mcutils/xray/azav.py

325 lines
10 KiB
Python

from __future__ import print_function,division
import logging as log
log.basicConfig(level=log.INFO)
import numpy as np
np.seterr(all='ignore')
import os
import collections
import glob
import pathlib
from . import storage as storage
import pyFAI
try:
import matplotlib.pyplot as plt
except ImportError:
log.warn("Can't import matplotlib !")
def removeExt(fname):
""" special remove extension meant to work with compressed files.edf and .edf.gz files """
if fname[-3:] == ".gz": fname = fname[-3:]
return os.path.splitext(fname)[0]
def getBasename(fname):
return removeExt(os.path.basename(fname))
def pyFAIread(fname):
""" read data from file using fabio """
import fabio
f = fabio.open(fname)
data = f.data
del f
return data
def pyFAI_dict(ai):
""" ai is a pyFAI azimuthal intagrator"""
methods = dir(ai)
methods = [m for m in methods if m.find("get_") == 0]
names = [m[4:] for m in methods]
values = [getattr(ai,m)() for m in methods]
ret = dict( zip(names,values) )
ret["detector"] = ai.detector.get_name()
return ret
def pyFAI1d(ai, imgs, mask = None, npt_radial = 600, method = 'csr',safe=True,dark=10., polCorr = 1):
""" ai is a pyFAI azimuthal intagrator
it can be defined with pyFAI.load(ponifile)
mask: True are points to be masked out """
# force float to be sure of type casting for img
if isinstance(dark,int): dark = float(dark);
if imgs.ndim == 2: imgs = (imgs,)
out_i = np.empty( ( len(imgs), npt_radial) )
out_s = np.empty( ( len(imgs), npt_radial) )
for _i,img in enumerate(imgs):
q,i, sig = ai.integrate1d(img-dark, npt_radial, mask= mask, safe = safe,\
unit="q_A^-1", method = method, error_model = "poisson",
polarization_factor = polCorr)
out_i[_i] = i
out_s[_i] = sig
return q,np.squeeze(out_i),np.squeeze(out_s)
def pyFAI2d(ai, imgs, mask = None, npt_radial = 600, npt_azim=360,method = 'csr',safe=True,dark=10., polCorr = 1):
""" ai is a pyFAI azimuthal intagrator
it can be defined with pyFAI.load(ponifile)
mask: True are points to be masked out """
# force float to be sure of type casting for img
if isinstance(dark,int): dark = float(dark);
if imgs.ndim == 2: imgs = (imgs,)
out = np.empty( ( len(imgs), npt_azim,npt_radial) )
for _i,img in enumerate(imgs):
i2d,q,azTheta = ai.integrate2d(img-dark, npt_radial, npt_azim=npt_azim,
mask= mask, safe = safe,unit="q_A^-1", method = method,
polarization_factor = polCorr )
out[_i] = i2d
return q,azTheta,np.squeeze(out)
def pyFAI_saveChi(fname,q,i,e=None,ai=None,overwrite=False):
if os.path.exists(fname) and not overwrite:
log.warn("File %s exists, returning",fname)
return
if ai is not None:
if not isinstance(ai,dict): ai = pyFAI_dict(ai)
header = [ "# %s : %s" %(k,v) for (k,v) in zip(ai.keys(),ai.values()) ]
header = "\n".join(header)[1:]; # skip first #, will be added by np
else:
header = ""
x = np.stack( (q,i,e) ) if e is not None else np.stack( (q,i) )
np.savetxt(fname,x.T,fmt="%+10.5e",header=header)
class pyFAI_storage(dict):
""" Storage for pyfai integrated info """
def __init__(self,fileOrDict):
if isinstance(fileOrDict,dict):
self.filename = None
d = fileOrDict
else:
assert isinstance(fileOrDict,str)
self.filename = fileOrDict
d = storage.read(fileOrDict)
# allow accessing with .data, .delays, etc.
for k,v in d.items(): setattr(self,k,v)
# allow accessing as proper dict
self.update( **dict(d) )
def __setitem__(self, key, value):
setattr(self,key,value)
super().__setitem__(key, value)
def __delitem__(self, key):
delattr(self,key)
super().__delitem__(key)
def save(self,fname=None):
if fname is None: fname = self.filename
assert fname is not None
storage.save(fname,dict(self))
#def asdict(self): return dict(self)
def readNpzFile(h5File):
if os.path.isdir(h5File): h5File = "%s/pyfai_1d.h5" % h5File
return pyFAI_storage(h5File)
def _getAI(poni,folder):
if isinstance(poni,pyFAI.azimuthalIntegrator.AzimuthalIntegrator):
ai = poni
elif isinstance(poni,dict):
ai = pyFAI.azimuthalIntegrator.AzimuthalIntegrator(**poni)
else:
if poni == 'auto':
temp = os.path.abspath(folder)
path = pathlib.Path(temp)
folders = [ str(path), ]
for p in path.parents: folders.append(str(p))
folders.append( "./" )
folders.append( os.path.expanduser("~/") )
for path in folders:
poni = path + "/" + "pyfai.poni"
if os.path.exists(poni):
log.info("Found pyfai.poni in %s",path)
break
else:
log.debug("Could not find pyfai.poni in %s",path)
ai = pyFAI.load(poni)
return ai
def doFolder(folder,files='*.edf*',nQ = 1500,force=False,mask=None,
saveChi=True,poni='auto',h5File='auto',diagnostic=None):
""" calc 1D curves from files in folder, returning a dictionary of stuff
nQ : number of Q-points (equispaced)
force : if True, redo from beginning even if previous data are found
if False, do only new files
mask : can be a filename or an array of booleans; pixels that are True
are dis-regarded
saveChi: self-explanatory
poni : could be:
→ an AzimuthalIntegrator instance
→ a filename
→ a dictionary (use to bootstrap an AzimuthalIntegrator using
AzimuthalIntegrator(**poni)
→ the string 'auto' that will look for the file 'pyfai.poni' in:
1 'folder' first
2 in ../folder
3 in ../../folder
....
n-1 in pwd
n in homefolder
"""
if h5File == 'auto': h5File = folder + "/" + "pyfai_1d.h5"
if os.path.exists(h5File) and not force:
print("Loading")
saved = readNpzFile(h5File)
print("done")
else:
saved = None
# which poni file to use:
ai = _getAI(poni,folder)
files = glob.glob("%s/%s"%(folder,files))
files.sort()
if saved is not None:
files = [f for f in files if getBasename(f) not in saved["files"]]
if len(files) > 0:
# work out mask to use
if isinstance(mask,np.ndarray):
mask = mask.astype(bool)
elif mask is not None:
mask = pyFAIread(mask).astype(bool)
data = np.empty( (len(files),nQ),dtype=np.float32 )
err = np.empty( (len(files),nQ),dtype=np.float32 )
for ifname,fname in enumerate(files):
img = pyFAIread(fname)
q,i,e = pyFAI1d(ai,img,mask=mask,npt_radial=nQ)
data[ifname] = i
err[ifname] = e
if saveChi:
chi_fname = removeExt(fname) + ".chi"
pyFAI_saveChi(chi_fname,q,i,e,ai=ai,overwrite=True)
files = [ getBasename(f) for f in files ]
files = np.asarray(files)
if saved is not None:
files = np.concatenate( (saved["files"] ,files ) )
data = np.concatenate( (saved["data"] ,data ) )
err = np.concatenate( (saved["err"] ,err ) )
ret = dict(q=q,folder=folder,files=files,data=data,err=err,
pyfai=pyFAI_dict(ai),mask=mask)
# add info from diagnostic if provided
if diagnostic is not None:
for k in diagnostic:
ret[k] = np.asarray( [diagnostic[k][f] for f in ret['files']] )
if h5File is not None: np.savez(h5File,**ret)
else:
ret = saved
return pyFAI_storage(ret)
def _calc_R(x,y, xc, yc):
""" calculate the distance of each 2D points from the center (xc, yc) """
return np.sqrt((x-xc)**2 + (y-yc)**2)
def _chi2(c, x, y):
""" calculate the algebraic distance between the data points and the mean
circle centered at c=(xc, yc) """
Ri = _calc_R(x, y, *c)
return Ri - Ri.mean()
def leastsq_circle(x,y):
from scipy import optimize
# coordinates of the barycenter
center_estimate = np.nanmean(x), np.nanmean(y)
center, ier = optimize.leastsq(_chi2, center_estimate, args=(x,y))
xc, yc = center
Ri = _calc_R(x, y, *center)
R = Ri.mean()
residu = np.sum((Ri - R)**2)
return xc, yc, R
def pyFAI_find_center(img,psize=100e-6,dist=0.1,wavelength=0.8e-10,**kwargs):
plt.ion()
kw = dict( pixel1 = psize, pixel2 = psize, dist = dist,wavelength=wavelength )
kw.update(kwargs)
ai = pyFAI.azimuthalIntegrator.AzimuthalIntegrator(**kw)
fig_img,ax_img = plt.subplots(1,1)
fig_pyfai,ax_pyfai = plt.subplots(1,1)
fig_pyfai = plt.figure(2)
ax_img.imshow(img)
plt.sca(ax_img); # set figure to use for mouse interaction
ans = ""
print("Enter 'end' when done")
while ans != "end":
if ans == "":
print("Click on beam center:")
plt.sca(ax_img); # set figure to use for mouse interaction
xc,yc = plt.ginput()[0]
else:
xc,yc = map(float,ans.split(","))
print("Selected center:",xc,yc)
ai.set_poni1(xc*psize)
ai.set_poni2(yc*psize)
q,az,i = pyFAI2d(ai,img)
ax_pyfai.pcolormesh(q,az,i)
ax_pyfai.set_title(str( (xc,yc) ))
plt.pause(0.01)
plt.draw()
ans=input("Enter to continue with clinking or enter xc,yc values")
print("Final values: (in pixels) %.3f %.3f"%(xc,yc))
return ai
#### Utilities for chi files ####
def chiRead(fname,scale=1):
q,i = np.loadtxt(fname,unpack=True,usecols=(0,1))
return q,i*scale
def chiPlot(fname,useTheta=False,E=12.4):
q,i = chiRead(fname)
lam = 12.4/E
theta = 2*180/3.14*np.arcsin(q*lam/4/3.14)
if useTheta:
x = theta
else:
x = q
plt.plot(x,i,label=fname)
def chiAverage(folder,basename="",scale=1,returnAll=False,plot=False,showTrend=False,norm=None):
files = glob.glob("%s/%s*chi"%(folder,basename))
files.sort()
print(files)
if len(files) == 0:
print("No file found (basename %s)" % basename)
return None
q,_ = chiRead(files[0])
i = np.asarray( [ chiRead(f)[1] for f in files ] )
if norm is not None:
idx = ( q>norm[0] ) & (q<norm[1])
norm = np.nanmean(i[:,idx],axis=1)
i = i/norm[:,np.newaxis]
if (showTrend and plot): plt.subplot(1,2,1)
if showTrend:
plt.pcolormesh(np.arange(i.shape[0]),q,i.T)
plt.xlabel("image number, 0 being older")
plt.ylabel(r"q ($\AA^{-1}$)")
if (showTrend and plot): plt.subplot(1,2,2)
if plot:
plt.plot(q,i.mean(axis=0)*scale)
if (plot or showTrend):
plt.title(folder+"/"+basename)
if returnAll:
return q,i.mean(axis=0)*scale,i
else:
return q,i.mean(axis=0)*scale