz": fname = fname[-3:]
|
||||
return os.path.splitext(fname)[0]
|
||||
|
||||
def getBasename(fname):
|
||||
return removeExt(os.path.basename(fname));
|
||||
|
||||
def saveTxt(fname,q,i,e=None,headerv=None,info=None,overwrite=True):
|
||||
""" Write data to file 'fname' in text format.
|
||||
Inputs:
|
||||
q = x vector
|
||||
i = 1D or 2D
|
||||
e = 1D (discarded when i is 2D)
|
||||
info = dictionary (saved as '# key : value') or string
|
||||
headerv = vector to be used as header or string
|
||||
"""
|
||||
if os.path.exists(fname) and not overwrite:
|
||||
log.warn("File %s exists, returning",fname)
|
||||
return
|
||||
if isinstance(info,dict):
|
||||
header = [ "# %s : %s" %(k,str(v)) for (k,v) in info.items() ]
|
||||
header = "\n".join(header); # skip first #, will be added by np
|
||||
elif isinstance(info,str):
|
||||
header = info
|
||||
else:
|
||||
header = ""
|
||||
if isinstance(headerv,str): header += "\n%s" % headerv
|
||||
if i.ndim == 1:
|
||||
x = np.vstack( (q,i,e) ) if e is not None else np.vstack( (q,i) )
|
||||
if i.ndim == 2:
|
||||
x = np.vstack( (q,i,) )
|
||||
if headerv is not None:
|
||||
headerv = np.concatenate(( (i.shape[1],),headerv))
|
||||
x = np.hstack( (headerv[:,np.newaxis],x) )
|
||||
np.savetxt(fname,x.T,fmt="%+10.5e",header=header,comments='')
|
||||
|
||||
class data_storage(dict):
|
||||
""" Storage for 1d integrated info """
|
||||
def __init__(self,fileOrDict):
|
||||
if isinstance(fileOrDict,dict):
|
||||
self.filename = None
|
||||
d = fileOrDict
|
||||
else:
|
||||
assert isinstance(fileOrDict,str)
|
||||
if os.path.isdir(fileOrDict): fileOrDict = fileOrDict + "/pyfai_1d.h5"
|
||||
self.filename = fileOrDict
|
||||
d = storage.read(fileOrDict)
|
||||
|
||||
# allow accessing with .data, .delays, etc.
|
||||
for k,v in d.items(): setattr(self,k,v)
|
||||
|
||||
# allow accessing as proper dict
|
||||
self.update( **dict(d) )
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
setattr(self,key,value)
|
||||
super().__setitem__(key, value)
|
||||
|
||||
def __delitem__(self, key):
|
||||
delattr(self,key)
|
||||
super().__delitem__(key)
|
||||
|
||||
def save(self,fname=None):
|
||||
if fname is None: fname = self.filename
|
||||
assert fname is not None
|
||||
storage.save(fname,dict(self))
|
||||
|
||||
#def asdict(self): return dict(self)
|
||||
|
||||
|
||||
def reshapeToBroadcast(what,ref):
|
||||
""" expand the 1d array 'what' to allow broadbasting to match
|
||||
multidimentional array 'ref'. The two arrays have to same the same
|
||||
dimensions along the first axis
|
||||
"""
|
||||
assert what.shape[0] == ref.shape[0]
|
||||
shape = [ref.shape[0],] + [1,]*(ref.ndim-1)
|
||||
return what.reshape(shape)
|
||||
|
Loading…
Reference in New Issue