2016-12-01 15:26:14 +01:00
|
|
|
from __future__ import print_function,division
|
|
|
|
from skimage import transform as tf
|
|
|
|
from scipy.ndimage import gaussian_filter1d as g1d
|
|
|
|
import joblib
|
|
|
|
import collections
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import time
|
|
|
|
|
|
|
|
import mcutils as mc
|
|
|
|
import dispersiveXanes_utils as utils
|
|
|
|
# /--------\
|
|
|
|
# | |
|
|
|
|
# | UTILS |
|
|
|
|
# | |
|
|
|
|
# \--------/
|
|
|
|
|
|
|
|
#defaultE = np.arange(1024)*0.12+7060
|
|
|
|
defaultE = (np.arange(1024)-512)*0.189+7123
|
|
|
|
defaultE = 7063.5+0.1295*np.arange(1024); # done on nov 30 2016, based on xppl3716:r77
|
2017-06-09 16:42:35 +02:00
|
|
|
defaultE = 7064.5-6+0.1295*np.arange(1024); # done on jun 07 2017, based on reference spectrum from ESRF
|
2016-12-01 15:26:14 +01:00
|
|
|
|
|
|
|
__i = np.arange(1024)
|
|
|
|
__x = (__i-512)/512
|
|
|
|
|
|
|
|
g_fit_default_kw = dict(
|
|
|
|
intensity = 1.,
|
|
|
|
error_intensity = 0.02,
|
|
|
|
transx = 0,
|
|
|
|
error_transx = 3,
|
|
|
|
limit_transx = ( -400,400 ),
|
|
|
|
transy = 0,
|
|
|
|
error_transy = 3,
|
|
|
|
limit_transy = ( -50,50 ),
|
|
|
|
rotation = 0.00,
|
|
|
|
error_rotation = 0.005,
|
|
|
|
limit_rotation = (-0.06,0.06),
|
|
|
|
scalex = 1,
|
|
|
|
limit_scalex = (0.4,1.2),
|
|
|
|
error_scalex = 0.05,
|
|
|
|
scaley = 1,
|
|
|
|
error_scaley = 0.05,
|
|
|
|
limit_scaley = (0.8,1.2),
|
|
|
|
shear = 0.00,
|
|
|
|
error_shear = 0.001,
|
|
|
|
limit_shear = (-0.2,0.2),
|
|
|
|
igauss1cen = 512,
|
|
|
|
error_igauss1cen = 2.,
|
|
|
|
fix_igauss1cen = True,
|
|
|
|
igauss1sig = 4000.,
|
|
|
|
error_igauss1sig = 2.,
|
|
|
|
fix_igauss1sig = True,
|
|
|
|
igauss2cen = 512,
|
|
|
|
error_igauss2cen = 2.,
|
|
|
|
fix_igauss2cen = True,
|
|
|
|
igauss2sig = 4000.,
|
|
|
|
error_igauss2sig = 2.,
|
|
|
|
fix_igauss2sig = True,
|
|
|
|
iblur1 = 0,
|
|
|
|
limit_iblur1 = (0,20),
|
|
|
|
error_iblur1 = 0.02,
|
|
|
|
fix_iblur1 = True,
|
|
|
|
iblur2 = 0,
|
|
|
|
limit_iblur2 = (0,20),
|
|
|
|
error_iblur2 = 0.02,
|
|
|
|
fix_iblur2 = True
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
cmap = plt.cm.viridis if hasattr(plt.cm,"viridis") else plt.cm.gray
|
|
|
|
kw_2dplot = dict(
|
|
|
|
interpolation = "none",
|
|
|
|
aspect = "auto",
|
|
|
|
cmap = cmap
|
|
|
|
)
|
|
|
|
|
|
|
|
fit_ret = collections.namedtuple("fit_ret",["init_pars","final_pars",\
|
|
|
|
"final_transform1","final_transform2","im1","im2","E","p1","p1_sum","p2","p2_sum","fom","ratio","tneeded"] )
|
|
|
|
|
|
|
|
|
|
|
|
def findRoi(img,height=100,axis=0):
|
|
|
|
c = int( utils.getCenterOfMass(img,axis=axis) )
|
|
|
|
roi = slice(c-height//2,c+height//2)
|
|
|
|
return roi
|
|
|
|
|
|
|
|
|
2017-06-07 14:13:59 +02:00
|
|
|
def subtractBkg(imgs,nPix=100,bkg_type="line"):
|
|
|
|
if imgs.ndim == 2: imgs = imgs[np.newaxis,:]
|
|
|
|
imgs = imgs.astype(np.float)
|
|
|
|
if bkg_type == "line":
|
|
|
|
bkg = np.median(imgs[:,:nPix,:],axis=1)
|
|
|
|
imgs = imgs-bkg[:,np.newaxis,:]
|
|
|
|
elif bkg_type == "corner":
|
|
|
|
q1 = imgs[:,:nPix,:nPix].mean(-1).mean(-1)
|
|
|
|
imgs[:,:512,:512]-=q1[:,np.newaxis,np.newaxis]
|
|
|
|
q2 = imgs[:,:nPix,-nPix:].mean(-1).mean(-1)
|
|
|
|
imgs[:,:512,-512:]-=q2[:,np.newaxis,np.newaxis]
|
|
|
|
q3 = imgs[:,-nPix:,-nPix:].mean(-1).mean(-1)
|
|
|
|
imgs[:,-512:,-512:]-=q3[:,np.newaxis,np.newaxis]
|
|
|
|
q4 = imgs[:,-nPix:,:nPix].mean(-1).mean(-1)
|
|
|
|
imgs[:,-512:,:512]-=q4[:,np.newaxis,np.newaxis]
|
|
|
|
elif bkg_type is None:
|
|
|
|
if imgs.ndim == 2: imgs = imgs[np.newaxis,:].astype(np.float)
|
|
|
|
else:
|
|
|
|
print("Background subtraction '%s' Not impleted"%bkg_type)
|
|
|
|
return imgs
|
|
|
|
|
2016-12-01 15:26:14 +01:00
|
|
|
# /--------------------\
|
|
|
|
# | |
|
|
|
|
# | PLOTS & CO. |
|
|
|
|
# | |
|
|
|
|
# \--------------------/
|
|
|
|
|
|
|
|
def plotShot(im1,im2,transf1=None,transf2=None,fig=None,ax=None,res=None,E=defaultE,save=None):
|
|
|
|
if transf1 is not None: im1 = transf1.transformImage(im1)
|
|
|
|
if transf2 is not None: im2 = transf2.transformImage(im2)
|
|
|
|
if fig is None and ax is None:
|
|
|
|
fig = plt.subplots(2,3,figsize=[7,5],sharex=True)[0]
|
|
|
|
ax = fig.axes
|
|
|
|
elif fig is not None:
|
|
|
|
ax = fig.axes
|
|
|
|
if E is None: E=np.arange(im1.shape[1])
|
|
|
|
n = im1.shape[0]
|
|
|
|
ax[0].imshow(im1,extent=(E[0],E[-1],0,n),**kw_2dplot)
|
|
|
|
ax[1].imshow(im2,extent=(E[0],E[-1],0,n),**kw_2dplot)
|
|
|
|
ax[2].imshow(im1-im2,extent=(E[0],E[-1],0,n),**kw_2dplot)
|
|
|
|
if res is None:
|
|
|
|
p1 = np.nansum(im1,axis=0)
|
|
|
|
p2 = np.nansum(im2,axis=0)
|
|
|
|
pr = p2/p1
|
|
|
|
else:
|
|
|
|
p1 = res.p1; p2 = res.p2; pr = res.ratio
|
|
|
|
ax[3].plot(E,p1,lw=3)
|
|
|
|
ax[4].plot(E,p1,lw=1)
|
|
|
|
ax[4].plot(E,p2,lw=3)
|
|
|
|
idx = (p1>p1.max()/10.)
|
|
|
|
ax[5].plot(E[idx],pr[idx])
|
|
|
|
if res is not None:
|
|
|
|
ax[5].set_title("FOM: %.2f"%res.fom)
|
|
|
|
else:
|
|
|
|
ax[5].set_title("FOM: %.2f"% utils.calcFOM(p1,p2,pr))
|
|
|
|
if (save is not None) and (save is not False): plt.savefig(save,transparent=True,dpi=500)
|
|
|
|
return fig
|
|
|
|
|
|
|
|
def plotRatios(r,shot='random',fig=None,E=defaultE,save=None):
|
|
|
|
if fig is None: fig = plt.subplots(2,1,sharex=True)[0]
|
|
|
|
ax = fig.axes
|
|
|
|
n = r.shape[0]
|
|
|
|
i = ax[0].imshow(r,extent=(E[0],E[-1],0,n),**kw_2dplot)
|
|
|
|
i.set_clim(0,1.2)
|
|
|
|
if shot == 'random' : shot = np.random.random_integers(0,n-1)
|
|
|
|
ax[1].plot(E,r[shot],label="Shot n %d"%shot)
|
|
|
|
ax[1].plot(E,np.nanmedian(r[:10],axis=0),label="median 10 shots")
|
|
|
|
ax[1].plot(E,np.nanmedian(r,axis=0),label="all shots")
|
|
|
|
ax[1].legend()
|
|
|
|
ax[1].set_ylim(0,1.5)
|
|
|
|
ax[1].set_xlabel("Energy")
|
|
|
|
ax[1].set_ylabel("Transmission")
|
|
|
|
ax[0].set_ylabel("Shot num")
|
|
|
|
if (save is not None) and (save is not False): plt.savefig(save,transparent=True,dpi=500)
|
|
|
|
|
|
|
|
def plotSingleShots(r,nShots=10,fig=None,E=defaultE,save=None,ErangeForStd=(7090,7150)):
|
|
|
|
if fig is None: fig = plt.subplots(2,1,sharex=True)[0]
|
|
|
|
ax = fig.axes
|
|
|
|
for i in range(nShots):
|
|
|
|
ax[0].plot(E,r[i]+i)
|
|
|
|
ax[0].set_ylim(0,nShots+0.5)
|
|
|
|
av = (1,3,10,30,100)
|
|
|
|
good = np.nanmedian(r,0)
|
|
|
|
for i,a in enumerate(av):
|
|
|
|
m = np.nanmedian(r[:a],0)
|
|
|
|
idx = (E>ErangeForStd[0]) & (E<ErangeForStd[1])
|
|
|
|
fom = np.nanstd( m[idx]/good[idx] )
|
|
|
|
print("n shots %d, std %.2f"%(a,fom) )
|
|
|
|
ax[1].plot(E,m+i,label="%d shots, std :%.2f"%(a,fom))
|
|
|
|
ax[1].legend()
|
|
|
|
ax[1].set_ylim(0,len(av)+0.5)
|
|
|
|
ax[1].set_xlabel("Energy")
|
|
|
|
ax[1].set_ylabel("Transmission")
|
|
|
|
if (save is not None) and (save is not False): plt.savefig(save,transparent=True,dpi=500)
|
|
|
|
|
|
|
|
|
|
|
|
# /--------------------\
|
|
|
|
# | |
|
|
|
|
# | TRANSFORM & CO. |
|
|
|
|
# | |
|
|
|
|
# \--------------------/
|
|
|
|
|
|
|
|
|
|
|
|
def transformImage(img,transform=None,iblur=None,intensity=1,\
|
|
|
|
igauss=None,orderRotation=1,show=False):
|
|
|
|
""" Transform is the geometrical (affine) transform)
|
|
|
|
blur is a tuple (blurx,blury); if a single value used for energy axis
|
|
|
|
i is to correct the itensity
|
|
|
|
igauss is to multiply the intensity with a gaussian along the energy axis (=0); if a single assumed centered at center of image, or has to be a tuple (cen,witdth)
|
|
|
|
"""
|
|
|
|
if transform is not None and not np.all(transform.params==np.eye(3)) :
|
|
|
|
try:
|
|
|
|
t = np.linalg.inv(transform.params)
|
|
|
|
i = tf._warps_cy._warp_fast(img,t,order=orderRotation)
|
|
|
|
except np.linalg.LinAlgError:
|
|
|
|
print("Image transformation failed, returning original image")
|
|
|
|
i = img.copy()
|
|
|
|
else:
|
|
|
|
i = img.copy()
|
|
|
|
i *= intensity
|
|
|
|
if iblur is not None:
|
|
|
|
if isinstance(iblur,(int,float)):
|
|
|
|
iblur = (iblur,None)
|
|
|
|
if (iblur[0] is not None) and (iblur[0]>0): i = g1d(i,iblur[0],axis=1)
|
|
|
|
if (iblur[1] is not None) and (iblur[1]>0): i = g1d(i,iblur[1],axis=0)
|
|
|
|
if igauss is not None:
|
|
|
|
if isinstance(igauss,(int,float)):
|
|
|
|
igauss = (__i[-1]/2,igauss); # if one parameter only, assume it is centered on image
|
|
|
|
g = mc.gaussian(__i,x0=igauss[0],sig=igauss[1],normalize=False)
|
|
|
|
i *= g
|
|
|
|
if show: plotShot(img,i)
|
|
|
|
return i
|
|
|
|
|
|
|
|
|
|
|
|
class SpecrometerTransformation(object):
|
|
|
|
def __init__(self,translation=(0,0),scale=(1,1),rotation=0,shear=0,
|
|
|
|
intensity=1,igauss=None,iblur=None):
|
|
|
|
self.affineTransform = getTransform(translation=translation,
|
|
|
|
scale = scale,rotation=rotation,shear=shear)
|
|
|
|
self.intensity=intensity
|
|
|
|
self.igauss = igauss
|
|
|
|
self.iblur = iblur
|
|
|
|
|
|
|
|
def update(self,**kw):
|
|
|
|
# current transformation, necessary because skimage transformation do not support
|
|
|
|
# setting of attributes
|
|
|
|
names = ["translation","scale","rotation","shear"]
|
|
|
|
trans_dict = dict( [(n,getattr(self.affineTransform,n)) for n in names] )
|
|
|
|
for k,v in kw.items():
|
|
|
|
if hasattr(self,k):
|
|
|
|
setattr(self,k,v)
|
|
|
|
elif k in names:
|
|
|
|
trans_dict[k] = v
|
|
|
|
self.affineTransform = getTransform(**trans_dict)
|
|
|
|
|
|
|
|
def transformImage(self,img,orderRotation=1,show=False):
|
|
|
|
return transformImage(img,self.affineTransform,iblur=self.iblur,\
|
|
|
|
intensity=self.intensity,igauss=self.igauss,orderRotation=orderRotation,\
|
|
|
|
show=show)
|
|
|
|
|
|
|
|
def saveAlignment(fname,transform,roi1,roi2,swap):
|
|
|
|
np.save(fname, dict( transform = transform, roi1=roi1, roi2 = roi2,swap=swap) )
|
|
|
|
|
|
|
|
def loadAlignment(fname):
|
|
|
|
return np.load(fname).item()
|
|
|
|
|
|
|
|
def getBestTransform(results):
|
|
|
|
# try to see if it is unravelled
|
|
|
|
if not hasattr(results,"_fields"): results = unravel_results(results)
|
|
|
|
# find best based on FOM
|
|
|
|
idx = np.nanargmin(np.abs(results.fom))
|
|
|
|
parnames = results.init_pars.keys()
|
|
|
|
bestPars = dict()
|
|
|
|
for n in parnames:
|
|
|
|
bestPars[n] = results.final_pars[n][idx]
|
|
|
|
if n.find("limit_") == 0:
|
|
|
|
if bestPars[n][0] is None:
|
|
|
|
bestPars[n] = None
|
|
|
|
else:
|
|
|
|
bestPars[n] = tuple(bestPars[n])
|
|
|
|
return bestPars,np.nanmin(np.abs(results.fom))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def unravel_results(res,nSaveImg='all'):
|
|
|
|
final_pars = dict()
|
|
|
|
# res[0].fit_result is a list if we are trying to unravel retult from getShots
|
|
|
|
if isinstance(res[0].init_pars,list):
|
|
|
|
parnames = res[0].init_pars[0].get_keys()
|
|
|
|
else:
|
|
|
|
parnames = res[0].init_pars.keys()
|
|
|
|
final_pars = dict()
|
|
|
|
init_pars = dict()
|
|
|
|
for n in parnames:
|
|
|
|
if n.find("limit_") == 0:
|
|
|
|
final_pars[n] = np.vstack( [r.final_pars[n] for r in res])
|
|
|
|
init_pars[n] = np.vstack( [r.init_pars[n] for r in res] )
|
|
|
|
else:
|
|
|
|
final_pars[n] = np.hstack( [r.final_pars[n] for r in res])
|
|
|
|
init_pars[n] = np.hstack( [r.init_pars[n] for r in res] )
|
|
|
|
im1 = np.asarray( [r.im1 for r in res if r.im1.shape[0] != 0])
|
|
|
|
im2 = np.asarray( [r.im2 for r in res if r.im2.shape[0] != 0])
|
|
|
|
if nSaveImg != 'all':
|
|
|
|
im1 = im1[:nSaveImg].copy(); # copy is necessary to free the original memory
|
|
|
|
im2 = im2[:nSaveImg].copy(); # of original array
|
|
|
|
return fit_ret(
|
|
|
|
init_pars = init_pars,
|
|
|
|
final_pars = final_pars,
|
|
|
|
final_transform1 = [r.final_transform1 for r in res],
|
|
|
|
final_transform2 = [r.final_transform2 for r in res],
|
|
|
|
im1 = im1,
|
|
|
|
im2 = im2,
|
|
|
|
E = defaultE,
|
|
|
|
p1 = np.vstack( [r.p1 for r in res]),
|
|
|
|
p1_sum = np.hstack( [r.p1_sum for r in res]),
|
|
|
|
p2 = np.vstack( [r.p2 for r in res]),
|
|
|
|
p2_sum = np.hstack( [r.p2_sum for r in res]),
|
|
|
|
ratio = np.vstack( [r.ratio for r in res]),
|
|
|
|
fom = np.hstack( [r.fom for r in res] ),
|
|
|
|
tneeded = np.hstack( [r.tneeded for r in res])
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def getTransform(translation=(0,0),scale=(1,1),rotation=0,shear=0):
|
|
|
|
t= tf.AffineTransform(scale=scale,rotation=rotation,shear=shear,\
|
|
|
|
translation=translation)
|
|
|
|
return t
|
|
|
|
|
|
|
|
def findTransform(p1,p2,ttype="affine"):
|
|
|
|
return tf.estimate_transform(ttype,p1,p2)
|
|
|
|
|
|
|
|
|
|
|
|
#__i = np.arange(2**12)/2**11
|
|
|
|
#def _transformToIntensitylDependence(transform):
|
|
|
|
# c = 1.
|
|
|
|
# if hasattr(transform,"i_a"):
|
|
|
|
# c += transform.i_a*_i
|
|
|
|
# return c
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# /--------\
|
|
|
|
# | |
|
|
|
|
# | FIT |
|
|
|
|
# | |
|
|
|
|
# \--------/
|
|
|
|
|
|
|
|
|
2017-06-07 14:13:59 +02:00
|
|
|
def transformIminuit(im1,im2,init_transform=dict(),show=False,verbose=True,zeroThreshold=0.0,doFit=True):
|
2016-12-01 15:26:14 +01:00
|
|
|
import iminuit
|
|
|
|
assert im1.dtype == im2.dtype
|
|
|
|
t0 = time.time()
|
|
|
|
# create local copy we can mess up with
|
|
|
|
im1_toFit = im1.copy()
|
|
|
|
im2_toFit = im2.copy()
|
|
|
|
|
2017-06-07 14:13:59 +02:00
|
|
|
# set anything below the zeroThreshold of the max to zero (one of the two opal is noisy)
|
2016-12-01 15:26:14 +01:00
|
|
|
im1_toFit[im1_toFit<im1.max()*zeroThreshold] = 0
|
|
|
|
im2_toFit[im2_toFit<im2.max()*zeroThreshold] = 0
|
|
|
|
p1 = im1.mean(0)
|
|
|
|
p2 = im2.mean(0)
|
|
|
|
|
|
|
|
# set errorbar
|
|
|
|
err = 3.
|
|
|
|
|
|
|
|
def transforms(intensity,
|
|
|
|
igauss1cen,igauss1sig,iblur1,
|
|
|
|
scalex,scaley,rotation,transx,transy,shear,
|
|
|
|
igauss2cen,igauss2sig,iblur2):
|
|
|
|
t1 = SpecrometerTransformation(translation=(transx,transy),scale=(scalex,scaley),\
|
|
|
|
rotation=rotation,shear=shear,intensity=intensity,igauss=(igauss1cen,igauss1sig),\
|
|
|
|
iblur=iblur1)
|
|
|
|
t2 = SpecrometerTransformation(igauss=(igauss2cen,igauss2sig),iblur=iblur2)
|
|
|
|
return t1,t2
|
|
|
|
|
|
|
|
def model(intensity,
|
|
|
|
igauss1cen,igauss1sig,iblur1,
|
|
|
|
scalex,scaley,rotation,transx,transy,shear,
|
|
|
|
igauss2cen,igauss2sig,iblur2):
|
|
|
|
|
|
|
|
t1,t2 = transforms(intensity,
|
|
|
|
igauss1cen,igauss1sig,iblur1,
|
|
|
|
scalex,scaley,rotation,transx,transy,shear,
|
|
|
|
igauss2cen,igauss2sig,iblur2)
|
|
|
|
return t1.transformImage(im1_toFit),t2.transformImage(im2_toFit)
|
|
|
|
|
|
|
|
def chi2(intensity,
|
|
|
|
igauss1cen,igauss1sig,iblur1,
|
|
|
|
scalex,scaley,rotation,transx,transy,shear,
|
|
|
|
igauss2cen,igauss2sig,iblur2):
|
|
|
|
|
|
|
|
i1,i2 = model(intensity, \
|
|
|
|
igauss1cen,igauss1sig,iblur1, \
|
|
|
|
scalex,scaley,rotation,transx,transy,shear, \
|
|
|
|
igauss2cen,igauss2sig,iblur2)
|
|
|
|
d = (i1-i2)/err
|
|
|
|
return np.sum(d*d)
|
|
|
|
|
|
|
|
# set default initial stepsize and limits
|
|
|
|
r = im2.mean(0).sum()/im1.mean(0).sum()
|
|
|
|
default_kw = g_fit_default_kw.copy()
|
2017-06-07 14:13:59 +02:00
|
|
|
# will be used only if not in initpars
|
2016-12-01 15:26:14 +01:00
|
|
|
default_kw["intensity"] = r
|
|
|
|
|
|
|
|
init_kw = dict()
|
|
|
|
if isinstance(init_transform,dict):
|
|
|
|
init_kw = init_transform.copy()
|
|
|
|
elif isinstance(init_transform,iminuit._libiminuit.Minuit):
|
|
|
|
init_kw = init_transform.fitarg.copy()
|
|
|
|
elif isinstance(init_transform,tf.AffineTransform):
|
|
|
|
init_kw["transx"],init_kw["transy"] = init_transform.translation
|
|
|
|
init_kw["scalex"],init_kw["scaley"] = init_transform.scale
|
|
|
|
init_kw["rotation"] = init_transform.rotation
|
|
|
|
init_kw["shear"] = init_transform.shear
|
|
|
|
if "intensity" in init_kw and init_kw["intensity"] == "auto":
|
|
|
|
r = im2.mean(0).sum()/im1.mean(0).sum()
|
|
|
|
init_kw["intensity"]= r
|
|
|
|
|
|
|
|
kw = default_kw.copy()
|
|
|
|
kw.update(init_kw)
|
|
|
|
kw["fix_shear"]=True
|
|
|
|
|
|
|
|
|
|
|
|
tofix = ("scalex","scaley","rotation","shear")
|
|
|
|
kw_tofix = dict( [("fix_%s"%p,True) for p in tofix] )
|
|
|
|
kw.update(kw_tofix)
|
|
|
|
imin = iminuit.Minuit(chi2,errordef=1.,**kw)
|
|
|
|
imin.set_strategy(1)
|
|
|
|
init_params = imin.fitarg.copy()
|
|
|
|
|
|
|
|
if show:
|
|
|
|
i1,i2 = model(*imin.args)
|
|
|
|
plotShot(i1,i2)
|
|
|
|
fig = plt.gcf()
|
|
|
|
fig.text(0.5,0.9,"Initial Pars")
|
2017-06-07 14:13:59 +02:00
|
|
|
plt.draw()
|
2016-12-01 15:26:14 +01:00
|
|
|
input("Enter to start fit")
|
|
|
|
|
|
|
|
if doFit: imin.migrad()
|
|
|
|
|
|
|
|
pars = imin.fitarg.copy()
|
|
|
|
kw_tofree = dict( [("fix_%s"%p,False) for p in tofix] )
|
|
|
|
pars.update(kw_tofree)
|
|
|
|
imin = iminuit.Minuit(chi2,errordef=1.,**pars)
|
|
|
|
imin.set_strategy(1)
|
|
|
|
|
|
|
|
if doFit: imin.migrad()
|
|
|
|
|
|
|
|
final_params = imin.fitarg.copy()
|
|
|
|
t1,t2 = transforms(*imin.args)
|
|
|
|
i1,i2 = model(*imin.args)
|
|
|
|
|
|
|
|
i1 = t1.transformImage(im1)
|
|
|
|
i2 = t2.transformImage(im2)
|
|
|
|
if show:
|
|
|
|
plotShot(i1,i2)
|
|
|
|
fig = plt.gcf()
|
|
|
|
fig.text(0.5,0.9,"Final Pars")
|
|
|
|
|
|
|
|
p1 = np.nansum(i1,axis=0)
|
|
|
|
p2 = np.nansum(i2,axis=0)
|
|
|
|
r = p2/p1
|
|
|
|
idx = p1>np.nanmax(p1)/10.
|
|
|
|
fom = utils.calcFOM(p1,p2,r)
|
|
|
|
return fit_ret(
|
|
|
|
init_pars = init_params,
|
|
|
|
final_pars = final_params,
|
|
|
|
final_transform1 = t1,
|
|
|
|
final_transform2 = t2,
|
|
|
|
im1 = i1,
|
|
|
|
im2 = i2,
|
|
|
|
E = defaultE,
|
|
|
|
p1 = p1,
|
|
|
|
p1_sum = p1.sum(),
|
|
|
|
p2 = p2,
|
|
|
|
p2_sum = p2.sum(),
|
|
|
|
ratio = r,
|
|
|
|
fom = fom,
|
|
|
|
tneeded = time.time()-t0
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# /--------\
|
|
|
|
# | |
|
|
|
|
# | MANUAL |
|
|
|
|
# | ALIGN |
|
|
|
|
# | |
|
|
|
|
# \--------/
|
|
|
|
class GuiAlignment(object):
|
|
|
|
def __init__(self,im1,im2,autostart=False):
|
|
|
|
self.im1 = im1
|
|
|
|
self.im2 = im2
|
|
|
|
self.f,self.ax=plt.subplots(1,2)
|
|
|
|
self.ax[0].imshow(im1,aspect="auto")
|
|
|
|
self.ax[1].imshow(im2,aspect="auto")
|
|
|
|
self.transform = None
|
|
|
|
if autostart:
|
|
|
|
return self.start()
|
|
|
|
else:
|
|
|
|
print("Zoom first then use the .start method")
|
|
|
|
|
|
|
|
def OnClick(self,event):
|
|
|
|
if event.button == 1:
|
|
|
|
if self._count % 2 == 0:
|
|
|
|
self.im1_p.append( (event.xdata,event.ydata) )
|
|
|
|
print("Added",event.xdata,event.ydata,"to im1")
|
|
|
|
else:
|
|
|
|
self.im2_p.append( (event.xdata,event.ydata) )
|
|
|
|
print("Added",event.xdata,event.ydata,"to im2")
|
|
|
|
self._count += 1
|
|
|
|
elif event.button == 2:
|
|
|
|
# neglect middle click
|
|
|
|
return
|
|
|
|
elif event.button == 3:
|
|
|
|
self.done = True
|
|
|
|
return
|
|
|
|
else:
|
|
|
|
return
|
|
|
|
|
|
|
|
def start(self):
|
|
|
|
self._nP = 0
|
|
|
|
self._count = 0
|
|
|
|
self.im1_p = []
|
|
|
|
self.im2_p = []
|
|
|
|
self.done = False
|
|
|
|
cid_up = self.f.canvas.mpl_connect('button_press_event', self.OnClick)
|
|
|
|
print("Press right button to finish")
|
|
|
|
while not self.done:
|
|
|
|
if self._count % 2 == 0:
|
|
|
|
print("Select point %d for left image"%self._nP)
|
|
|
|
else:
|
|
|
|
print("Select point %d for right image"%self._nP)
|
|
|
|
self._nP = self._count //2
|
|
|
|
plt.waitforbuttonpress()
|
|
|
|
self.im1_p = np.asarray(self.im1_p)
|
|
|
|
self.im2_p = np.asarray(self.im2_p)
|
|
|
|
self.transform = findTransform(self.im1_p,self.im2_p)
|
|
|
|
self.transform.intensity = 1.
|
|
|
|
return self.transform
|
|
|
|
|
|
|
|
def show(self):
|
|
|
|
if self.transform is None:
|
|
|
|
print("Do the alignment first (with .start()")
|
|
|
|
return
|
|
|
|
# just to save some tipying
|
|
|
|
im1 = self.im1; im2 = self.im2
|
|
|
|
im1_new = transformImage(im1,self.transform)
|
|
|
|
f,ax=plt.subplots(1,3)
|
|
|
|
ax[0].imshow(im1,aspect="auto")
|
|
|
|
ax[1].imshow(im1_new,aspect="auto")
|
|
|
|
ax[2].imshow(im2,aspect="auto")
|
|
|
|
|
|
|
|
def save(self,fname):
|
|
|
|
if self.transform is None:
|
|
|
|
print("Do the alignment first (with .start()")
|
|
|
|
return
|
|
|
|
else:
|
|
|
|
np.save(fname,self.transform)
|
|
|
|
|
|
|
|
def load(self,fname):
|
|
|
|
self.transform = np.load(fname).item()
|
|
|
|
|
|
|
|
|
|
|
|
def getAverageTransformation(res):
|
|
|
|
if hasattr(res,"final_pars"): res = res.final_pars
|
|
|
|
out = dict()
|
|
|
|
for k in res.keys():
|
|
|
|
if k.find("error_") == 0 or k.find("limit_") == 0 or k.find("fix_") == 0:
|
|
|
|
if (type(res[k][0]) == np.ndarray) and res[k][0][0] == None:
|
|
|
|
out[k] = None
|
|
|
|
else:
|
|
|
|
out[k] = res[k][0]
|
|
|
|
else:
|
|
|
|
out[k] = np.nanmedian(res[k])
|
|
|
|
return out
|
|
|
|
return t
|
|
|
|
|
|
|
|
def checkAverageTransformation(out,imgs1):
|
|
|
|
t,inten = getAverageTransformation(out)
|
|
|
|
res["ratio_av"] = []
|
|
|
|
for shot,values in out.items():
|
|
|
|
i = transformImage(imgs1[shot],t)
|
|
|
|
p1 = np.nansum(i,axis=0)
|
|
|
|
r = p1/values.p2
|
|
|
|
res["ratio_av"].append( r )
|
|
|
|
res["ratio_av"] = np.asarray(res["ratio_av"])
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
g_lastpars = None
|
|
|
|
|
|
|
|
def clearCache():
|
|
|
|
globals()["g_lastpars"]=None
|
|
|
|
|
|
|
|
def doShot(i1,i2,init_pars,doFit=True,show=False):
|
|
|
|
#if g_lastpars is not None: init_pars = g_lastpars
|
|
|
|
r = transformIminuit(i1,i2,init_pars,show=show,verbose=False,doFit=doFit)
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
|
|
def doShots(imgs1,imgs2,initpars,nJobs=16,doFit=False,returnBestTransform=False,nSaveImg='all'):
|
|
|
|
clearCache()
|
|
|
|
N = imgs1.shape[0]
|
|
|
|
pool = joblib.Parallel(backend="threading",n_jobs=nJobs) \
|
|
|
|
(joblib.delayed(doShot)(imgs1[i],imgs2[i],initpars,doFit=doFit) for i in range(N))
|
|
|
|
res = unravel_results(pool,nSaveImg=nSaveImg)
|
|
|
|
if returnBestTransform:
|
|
|
|
bestT,fom = getBestTransform(res)
|
|
|
|
print("FOM for best alignment %.2f"%fom)
|
|
|
|
return res,bestT
|
|
|
|
else:
|
|
|
|
return res
|
|
|
|
# out = collections.OrderedDict( enumerate(pool) )
|
|
|
|
# return out
|
|
|
|
|
|
|
|
# /--------\
|
|
|
|
# | |
|
|
|
|
# | TEST |
|
|
|
|
# | ALIGN |
|
|
|
|
# | |
|
|
|
|
# \--------/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def testDiling(N=100,roi=slice(350,680),doGUIalignment=False,nJobs=4,useIminuit=True):
|
|
|
|
import xppll37_mc
|
|
|
|
globals()["g_lastpars"]=None
|
|
|
|
d = xppll37_mc.readDilingDataset()
|
|
|
|
im1 = xppll37_mc.subtractBkg(d.opal1[:N])[:,roi,:]
|
|
|
|
im2 = xppll37_mc.subtractBkg(d.opal2[:N])[:,roi,:]
|
|
|
|
N = im1.shape[0]; # redefie N in case it reads less than N
|
|
|
|
# to manual alignment
|
|
|
|
if doGUIalignment:
|
|
|
|
a = GuiAlignment(im1[0],im2[0])
|
|
|
|
input("Ok to start")
|
|
|
|
init_pars = a.start()
|
|
|
|
np.save("gui_align_transform.npy",init_pars)
|
|
|
|
else:
|
|
|
|
init_pars = np.load("gui_align_transform.npy").item()
|
|
|
|
pool = joblib.Parallel(backend="threading",n_jobs=nJobs,verbose=20) \
|
|
|
|
(joblib.delayed(doShot)(im1[i],im2[i],init_pars,useIminuit=useIminuit) for i in range(N))
|
|
|
|
out = collections.OrderedDict( enumerate(pool) )
|
|
|
|
return out
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
pass
|