lots of changes, now id9 and pyfai routines have their own wubmodule; worked on storage system (hdf5 or npz based)

This commit is contained in:
Marco Cammarata 2017-01-05 19:22:37 +01:00
parent 0a7b628ac1
commit abf786ee62
6 changed files with 662 additions and 151 deletions

59
id9.py Normal file
View File

@ -0,0 +1,59 @@
import logging as log
log.basicConfig(level=log.INFO)
import os
import collections
import numpy as np
from .xray import azav
def _conv(x):
try:
x = float(x)
except:
x = np.nan
return x
def getFiles(folder,basename="*.edf*"):
files = glob.glob(folder + "/" + basename)
files.sort()
return files
def getEdfFiles(folder):
return getFiles(folder,basename="*.edf*")
def removeExt(fname):
""" special remove extension meant to work with compressed files.edf and .edf.gz files """
if fname[-3:] == ".gz": fname = fname[-3:]
return os.path.splitext(fname)[0]
def readDelayFromDiagnostic(fname):
""" return an ordered dict dictionary of filename; for each key a rounded
value of delay is associated """
if os.path.isdir(fname): fname += "/diagnostics.log"
data = np.genfromtxt(fname,usecols=(2,3),\
dtype=None,converters={3: lambda x: _conv(x)},
names = ['fname','delay'])
files = data['fname'].astype(np.str); # to avoid encoding problems
delays = data['delay']
# skip lines that cannot be interpreted as float (like done, etc)
idx_ok = np.isfinite( delays )
files = files[idx_ok]
delays = delays[idx_ok]
delays = np.round(delays.astype(float),12)
return collections.OrderedDict( zip(files,delays) )
def doFolder_azav(folder,nQ=1500,force=False,mask=None,saveChi=True,
poni='auto',h5File='auto'):
""" very small wrapper around azav.doFolder, essentially just reading
the diagnostics.log """
if h5File == 'auto': n5File = folder + "/" + "pyfai_1d.h5"
diag = dict( delays = readDelayFromDiagnostic(folder) )
return azav.doFolder(folder,files="*.edf*",nQ=nQ,force=force,mask=mask,
saveChi=saveChi,poni=poni,h5File=h5File,diagnostic=diag)

View File

@ -65,53 +65,6 @@ def noaxis(ax=None):
ax.spines['left'].set_visible(False) ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False) ax.spines['bottom'].set_visible(False)
def xrayAttLenght(*args,**kw):
from periodictable import xsf
n = xsf.index_of_refraction(*args,**kw)
if not "wavelength" in kw:
wavelength = 12.398/np.asarray(kw["energy"])
else:
wavelength = np.asarray(kw["wavelength"])
attenuation_length = np.abs( (wavelength*1e-10)/ (4*np.pi*np.imag(n)) )
return attenuation_length
def xrayFluo(atom,density,energy=7.,length=30.,I0=1e10,\
det_radius=1.,det_dist=10.,det_material="Si",det_thick=300,verbose=True):
""" compound: anything periodictable would understand
density: in mM
length: sample length in um
energy: in keV, could be array
"""
import periodictable
from periodictable import xsf
wavelength = 12.398/energy
atom = periodictable.__dict__[atom]
# 1e3 -> from mM to M
# 1e3 -> from L to cm3
# so 1 mM = 1e-3M/L = 1e-6 M/cm3
density_g_cm3 = density*1e-6*atom.mass
n = xsf.index_of_refraction(atom,density=density_g_cm3,wavelength=wavelength)
attenuation_length = xrayAttLenght( atom,density=density_g_cm3,energy=energy )
# um-> m: 1e-6
fraction_absorbed = 1.-np.exp(-length*1e-6/attenuation_length)
if verbose:
print("Fraction of x-ray photons absorbed by the sample:",fraction_absorbed)
## detector ##
det_area = np.pi*det_radius**2
det_solid_angle = det_area/(4*np.pi*det_dist**2)
if verbose:
print("Detector fraction of solid angle:",det_solid_angle)
det_att_len = xrayAttLenght(det_material,wavelength=atom.K_alpha)
det_abs = 1-np.exp(-det_thick*1e-6/det_att_len)
if verbose:
print("Detector efficiency (assuming E fluo = E_K_alpha):",det_abs)
eff = fraction_absorbed*det_solid_angle*det_abs
if verbose:
print("Overall intensity (as ratio to incoming one):",eff)
return eff
def pulseDuration(t0,L,GVD): def pulseDuration(t0,L,GVD):
return t0*np.sqrt( 1.+(L/(t0**2/2/np.abs(GVD)))) return t0*np.sqrt( 1.+(L/(t0**2/2/np.abs(GVD))))
@ -1220,110 +1173,6 @@ def insertInSortedArray(a,v):
a[idx]=v a[idx]=v
return a return a
##### X-ray images #############
def pyFAIread(fname):
import fabio
f = fabio.open(fname)
data = f.data
del f
return data
def pyFAI_dict(ai):
""" ai is a pyFAI azimuthal intagrator"""
methods = dir(ai)
methods = [m for m in methods if m.find("get_") == 0]
names = [m[4:] for m in methods]
values = [getattr(ai,m)() for m in methods]
ret = dict( zip(names,values) )
return ret
def pyFAI1d(ai, imgs, mask = None, npt_radial = 600, method = 'csr',safe=True,dark=10., polCorr = 1):
""" ai is a pyFAI azimuthal intagrator
it can be defined with pyFAI.load(ponifile)
mask: True are points to be masked out """
# force float to be sure of type casting for img
if isinstance(dark,int): dark = float(dark);
if imgs.ndim == 2: imgs = (imgs,)
out_i = np.empty( ( len(imgs), npt_radial) )
out_s = np.empty( ( len(imgs), npt_radial) )
for _i,img in enumerate(imgs):
q,i, sig = ai.integrate1d(img-dark, npt_radial, mask= mask, safe = safe,\
unit="q_A^-1", method = method, error_model = "poisson",
polarization_factor = polCorr)
out_i[_i] = i
out_s[_i] = sig
return q,np.squeeze(out_i),np.squeeze(out_s)
def pyFAI2d(ai, imgs, mask = None, npt_radial = 600, npt_azim=360,method = 'csr',safe=True,dark=10., polCorr = 1):
""" ai is a pyFAI azimuthal intagrator
it can be defined with pyFAI.load(ponifile)
mask: True are points to be masked out """
# force float to be sure of type casting for img
if isinstance(dark,int): dark = float(dark);
if imgs.ndim == 2: imgs = (imgs,)
out = np.empty( ( len(imgs), npt_azim,npt_radial) )
for _i,img in enumerate(imgs):
i2d,q,azTheta = ai.integrate2d(img-dark, npt_radial, npt_azim=npt_azim,
mask= mask, safe = safe,unit="q_A^-1", method = method,
polarization_factor = polCorr )
out[_i] = i2d
return q,azTheta,np.squeeze(out)
def _calc_R(x,y, xc, yc):
""" calculate the distance of each 2D points from the center (xc, yc) """
return np.sqrt((x-xc)**2 + (y-yc)**2)
def _chi2(c, x, y):
""" calculate the algebraic distance between the data points and the mean
circle centered at c=(xc, yc) """
Ri = _calc_R(x, y, *c)
return Ri - Ri.mean()
def leastsq_circle(x,y):
from scipy import optimize
# coordinates of the barycenter
center_estimate = np.nanmean(x), np.nanmean(y)
center, ier = optimize.leastsq(_chi2, center_estimate, args=(x,y))
xc, yc = center
Ri = _calc_R(x, y, *center)
R = Ri.mean()
residu = np.sum((Ri - R)**2)
return xc, yc, R
def pyFAI_find_center(img,psize=100e-6,dist=0.1,wavelength=0.8e-10,**kwargs):
import pyFAI
plt.ion()
kw = dict( pixel1 = psize, pixel2 = psize, dist = dist,wavelength=wavelength )
kw.update(kwargs)
ai = pyFAI.azimuthalIntegrator.AzimuthalIntegrator(**kw)
fig_img,ax_img = plt.subplots(1,1)
fig_pyfai,ax_pyfai = plt.subplots(1,1)
fig_pyfai = plt.figure(2)
ax_img.imshow(img)
plt.sca(ax_img); # set figure to use for mouse interaction
ans = ""
print("Enter 'end' when done")
while ans != "end":
if ans == "":
print("Click on beam center:")
plt.sca(ax_img); # set figure to use for mouse interaction
xc,yc = plt.ginput()[0]
else:
xc,yc = map(float,ans.split(","))
print("Selected center:",xc,yc)
ai.set_poni1(xc*psize)
ai.set_poni2(yc*psize)
q,az,i = pyFAI2d(ai,img)
ax_pyfai.pcolormesh(q,az,i)
ax_pyfai.set_title(str( (xc,yc) ))
plt.pause(0.01)
plt.draw()
ans=input("Enter to continue with clinking or enter xc,yc values")
print("Final values: (in pixels) %.3f %.3f"%(xc,yc))
return ai
### Objects ### ### Objects ###
def objToDict(o,recursive=True): def objToDict(o,recursive=True):

324
xray/azav.py Normal file
View File

@ -0,0 +1,324 @@
from __future__ import print_function,division
import logging as log
log.basicConfig(level=log.INFO)
import numpy as np
np.seterr(all='ignore')
import os
import collections
import glob
import pathlib
from . import storage as storage
import pyFAI
try:
import matplotlib.pyplot as plt
except ImportError:
log.warn("Can't import matplotlib !")
def removeExt(fname):
""" special remove extension meant to work with compressed files.edf and .edf.gz files """
if fname[-3:] == ".gz": fname = fname[-3:]
return os.path.splitext(fname)[0]
def getBasename(fname):
return removeExt(os.path.basename(fname))
def pyFAIread(fname):
""" read data from file using fabio """
import fabio
f = fabio.open(fname)
data = f.data
del f
return data
def pyFAI_dict(ai):
""" ai is a pyFAI azimuthal intagrator"""
methods = dir(ai)
methods = [m for m in methods if m.find("get_") == 0]
names = [m[4:] for m in methods]
values = [getattr(ai,m)() for m in methods]
ret = dict( zip(names,values) )
ret["detector"] = ai.detector.get_name()
return ret
def pyFAI1d(ai, imgs, mask = None, npt_radial = 600, method = 'csr',safe=True,dark=10., polCorr = 1):
""" ai is a pyFAI azimuthal intagrator
it can be defined with pyFAI.load(ponifile)
mask: True are points to be masked out """
# force float to be sure of type casting for img
if isinstance(dark,int): dark = float(dark);
if imgs.ndim == 2: imgs = (imgs,)
out_i = np.empty( ( len(imgs), npt_radial) )
out_s = np.empty( ( len(imgs), npt_radial) )
for _i,img in enumerate(imgs):
q,i, sig = ai.integrate1d(img-dark, npt_radial, mask= mask, safe = safe,\
unit="q_A^-1", method = method, error_model = "poisson",
polarization_factor = polCorr)
out_i[_i] = i
out_s[_i] = sig
return q,np.squeeze(out_i),np.squeeze(out_s)
def pyFAI2d(ai, imgs, mask = None, npt_radial = 600, npt_azim=360,method = 'csr',safe=True,dark=10., polCorr = 1):
""" ai is a pyFAI azimuthal intagrator
it can be defined with pyFAI.load(ponifile)
mask: True are points to be masked out """
# force float to be sure of type casting for img
if isinstance(dark,int): dark = float(dark);
if imgs.ndim == 2: imgs = (imgs,)
out = np.empty( ( len(imgs), npt_azim,npt_radial) )
for _i,img in enumerate(imgs):
i2d,q,azTheta = ai.integrate2d(img-dark, npt_radial, npt_azim=npt_azim,
mask= mask, safe = safe,unit="q_A^-1", method = method,
polarization_factor = polCorr )
out[_i] = i2d
return q,azTheta,np.squeeze(out)
def pyFAI_saveChi(fname,q,i,e=None,ai=None,overwrite=False):
if os.path.exists(fname) and not overwrite:
log.warn("File %s exists, returning",fname)
return
if ai is not None:
if not isinstance(ai,dict): ai = pyFAI_dict(ai)
header = [ "# %s : %s" %(k,v) for (k,v) in zip(ai.keys(),ai.values()) ]
header = "\n".join(header)[1:]; # skip first #, will be added by np
else:
header = ""
x = np.stack( (q,i,e) ) if e is not None else np.stack( (q,i) )
np.savetxt(fname,x.T,fmt="%+10.5e",header=header)
class pyFAI_storage(dict):
""" Storage for pyfai integrated info """
def __init__(self,fileOrDict):
if isinstance(fileOrDict,dict):
self.filename = None
d = fileOrDict
else:
assert isinstance(fileOrDict,str)
self.filename = fileOrDict
d = storage.read(fileOrDict)
# allow accessing with .data, .delays, etc.
for k,v in d.items(): setattr(self,k,v)
# allow accessing as proper dict
self.update( **dict(d) )
def __setitem__(self, key, value):
setattr(self,key,value)
super().__setitem__(key, value)
def __delitem__(self, key):
delattr(self,key)
super().__delitem__(key)
def save(self,fname=None):
if fname is None: fname = self.filename
assert fname is not None
storage.save(fname,dict(self))
#def asdict(self): return dict(self)
def readNpzFile(h5File):
if os.path.isdir(h5File): h5File = "%s/pyfai_1d.h5" % h5File
return pyFAI_storage(h5File)
def _getAI(poni,folder):
if isinstance(poni,pyFAI.azimuthalIntegrator.AzimuthalIntegrator):
ai = poni
elif isinstance(poni,dict):
ai = pyFAI.azimuthalIntegrator.AzimuthalIntegrator(**poni)
else:
if poni == 'auto':
temp = os.path.abspath(folder)
path = pathlib.Path(temp)
folders = [ str(path), ]
for p in path.parents: folders.append(str(p))
folders.append( "./" )
folders.append( os.path.expanduser("~/") )
for path in folders:
poni = path + "/" + "pyfai.poni"
if os.path.exists(poni):
log.info("Found pyfai.poni in %s",path)
break
else:
log.debug("Could not find pyfai.poni in %s",path)
ai = pyFAI.load(poni)
return ai
def doFolder(folder,files='*.edf*',nQ = 1500,force=False,mask=None,
saveChi=True,poni='auto',h5File='auto',diagnostic=None):
""" calc 1D curves from files in folder, returning a dictionary of stuff
nQ : number of Q-points (equispaced)
force : if True, redo from beginning even if previous data are found
if False, do only new files
mask : can be a filename or an array of booleans; pixels that are True
are dis-regarded
saveChi: self-explanatory
poni : could be:
an AzimuthalIntegrator instance
a filename
a dictionary (use to bootstrap an AzimuthalIntegrator using
AzimuthalIntegrator(**poni)
the string 'auto' that will look for the file 'pyfai.poni' in:
1 'folder' first
2 in ../folder
3 in ../../folder
....
n-1 in pwd
n in homefolder
"""
if h5File == 'auto': h5File = folder + "/" + "pyfai_1d.h5"
if os.path.exists(h5File) and not force:
print("Loading")
saved = readNpzFile(h5File)
print("done")
else:
saved = None
# which poni file to use:
ai = _getAI(poni,folder)
files = glob.glob("%s/%s"%(folder,files))
files.sort()
if saved is not None:
files = [f for f in files if getBasename(f) not in saved["files"]]
if len(files) > 0:
# work out mask to use
if isinstance(mask,np.ndarray):
mask = mask.astype(bool)
elif mask is not None:
mask = pyFAIread(mask).astype(bool)
data = np.empty( (len(files),nQ),dtype=np.float32 )
err = np.empty( (len(files),nQ),dtype=np.float32 )
for ifname,fname in enumerate(files):
img = pyFAIread(fname)
q,i,e = pyFAI1d(ai,img,mask=mask,npt_radial=nQ)
data[ifname] = i
err[ifname] = e
if saveChi:
chi_fname = removeExt(fname) + ".chi"
pyFAI_saveChi(chi_fname,q,i,e,ai=ai,overwrite=True)
files = [ getBasename(f) for f in files ]
files = np.asarray(files)
if saved is not None:
files = np.concatenate( (saved["files"] ,files ) )
data = np.concatenate( (saved["data"] ,data ) )
err = np.concatenate( (saved["err"] ,err ) )
ret = dict(q=q,folder=folder,files=files,data=data,err=err,
pyfai=pyFAI_dict(ai),mask=mask)
# add info from diagnostic if provided
if diagnostic is not None:
for k in diagnostic:
ret[k] = np.asarray( [diagnostic[k][f] for f in ret['files']] )
if h5File is not None: np.savez(h5File,**ret)
else:
ret = saved
return pyFAI_storage(ret)
def _calc_R(x,y, xc, yc):
""" calculate the distance of each 2D points from the center (xc, yc) """
return np.sqrt((x-xc)**2 + (y-yc)**2)
def _chi2(c, x, y):
""" calculate the algebraic distance between the data points and the mean
circle centered at c=(xc, yc) """
Ri = _calc_R(x, y, *c)
return Ri - Ri.mean()
def leastsq_circle(x,y):
from scipy import optimize
# coordinates of the barycenter
center_estimate = np.nanmean(x), np.nanmean(y)
center, ier = optimize.leastsq(_chi2, center_estimate, args=(x,y))
xc, yc = center
Ri = _calc_R(x, y, *center)
R = Ri.mean()
residu = np.sum((Ri - R)**2)
return xc, yc, R
def pyFAI_find_center(img,psize=100e-6,dist=0.1,wavelength=0.8e-10,**kwargs):
plt.ion()
kw = dict( pixel1 = psize, pixel2 = psize, dist = dist,wavelength=wavelength )
kw.update(kwargs)
ai = pyFAI.azimuthalIntegrator.AzimuthalIntegrator(**kw)
fig_img,ax_img = plt.subplots(1,1)
fig_pyfai,ax_pyfai = plt.subplots(1,1)
fig_pyfai = plt.figure(2)
ax_img.imshow(img)
plt.sca(ax_img); # set figure to use for mouse interaction
ans = ""
print("Enter 'end' when done")
while ans != "end":
if ans == "":
print("Click on beam center:")
plt.sca(ax_img); # set figure to use for mouse interaction
xc,yc = plt.ginput()[0]
else:
xc,yc = map(float,ans.split(","))
print("Selected center:",xc,yc)
ai.set_poni1(xc*psize)
ai.set_poni2(yc*psize)
q,az,i = pyFAI2d(ai,img)
ax_pyfai.pcolormesh(q,az,i)
ax_pyfai.set_title(str( (xc,yc) ))
plt.pause(0.01)
plt.draw()
ans=input("Enter to continue with clinking or enter xc,yc values")
print("Final values: (in pixels) %.3f %.3f"%(xc,yc))
return ai
#### Utilities for chi files ####
def chiRead(fname,scale=1):
q,i = np.loadtxt(fname,unpack=True,usecols=(0,1))
return q,i*scale
def chiPlot(fname,useTheta=False,E=12.4):
q,i = chiRead(fname)
lam = 12.4/E
theta = 2*180/3.14*np.arcsin(q*lam/4/3.14)
if useTheta:
x = theta
else:
x = q
plt.plot(x,i,label=fname)
def chiAverage(folder,basename="",scale=1,returnAll=False,plot=False,showTrend=False,norm=None):
files = glob.glob("%s/%s*chi"%(folder,basename))
files.sort()
print(files)
if len(files) == 0:
print("No file found (basename %s)" % basename)
return None
q,_ = chiRead(files[0])
i = np.asarray( [ chiRead(f)[1] for f in files ] )
if norm is not None:
idx = ( q>norm[0] ) & (q<norm[1])
norm = np.nanmean(i[:,idx],axis=1)
i = i/norm[:,np.newaxis]
if (showTrend and plot): plt.subplot(1,2,1)
if showTrend:
plt.pcolormesh(np.arange(i.shape[0]),q,i.T)
plt.xlabel("image number, 0 being older")
plt.ylabel(r"q ($\AA^{-1}$)")
if (showTrend and plot): plt.subplot(1,2,2)
if plot:
plt.plot(q,i.mean(axis=0)*scale)
if (plot or showTrend):
plt.title(folder+"/"+basename)
if returnAll:
return q,i.mean(axis=0)*scale,i
else:
return q,i.mean(axis=0)*scale

154
xray/dataReduction.py Normal file
View File

@ -0,0 +1,154 @@
from __future__ import print_function,division
import logging as log
log.basicConfig(level=log.INFO)
import numpy as np
np.seterr(all='ignore')
import os
def subtractReferences(i,idx_ref, useRatio = False):
""" given data in i (first index is shot num) and the indeces of the
references (idx_ref, array of integers) it interpolates the closest
reference data for each shot and subtracts it (or divides it, depending
on useRatio = [True|False]; """
iref=np.empty_like(i)
idx_ref = np.squeeze(idx_ref)
idx_ref = np.atleast_1d(idx_ref)
if idx_ref.shape[0] == 1:
return i-i[idx_ref]
# references before first ref are "first ref"
iref[:idx_ref[0]] = i[idx_ref[0]]
# references after last ref are "last ref"
iref[idx_ref[-1]:] = i[idx_ref[-1]]
_ref = 0
for _i in range(idx_ref[0],idx_ref[-1]):
idx_ref_before = idx_ref[_ref]
idx_ref_after = idx_ref[_ref+1]
ref_before = i[idx_ref_before]
ref_after = i[idx_ref_after]
weight_before = float(_i-idx_ref_before)/(idx_ref_after-idx_ref_before)
weight_after = 1-weight_before
if weight_after == 1:
iref[_i] = ref_before
elif weight_before == 1:
iref[_i] = ref_after
else:
# normal reference for an on chi, the weighted average
iref[_i] = weight_before*ref_before + weight_after*ref_after
if _i>=idx_ref_after: _ref += 1
if useRatio:
i /= iref
else:
i -= iref
return i
def averageScanPoints(scan,data,isRef=None,lpower=None,useRatio=False,\
funcForEveraging=np.nanmean):
""" given scanpoints in 'scan' and corresponding data in 'data'
average all data corresponding the exactly the same scanpoint.
If the values in scan are coming from a readback, rounding might be
necessary.
No normalization is done inside this function
if isRef is provided must be a boolean array of the same shape as 'scan'
is there is at least one scanpoint marked as True, the data are
subtracted/divided by the interpolated reference
if lpower is provided the data is divided by it (how it is done depends
if one uses the ratio or not
funcForEveraging: is usually np.nanmean or np.nanmedian. it can be any
function that support axis=0 as keyword argument
"""
if isRef is None: isRef = np.zeros( data.shape[0], dtype=bool )
assert data.shape[0] == isRef.shape[0]
# subtract reference only is there is at least one
if isRef.sum()>0:
data = subtractReferences(data,np.argwhere(isRef), useRatio=useRatio)
else:
data = data.copy(); # create local copy
# normalize signal for laser intensity if provided
if lpower is not None:
assert lpower.shape[0] == data.shape[0]
# expand lpower to allow broadcasting
shape = [data.shape[0],] + [1,]*(data.ndim-1)
lpower = lpower.reshape(shape)
if useRatio is False:
data /= lpower
else:
data = (data-1)/lpower+1
scan_pos = np.unique(scan)
shape_out = [len(scan_pos),] + list(data.shape[1:])
ret = np.empty(shape_out)
err = np.empty(shape_out)
dataInScanPoint = []
for i,t in enumerate(scan_pos):
shot_idx = (scan == t)
#if shot_idx.sum() > 0:
ret[i] = funcForEveraging(data[shot_idx],axis=0)
dataInScanPoint.append( data[shot_idx] )
err[i] = np.std(data[shot_idx], axis = 0)/np.sqrt(shot_idx.sum())
return dict(scan=scan_pos,data=ret,err=err,dataInScanPoint=dataInScanPoint)
def calcTimeResolvedSignal(scan,data,reference="min",monitor=None,q=None,**kw):
"""
reference: can be 'min', 'max', a float|integer or an array of booleans
q : is needed if monitor is a tuple|list (it is interpreted as
q-range normalization)
other keywords are passed to averageScanPoints
"""
if reference == "min":
isRef = (scan == scan.min())
elif reference == "max":
isRef = (scan == scan.max())
elif isinstance(reference,(float,int)):
isRef = (scan == reference)
else:
isRef = reference
# normalize if needed
if monitor is not None:
if isinstance(monitor,(tuple,list)):
assert q is not None
assert data.ndim == 2
idx = (q>= monitor[0]) & (q<= monitor[1])
monitor = np.nanmedian(data[:,idx],axis=1)
data = data/monitor
return averageScanPoints(scan,data,isRef=isRef,**kw)
def read_diff_av(folder,plot2D=False,save=None):
print("Never tested !!!")
basename = folder+"/"+"diff_av*"
files = glob.glob(basename)
files.sort()
if len(files) == 0:
print("No file found (basename %s)" % basename)
return None
temp = [os.path.basename(f[:-4]) for f in files]
delays = [f.split("_")[-1] for f in temp ]
diffav = collections.OrderedDict()
diffs = collections.OrderedDict()
for d,f in zip(delays,files):
data = np.loadtxt(f)
diffav[d]=data[:,1]
diffs[d] = np.loadtxt(folder+"/diffs_%s.dat"%d)[:,1:]
q =data[:,0]
t = np.asarray( [mc.strToTime(ti) for ti in delays] )
if plot2D:
idx = t>0
i = np.asarray( diffav.values() )
plt.pcolor(np.log10(t[idx]),q,i[idx].T)
plt.xlabel(r"$\log_{10}(t)$")
plt.ylabel(r"q ($\AA^{-1}$)")
it=np.asarray(diffav.values())
if save:
tosave = np.vstack( (q,it) )
header = np.hstack( (len(it),t) )
tosave = np.vstack( (header,tosave.T) )
np.savetxt(folder + "/all_diffs_av_matrix.txt",tosave)
return q,it,diffs,t

76
xray/storage.py Normal file
View File

@ -0,0 +1,76 @@
""" hdf5 file based storage; this modules adds the possibility to dump dict as
hdf5 File """
import numpy as np
import os
import h5py
import collections
def dictToH5Group(d,group):
for key,value in d.items():
if not isinstance(value,(dict,collections.OrderedDict)):
# hack for special s...
# h5py can't handle numpy unicode arrays
if isinstance(value,np.ndarray) and value.dtype.char == "U":
value = np.asarray([vv.encode('ascii') for vv in value])
# h5py can't save None
if value is None: value="NONE_PYTHON_OBJECT"
group[key] = value
else:
group.create_group(key)
dictToH5Group(value,group[key])
def dictToH5(h5,d):
h5 = h5py.File(h5,mode="w")
# group = h5.create_group("/")
dictToH5Group(d,h5["/"])
h5.close()
def h5dataToDict(h5):
if isinstance(h5,h5py.Dataset):
temp = h5[...]
# hack for special s...
# unwrap 0d arrays
if isinstance(temp,np.ndarray) and temp.ndim == 0:
temp=temp.item()
# h5py can't handle None
if temp == "NONE_PYTHON_OBJECT": temp=None
return temp
else:
ret = dict()
for k,v in h5.items(): ret[k] = h5dataToDict(v)
return ret
def h5ToDict(h5):
with h5py.File(h5,"r") as h:
ret = h5dataToDict( h["/"] )
return ret
def npzToDict(npzFile):
with np.load(npzFile) as npz: d = dict(npz)
# unwrap 0d arrays
for key,value in d.items():
if isinstance(value,np.ndarray) and value.ndim == 0: d[key]=value.item()
return d
def dictToNpz(npzFile,d): np.savez(npzFile,**d)
def read(fname):
extension = os.path.splitext(fname)[1]
if extension == ".npz":
return npzToDict(fname)
elif extension == ".h5":
return h5ToDict(fname)
else:
raise ValueError("Extension must be h5 or npz, it was %s"%extension)
def save(fname,d):
extension = os.path.splitext(fname)[1]
if extension == ".npz":
return dictToNpz(fname,d)
elif extension == ".h5":
return dictToH5(fname,d)
else:
raise ValueError("Extension must be h5 or npz")

49
xray/xray.py Normal file
View File

@ -0,0 +1,49 @@
from __future__ import print_function,division
import numpy as np
import os
def xrayAttLenght(*args,**kw):
from periodictable import xsf
n = xsf.index_of_refraction(*args,**kw)
if not "wavelength" in kw:
wavelength = 12.398/np.asarray(kw["energy"])
else:
wavelength = np.asarray(kw["wavelength"])
attenuation_length = np.abs( (wavelength*1e-10)/ (4*np.pi*np.imag(n)) )
return attenuation_length
def xrayFluo(atom,density,energy=7.,length=30.,I0=1e10,\
det_radius=1.,det_dist=10.,det_material="Si",det_thick=300,verbose=True):
""" compound: anything periodictable would understand
density: in mM
length: sample length in um
energy: in keV, could be array
"""
import periodictable
from periodictable import xsf
wavelength = 12.398/energy
atom = periodictable.__dict__[atom]
# 1e3 -> from mM to M
# 1e3 -> from L to cm3
# so 1 mM = 1e-3M/L = 1e-6 M/cm3
density_g_cm3 = density*1e-6*atom.mass
n = xsf.index_of_refraction(atom,density=density_g_cm3,wavelength=wavelength)
attenuation_length = xrayAttLenght( atom,density=density_g_cm3,energy=energy )
# um-> m: 1e-6
fraction_absorbed = 1.-np.exp(-length*1e-6/attenuation_length)
if verbose:
print("Fraction of x-ray photons absorbed by the sample:",fraction_absorbed)
## detector ##
det_area = np.pi*det_radius**2
det_solid_angle = det_area/(4*np.pi*det_dist**2)
if verbose:
print("Detector fraction of solid angle:",det_solid_angle)
det_att_len = xrayAttLenght(det_material,wavelength=atom.K_alpha)
det_abs = 1-np.exp(-det_thick*1e-6/det_att_len)
if verbose:
print("Detector efficiency (assuming E fluo = E_K_alpha):",det_abs)
eff = fraction_absorbed*det_solid_angle*det_abs
if verbose:
print("Overall intensity (as ratio to incoming one):",eff)
return eff