lipase/doc/lipase.tex

190 lines
10 KiB
TeX
Raw Normal View History

2020-03-18 16:26:32 +01:00
\documentclass[a4paper, 10pt]{article}
\usepackage[utf8]{inputenc}
2020-03-18 16:26:32 +01:00
\usepackage{graphicx}
\usepackage{subcaption}
\usepackage[htt]{hyphenat} % allow hyphen inside texttt to avoid overfull hbox warnings
\usepackage[english, french]{babel}
\usepackage[margin=0.5in]{geometry} % default margins are too big for my taste: too much wasted space http://kb.mit.edu/confluence/pages/viewpage.action?pageId=3907057
\usepackage{amsmath} % provides underset
\usepackage{dirtree} % provides \dirtree
\usepackage{hyperref} % provides \url
2020-03-18 16:26:32 +01:00
\hyphenation{tu-yau}
\title{lipase manual}
\author{Guillaume Raffy \and Véronique Vié }
\begin{document}
2020-03-18 16:26:32 +01:00
\selectlanguage{english}
\maketitle
\section{lipase imagej plugin user guide}
This section describes how to use the lipase imagej plugin.
\subsection{lipase imagej plugin menu items}
\subsubsection{Ipr/Lipase/Define raw images root}
This action will let the user choose the directory that contains the input sequences. This directory is called \texttt{raw\_images\_root\_path}, and its value is stored in the user's home directory, in a file named \texttt{\textasciitilde/.fr.univ-rennes1.ipr.lipase.json}. This \texttt{raw\_images\_root\_path} is used by some other lipase imagej plugin menu items, so it's probably the first action the user is expeted to perform. Unless the user has multiple image databases, this action only requires to be performed once.
The directory chosen as is expected to contain sequences of images, with the proper accompanying metadata files (\texttt{display\_and\_comments.txt} and \texttt{metadata.txt}) saved by micromanager\footnote{\url{https://micro-manager.org/}}. An example of sequence database is shown in figure \ref{fig:input_images_layout}.
\begin{figure}[htbp]
\dirtree{%
.1 \texttt<raw\_images\_root\_path>.
.2 res\_soleil2018.
.3 dark.
.4 dark\_40x\_60min\_1 im pae min\_1.
.5 pos0.
.6 ...
.6 metadata.txt.
.5 display\_and\_comments.txt.
.4 dark\_40x\_zstack\_vis\_327-353\_1.
.5 pos0.
.6 ...
.6 metadata.txt.
.5 display\_and\_comments.txt.
.3 ggh.
.4 ggh\_2018\_cin2\_phig\_l\_327\_vis\_-40\_1.
.5 pos0.
.6 img\_0000000000\_dm300\_327-353\_fluo\_000.tif.
.6 img\_0000000001\_dm300\_327-353\_fluo\_000.tif.
.6 ...
.6 img\_0000000039\_dm300\_327-353\_fluo\_000.tif.
.6 img\_0000000000\_dm300\_nofilter\_vis\_000.tif.
.6 img\_0000000001\_dm300\_nofilter\_vis\_000.tif.
.6 ...
.6 img\_0000000039\_dm300\_nofilter\_vis\_000.tif.
.6 metadata.txt.
.5 pos1.
.6 ...
.6 metadata.txt.
.5 display\_and\_comments.txt.
.3 white.
.4 ...
}
\caption{example of input images database}
\label{fig:input_images_layout}
\end{figure}
\subsubsection{Ipr/Lipase/Display Sequence}
This action allows the user to display a sequence he interactively chooses from the catalog of sequences.
\subsubsection{Ipr/Lipase/Compute globules area}
This action performs a detection of globules in the given sequence, and for each image in the sequence, computes the area aof all globules. At the end of the computation, a graph showing the area of globules along time is displayed. Figure \ref{fig:trap_sequence1} shows an example sequence that can be processed with this action.
\begin{itemize}
\item Input data:
\begin{description}
\item [input image stack] the sequence of images containing particle-like globules evolving with time over a static background.
\item [background image] the image that will be used as a background image. This background image is expected to contain everything but the particles that we want to detect. If in your sequence, one of the images has no particle at all, it could be used as a background image.
\item [particle threshold] the threshold used to detect particles, expressed in grey levels.
\begin{itemize}
\item if set too high, the area of particles will be underestimated, as some particles will be either undetected or detected smaller than they actually are.
\item if set too low, the area of particles will be overestimated, as some of the background will be wrongly detected as particles, because the background is never completely static (noise, changes in illumination, etc.).
\end{itemize}
\end{description}
\item Output data:
\begin{description}
\item [area over time] this 1D-data shows the evolution of the detected globules area for each frame in the sequence. Note that the globules area is expressed as a coverage ratio of the detected globules in each image (its value is therefore in the range $[0;1]$).
\end{description}
\end{itemize}
Here's how it works:
\begin{itemize}
\item the sequence \texttt{diff} is computed by sustracting \texttt{background image} from \texttt{input image stack}
\item the sequence \texttt{abs\_diff} is computed as the absolute value of \texttt{diff}
\item the sequence \texttt{is\_globule} is computed by performing a threshold operator on \texttt{abs\_diff} with the threshold value {particle threshold}
\item \texttt{area over time} is computed by counting the number of non zero pixel values in each frame of \texttt{is\_globule}
\end{itemize}
\section{catalog images}
Images have been acquired on the telemos microscope\footnote{\url{https://www6.inrae.fr/pfl-cepia/content/download/3542/34651/version/1/file/notes_TELEMOS.pdf}}.
image prefix :
2020-03-18 16:26:32 +01:00
\selectlanguage{french}
\begin{description}
\item[AF]
\item[blé] coupes de blé
\item[CA] coupe d'amande
\item[FE] feuille d'épinard
\item[GGH] globule gras humain
\item[CRF] chloroplastes de feuille d'épinard
\item[OL] oléosome
\item[DARK] dark
\item[white]
\end{description}
\begin{description}
\item[cin1] cinétique 1
\begin{description}
\item[\texttt{phiG\_40x\_1}] cinétique avant et après injection enzyme gastrique
\item[\texttt{phiG\_40x\_Zstack20um\_1}] stack
\end{description}
\begin{tabular}{l|r|p{0.4\textwidth}}
file name & time & action \\
\hline
\texttt{phiG\_40x\_1} & 0 mn & on commence à enregistrer et on attend 10mn (pour le bleaching)\\
& 10 mn & debut injection phase gastrique (poussée) \\
& 13 mn & la phase gastrique (le petit tuyau contient $20 \mu l$) arrive dans la cellule d'un coup (1 nanol) \\
& 15 mn & on arrête l'injection \\
\cline{1-1} \texttt{phiG\_40x\_Zstack20um\_1} & 50 mn & on fait un stack\\
\cline{1-1} \texttt{phiG\_I\_40x\_1} & 51 mn & début d'injection phase intestinale (poussée)\\
& x mn & on arrête l'injection \\
\cline{1-1} \texttt{phiG\_I\_40x\_Zstack20um\_1} & 90 mn & on fait un stack
\end{tabular}
\item[cin2] autre échantillon similaire à cin1
\item[cond5678] condition non réalistes
\end{description}
2020-03-18 16:26:32 +01:00
\selectlanguage{english}
\section{computing background image for trap sequences}
Trap sequences show traps at fixed positions with particles that move over time, as shown in figure \ref{fig:trap_sequence1}. In order to detect the particles, we can subtract from each image a background image, which is an image of the scene without any particle.
If we suppose that particles are moving fast enough, we can estimate this background image $B$, as :
\begin{equation}
B(x,y) = \underset{t\in {1 \ldots T_{max}}}{\mathrm{median}} \{I(x,y,t)\}
\end{equation}
where $I(x,y,t)$ is the value of the input sequence at time $t$ and on pixel position $(x,y)$ and $T_{max}$ is the number of frames in the sequence.
\begin{figure}
\centering
\begin{subfigure}[b]{0.3\textwidth}
\includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000000_DM300_nofilter_vis_000.png}
%\includegraphics[width=\textwidth]{1.png}
\caption{Frame 0}
%\label{fig:1}
\end{subfigure}
~
\begin{subfigure}[b]{0.3\textwidth}
\includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000019_DM300_nofilter_vis_000.png}
%\includegraphics[width=\textwidth]{1.png}
\caption{Frame 19}
%\label{fig:1}
\end{subfigure}
~
\begin{subfigure}[b]{0.3\textwidth}
\includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000039_DM300_nofilter_vis_000.png}
%\includegraphics[width=\textwidth]{1.png}
\caption{Frame 39}
%\label{fig:1}
\end{subfigure}
\caption{Example of trap sequence (\texttt{res\_soleil2018/GGH/GGH\_2018\_cin2\_phiG\_I\_327\_vis\_-40\_1/Pos0})}
\label{fig:trap_sequence1}
\end{figure}
\end{document}