mcutils/xray/example_main_salen.py

361 lines
13 KiB
Python
Raw Normal View History

from __future__ import print_function,division
import os
2017-01-13 14:51:48 +01:00
import collections
# prepare logging
import logging
logfname = os.path.splitext(__file__)[0] + ".log"
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
datefmt='%y-%m-%d %H:%M:%S',
filename=logfname,
filemode='w')
import numpy as np
import pylab as plt
import mcutils as mc
import mcutils.xray as xray
from mcutils.xray import id9
#id9 = xray.id9
# use npz files (they can handle more stuff (list of arrays,unicode) than h5py)
id9.default_extension = '.npz'
#id9.default_extension = '.h5'
g_default_mask = '../masks/fesalen1_run8_careful.edf'
2017-01-13 14:51:48 +01:00
g_default_folder = "../fesalen/fesalen1/run%d"
runsE = collections.OrderedDict()
runsT = collections.OrderedDict()
runsE[7] = 60; runsT[7] = 135
runsE[8] = 60; runsT[8] = 135
runsE[9] = 120; runsT[9] = 135
runsE[10] = 240; runsT[10] = 135
runsE[11] = 30; runsT[11] = 135
runsE[12] = 45; runsT[12] = 135
runsE[13] = 60; runsT[13] = 120
runsE[14] = 120; runsT[14] = 120
runsE[15] = 30; runsT[15] = 120
2017-01-13 14:51:48 +01:00
runs135=(11,12,8,9,10)
runs120=(15,13,14)
def prepareLog():
""" It allows printing to terminal on top of logfile """
# define a Handler which writes INFO messages or higher to the sys.stderr
console = logging.StreamHandler()
console.setLevel(logging.INFO)
# set a format which is simpler for console use
formatter = logging.Formatter('%(message)s')
# tell the handler to use this format
console.setFormatter(formatter)
2017-01-13 14:51:48 +01:00
# add the handler to the root logger (if needed)
if len(logging.getLogger('').handlers)==1:
logging.getLogger('').addHandler(console)
prepareLog()
2017-01-13 14:51:48 +01:00
def defineCalibrants(dmin=3):
from pyFAI import calibrant
c120 = calibrant.Cell(a=10.297,b=10.716,c=13.955,alpha=72.22,beta=70.45,gamma=74.13)
p120 = np.pi*2/ np.asarray( list(c120.d_spacing(dmin=dmin).keys()) ).astype(float)
p120.sort()
c300 = calibrant.Cell(a=10.485,b=11.015,c=14.280,alpha=74.61,beta=69.29,gamma=75.29)
p300 = np.pi*2/ np.asarray( list(c300.d_spacing(dmin=dmin).keys()) ).astype(float)
p300.sort()
return xray.storage.DataStorage( dict(p120=p120, c120=c120,p300=p300,c300=c300) )
def readCalculations(folder="../fesalen/cif",force=False,plot=False):
npz = folder + "/fesalen_calc.npz"
if not os.path.exists(npz) or force:
ret = dict()
for T in ("120LS","200HS","300HS"):
# calculated with lambda = 1 Ang
theta,i = np.loadtxt( folder+"/fesalen_%s_fwhm0.1.tsv"%T,unpack=True )
theta = theta/180*np.pi
q = 4*np.pi/1*np.sin(theta/2)
key = "T%s"%T
ret[ key ] = dict( q = q, i = i )
ret = xray.storage.DataStorage(ret)
ret.save(folder + "/fesalen_calc.npz" )
ret = xray.storage.read(npz)
if plot:
T = list(ret.keys())
T.sort()
for i,t in enumerate(T):
plt.plot( ret[t].q,ret[t].i, label=t)#,color=plt.cm.Blues((0.3+0.7*i/2)) )
plt.grid()
plt.legend()
plt.xlabel(r"q ($\AA^{-1}$)")
return ret
def findCenter(cen=(484,479.5),dist=0.251):
files = xray.utils.getEdfFiles("../fesalen/fesalen1/run17/",nFiles=100)
img = xray.azav.read(files).mean(axis=0) - 10.
2017-01-13 14:51:48 +01:00
wavelength=12.398/18.*1e-10
# 1,0,0 peak are the one close to azimuth 0 and are at 0.6596Ang-1 at 120K
# and 0.65098 at 300K (run 17 is @ RT)
xray.azav.find_center(img,dist=dist,psize=0.0001770834,center=cen,
reference=0.65098,wavelength=wavelength)
2017-01-13 14:51:48 +01:00
def removeBaseline(folder,qlims=(0.5,2.5),max_iter=30,force=False):
if isinstance(folder,int): folder = g_default_folder%folder
fname = folder + "/pyfai_1d_nobaseline"+id9.default_extension
if not os.path.exists(fname) or force:
data = azav(folder,doRemoveBaseline=False)
# first peak (around 0.6) is weak and requires special care ...
data.q,data.data = xray.utils.removeBackground(data.q,data.data,xlims=qlims,
max_iter=max_iter,background_regions=[ (0,0.58) ])
data.save(fname)
else:
data = xray.storage.read(fname)
return data
def azav(folder,nQ=3000,force=False,saveChi=True,mask=g_default_mask,
doRemoveBaseline=True):
if isinstance(folder,int): folder = g_default_folder%folder
if isinstance(mask,int):
files = xray.utils.getFiles(folder,"*.edf*")
img = xray.azav.pyFAIread(files[0])
temp = np.ones_like(img,dtype=bool)
temp[:mask] = False
mask = temp
2017-01-13 14:51:48 +01:00
azav = id9.doFolder_azav(folder,nQ=nQ,force=force,mask=mask,saveChi=saveChi)
if doRemoveBaseline: removeBaseline(folder)
return azav
def datared(folder,monitor=(0.5,4),showPlot=True,errMask=5,chi2Mask=2,
2017-01-13 14:51:48 +01:00
qlims=(0.5,3),withBaseline=False,forceDatared=False,
select=slice(None),**kw):
if isinstance(folder,int): folder = g_default_folder%folder
def_ext = id9.default_extension
extension = def_ext if withBaseline else "_nobaseline" + def_ext
# storage files to use
diffFile = folder + "/diffs" + extension
azavFile = folder + "/pyfai_1d" + extension
if not os.path.exists(diffFile) or forceDatared:
data,diffs = id9.doFolder_dataRed(azavFile,monitor=monitor,
errMask=errMask,chi2Mask=chi2Mask,qlims=qlims,
outStorageFile=diffFile)
else:
data = xray.storage.read(azavFile)
diffs = xray.storage.read(diffFile)
if showPlot:
2017-01-13 14:51:48 +01:00
xray.utils.plotdiffs(diffs.q,diffs.data,t=diffs.scan,select=select,
absSignal=diffs.dataAbsAvNeg,absSignalScale=10)
plt.title(folder + " norm %s" % str(monitor))
plt.figure()
2017-01-13 14:51:48 +01:00
xray.utils.plotdiffs(diffs.q,diffs.dataAsAbs,t=diffs.scan,
select=select)
plt.title(folder + " norm %s" % str(monitor))
return data,diffs
def doall(folder,force=False,removeBaseline=True):
azav(folder,force=force)
return datared(folder)
2017-01-13 14:51:48 +01:00
def _getAmplitudeFromSVD(i,comp=0):
u,s,v = np.linalg.svd(i)
return u[:,comp]*s[comp]
def _getAmplitudeFromLinFit(i,ref=1):
amp = [mc.linFit(i[ref],ii) for ii in i]
return np.asarray(amp)
def _getAmplitudeFromAbs(i,e):
amp = np.abs(i).mean(axis=1)
baseline = np.median(e)
return amp-baseline
def _getAmplitudeFromPeak(i):
""" get max-min (to be less sensitive to baseline change """
amp = np.max(i,axis=1)-np.min(i,axis=1)
return amp
def anaAmplitue(run=12,plot=False,scaleWithE=False,withBaseline=False):
folder = g_default_folder % run
pars = dict( chi2Mask=1.5,errMask=3,monitor=(0.4,2.5),showPlot=False )
data,diffs=datared(folder,**pars,withBaseline=withBaseline)
ranges = ( (0.66,0.72), (0.74,0.8), (0.82,0.88) ) #, (0.96,1.02 ) )
nPlot = len(ranges)
if plot: fig,ax = plt.subplots(nPlot,1,sharex=True)
amp = collections.OrderedDict()
for num,r in enumerate(ranges):
idx = (diffs.q>r[0]) & (diffs.q<r[1])
#amplitude = _getAmplitudeFromLinFit( diffs.data[:,idx] )
amplitude = _getAmplitudeFromAbs( diffs.data[:,idx],diffs.err[:,idx] )
if scaleWithE: amplitude = amplitude/runsE[run]
#amplitude = _getAmplitudeFromPeak( diffs.data[:,idx] )
amp[r] = amplitude
if plot:
ax[num].plot(diffs.scan,amplitude,'-o')
ax[num].set_title("Range %s"%(str(r)))
return diffs.scan,amp
def _getPeakPos(x,y):
if y.ndim == 1: y = (y,)
ret = dict()
for yy in y:
res = xray.peaks.fitPeak(x,yy)
#plt.figure(); res.plot_fit(); input("ok")
pars = res.params.keys()
for p in pars:
if not p in ret: ret[p] = dict( value = [], err = [] )
ret[p]['value'].append( res.params[p].value )
ret[p]['err'].append( res.params[p].stderr )
for p in pars:
ret[p]['value'] = np.asarray(ret[p]['value'])
ret[p]['err'] = np.asarray(ret[p]['err'])
return xray.storage.DataStorage(ret)
def anaPeakPos(run=12,plot=False,withBaseline=False):
folder = g_default_folder % run
pars = dict( chi2Mask=1.5,errMask=3,monitor=(0.4,2.5),showPlot=False )
data,diffs=datared(folder,**pars,withBaseline=withBaseline)
ranges = ( (0.66,0.72), (0.74,0.8), (0.82,0.88) ) #, (0.96,1.02 ) )
nPlot = len(ranges)
2017-01-13 14:51:48 +01:00
if plot: fig,ax = plt.subplots(nPlot,1,sharex=True)
pars = collections.OrderedDict()
for num,r in enumerate(ranges):
idx = (diffs.q>r[0]) & (diffs.q<r[1])
#amplitude = _getAmplitudeFromLinFit( diffs.data[:,idx] )
pars[r] = _getPeakPos( data.q[idx],diffs.dataAsAbs[:,idx] )
if plot:
ax[num].axhline( pars[r].center.value[0] )
ax[num].plot(diffs.scan,pars[r].center.value,'-o')
ax[num].set_title("Range %s"%(str(r)))
return diffs.scan,pars
#### PLOTS #####
def compareT():
fig,ax = plt.subplots(2,1,sharex=True)
plt.sca( ax[0] )
readCalculations(plot=True)
plt.sca( ax[1] )
t120 = removeBaseline("../fesalen/fesalen1/run16")
t300 = removeBaseline("../fesalen/fesalen1/run17")
plt.plot(t120.q,t120.data.mean(0),label="Data 120K")
plt.plot( [0,.01],[0,.01] ) # just to have a matching color
plt.plot(t300.q,t300.data.mean(0),label="Data 300K")
def showBaseline(N=2):
data_bs = azav("../fesalen/fesalen1/run17")
data = removeBaseline("../fesalen/fesalen1/run17")
idx1 = np.argwhere( data.q[0] == data_bs.q )[0][0]
idx2 = np.argwhere( data.q[-1] == data_bs.q )[0][0]
bs = data_bs.data[:,idx1:idx2+1]-data.data
fig,ax=plt.subplots(2,N,sharex=True,sharey='row',squeeze=False)
ax = ax.T
for i,a in enumerate(ax):
a[0].plot(data_bs.q,data_bs.data[i])
a[0].plot(data.q,bs[i])
a[1].plot(data.q,data.data[i])
def showBaselineStability(N=100):
# has to be done with cryo on
data_bs = azav("../fesalen/fesalen1/run15")
data = removeBaseline("../fesalen/fesalen1/run15")
fig,ax=plt.subplots(2,2,sharey=True)
i = np.arange(data.data.shape[0])
ax[0,0].pcolormesh(i,data_bs.q,data_bs.data.T)
ax[0,0].set_title("Without baseline subtraction")
ax[0,0].set_ylabel(r"q ($\AA^{-1}$)")
for x in range(N):
ax[0,1].plot(data_bs.data[x],data_bs.q,lw=0.5,color="0.5",alpha=0.1)
ax[1,0].pcolormesh(i,data.q,data.data.T)
ax[1,0].set_xlabel("Image number")
ax[1,0].set_title("With baseline subtraction")
ax[1,0].set_ylabel(r"q ($\AA^{-1}$)")
for x in range(N):
ax[1,1].plot(data.data[x],data.q,lw=0.5,color="0.5",alpha=0.1)
ax[0,1].set_xlim(0,400)
ax[1,1].set_xlim(0,180)
ax[1,1].set_xlabel("Intensity")
[a.set_xlim(0,400) for a in ax[:,0]]
plt.ylim(0.4,3)
def comparisonTRbaseline(folder="../fesalen/fesalen1/run9",select=slice(None)):
pars = dict( chi2Mask=1.5,errMask=3,monitor=(0.4,2.5),showPlot=False )
data,diffs_bs=datared(folder,**pars,withBaseline=True)
data,diffs=datared(folder,**pars,withBaseline=False)
fig,ax=plt.subplots(2,1,sharex=True)
plt.sca(ax[0])
xray.utils.plotdiffs(diffs.q,diffs.data,t=diffs.scan,
absSignal=diffs.dataAbsAvAll,absSignalScale=10,select=select)
plt.title(folder + " norm %s" % str(pars['monitor']))
plt.sca(ax[1])
xray.utils.plotdiffs(diffs_bs.q,diffs_bs.data,t=diffs_bs.scan,
absSignal=diffs_bs.dataAbsAvAll,absSignalScale=30,select=select)
def compareAmplitudes(runs=(11,12,8,9,10),scaleWithE=True,withBaseline=False):
runs=list(runs)
nRuns = len(runs)
fig,ax=plt.subplots(nRuns,3,sharex=True,sharey='col',figsize=[12,8])
subplots_kw = dict( hspace=0,wspace=0 )
plt.subplots_adjust( **subplots_kw )
plt.rcParams['font.size']=14
for run,arow in zip(runs,ax):
t,amp = anaAmplitue(run,plot=False,scaleWithE=scaleWithE,withBaseline=withBaseline)
for k,a in zip(amp.keys(),arow):
a.axhline(0,ls='--')
a.plot(t,amp[k],'o')
for r,a in zip(runs,ax[:,0]):
label = "run %d (%.0f K)\n%.0f uJ"%(r,runsT[r],runsE[r])
a.set_ylabel(label)
for interval,a in zip(amp.keys(),ax[0,:]): a.set_title("range %s"%(str(interval)))
def compareAmplitudes2(runs=(11,12,8,9,10),scaleWithE=False,withBaseline=False):
runs=list(runs)
nRuns = len(runs)
fig,ax=plt.subplots(1,3,sharex=True,figsize=[12,8])
subplots_kw = dict( hspace=0,wspace=0 )
plt.subplots_adjust( **subplots_kw )
plt.rcParams['font.size']=14
for a in ax: a.axhline(0,ls='--')
for run in runs:
t,amp = anaAmplitue(run,plot=False,scaleWithE=scaleWithE,withBaseline=withBaseline)
for k,a in zip(amp.keys(),ax):
label = "run %d %.0f uJ"%(run,runsE[run])
a.plot(t,amp[k],'-o',label=label)
# for r,a in zip(runs,ax[:,0]):
# a.set_ylabel(label)
for interval,a in zip(amp.keys(),ax): a.set_title("range %s"%(str(interval)))
def comparePosition2(runs=(11,12,8,9,10),withBaseline=False,useRatio=True,scaleWithE=False):
runs=list(runs)
nRuns = len(runs)
fig,ax=plt.subplots(1,3,sharex=True,figsize=[12,8],sharey=useRatio)
subplots_kw = dict( hspace=0,wspace=0 )
plt.subplots_adjust( **subplots_kw )
plt.rcParams['font.size']=14
if scaleWithE and not ratio:
log.warn("scaleWithE requires useRatio, setting scaleWithE to False")
scaleWithE = Fale
for run in runs:
t,pos = anaPeakPos(run,plot=False,withBaseline=withBaseline)
for k,a in zip(pos.keys(),ax):
label = "run %d %.0f uJ"%(run,runsE[run])
if useRatio:
ratio = pos[k].center.value[1:]/pos[k].center.value[0]
if scaleWithE: ratio = (ratio-1)/runsE[run]+1
line = a.plot(t[1:],ratio,'-o',label=label)[0]
else:
line = a.plot(t[1:],pos[k].center.value[1:],'-o',label=label)[0]
a.axhline(pos[k].center.value[0],color=line.get_color())
for interval,a in zip(pos.keys(),ax): a.set_title("range %s"%(str(interval)))
if useRatio:
ax[0].set_ylabel("Peak Position / Peak Position(t=-5ns)")
else:
ax[0].set_ylabel("Peak Position ($\AA^{-1}$)")