end of marion visit (main figures ready

This commit is contained in:
Marco Cammarata 2017-06-09 16:42:35 +02:00
parent 487d8dae3d
commit b53354da9b
9 changed files with 106 additions and 27 deletions

View File

@ -18,6 +18,7 @@ import dispersiveXanes_utils as utils
#defaultE = np.arange(1024)*0.12+7060
defaultE = (np.arange(1024)-512)*0.189+7123
defaultE = 7063.5+0.1295*np.arange(1024); # done on nov 30 2016, based on xppl3716:r77
defaultE = 7064.5-6+0.1295*np.arange(1024); # done on jun 07 2017, based on reference spectrum from ESRF
__i = np.arange(1024)
__x = (__i-512)/512

View File

@ -47,6 +47,8 @@ def maskLowIntensity(p1,p2,threshold=0.03,squeeze=True):
if squeeze:
p1 = np.squeeze(p1);
p2 = np.squeeze(p2)
p1.fill_value=np.nan
p2.fill_value=np.nan
return p1,p2
def ratioOfAverage(p1,p2,threshold=0.03):

43
sigma_vs_shot.py Normal file
View File

@ -0,0 +1,43 @@
import matplotlib.pyplot as plt
import numpy as np
import xppl37_spectra
import xanes_analyzeRun
from datastorage import DataStorage as ds
r=xppl37_spectra.xanes_analyzeRun.AnalyzeRun(81)
r.load()
if len(r.results.keys()) > 1:
p1 = np.vstack( ( r.results[c].p1 for c in range(0,10,2) ) )
p2 = np.vstack( ( r.results[c].p2 for c in range(0,10,2) ) )
else:
p1 = r.results[0].p1
p2 = r.results[0].p2
N = int(len(p1)/2)
ref = slice(0,1000)
sam = slice(1000,1200)
#ref = slice(200)
#sam = slice(200)
ref = ds(p1=p1[ref],p2=p2[ref])
sam = ds(p1=p1[sam],p2=p2[sam])
# "ratioOfAverage medianOfRatios"
data=xppl37_spectra.calcAbs(ref,sam,refKind="medianOfRatios")
abs = data[-1]
idx = slice(200,800)
abs = abs[:,idx]
fom = []
fom1 = []
x = np.arange(abs.shape[1])
N = range(1,len(abs))
#N = 2**np.arange(15)
for i in N:
av = np.nanmean(abs[:i],axis=0)
p = np.polyfit(x,av,5)
diff = av-np.polyval(p,x)
fom.append( np.nanstd(av) )
fom1.append( np.nanstd(diff) )

View File

@ -25,9 +25,9 @@ g_exp = "xppl3716"
g_bml = g_exp[:3]
x3py.config.updateBeamline(g_bml)
g_folder_init = g_exp+"_init_pars/"
g_folder_out = g_exp+"_output/"
basedir = os.path.dirname(__file__)
g_folder_init = basedir + "/" +g_exp+"_init_pars/"
g_folder_out = basedir + "/" +g_exp+"_output/"
g_folder_data = "/reg/d/psdm/"+g_bml+"/"+ g_exp +"/hdf5/"
import socket

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -54,7 +54,8 @@ def calcSpectraForRun(run=82,calibs="all",realign=False,init="auto",alignCalib=0
elif isinstance(calibs,slice):
calibsForOut = list(range(r.nCalib))[calibs]
elif calibs == "all":
calibsForOut = r.results.keys()
calibsForOut = list(r.results.keys())
calibsForOut.sort()
else:
calibsForOut = calibs
# focused data have one single calibcycle ...
@ -62,9 +63,10 @@ def calcSpectraForRun(run=82,calibs="all",realign=False,init="auto",alignCalib=0
p1 = [r.results[calib].p1 for calib in calibsForOut]
p2 = [r.results[calib].p2 for calib in calibsForOut]
else:
idx = r.results[None].fom < 0.5
p1 = [ r.results[None].p1[idx], r.results[None].p1[~idx] ]
p2 = [ r.results[None].p2[idx], r.results[None].p2[~idx] ]
calib = list(r.results.keys())[0]
idx = r.results[calib].fom < 0.5
p1 = [ r.results[calib].p1[idx], r.results[calib].p1[~idx] ]
p2 = [ r.results[calib].p2[idx], r.results[calib].p2[~idx] ]
return profile_ret( run =r, p1 =p1, p2=p2,calibs=calibsForOut)
@ -111,7 +113,11 @@ def calcSpectraForRefAndSample(run=82,refCalibs=slice(None,None,2),forceSpectraC
def calcRef(r1,r2,calibs=None,threshold=0.05):
""" r1 and r2 are list of 2d arrays (nShots,nPixels) for each calibcycle """
if not isinstance(r1,(tuple,list)): r1 = (r1,)
if not isinstance(r2,(tuple,list)): r2 = (r2,)
if calibs is None: calibs = list(range(len(r1)))
if not isinstance(calibs,(tuple,list)): calibs = (calibs,)
out = collections.OrderedDict()
out["ratioOfAverage"] = dict()
out["medianOfRatios"] = dict()
@ -153,21 +159,44 @@ def showDifferentRefs(run=82,refCalibs=slice(None,None,2),threshold=0.05):
ax[-1].legend()
for a in ax: a.grid()
def calcSampleAbs(run=82,refCalibs=slice(None,None,2),threshold=0.05,refKind="medianOfRatios",forceSpectraCalculation=False):
def calcAbs(ref,sample=None,threshold=0.05,refKind="medianOfRatios",merge_calibs=True):
""" example of use
ratio = calcSampleAbs(82)
ratio = calcSampleAbs( (155,156) )
ratio = calcAbsForRun(82)
ratio = calcAbsForRun( (155,156) )
"""
if sample is None: sample=ref
temp = calcRef(ref.p1,ref.p2,threshold=threshold)
ref = temp[refKind]['all']
if merge_calibs:
p1 = np.vstack( sample.p1 )
p2 = np.vstack( sample.p2 )
p1,p2 = utils.maskLowIntensity(p1,p2,threshold=threshold)
ratio = p2/p1
ratio = ratio/ref
Abs = -np.log10(ratio)
else:
Abs = []
p1 = []
p2 = []
for _p1,_p2 in zip(sample.p1,sample.p2):
_p1,_p2 = utils.maskLowIntensity(_p1,_p2,threshold=threshold)
ratio = _p2/_p1
ratio = ratio/ref
_abs = -np.log10(ratio)
p1.append(_p1)
p2.append(_p2)
Abs.append(_abs)
return p1,p2,Abs
def calcAbsForRun(run=82,refCalibs=slice(None,None,2),threshold=0.05,refKind="medianOfRatios",forceSpectraCalculation=False,merge_calibs=True):
""" example of use
ratio = calcAbsForRun(82)
ratio = calcAbsForRun( (155,156) )
"""
ref,sample = calcSpectraForRefAndSample(run,refCalibs=refCalibs,forceSpectraCalculation=forceSpectraCalculation)
temp = calcRef(ref.p1,ref.p2,calibs=ref.calibs,threshold=threshold)
ref = temp[refKind]['all']
p1 = np.vstack( sample.p1 )
p2 = np.vstack( sample.p2 )
print(p1.shape)
p1,p2 = utils.maskLowIntensity(p1,p2,threshold=threshold)
ratio = p2/p1
ratio = ratio/ref
return p1,p2,-np.log10(ratio)
E = ref.run.E
p1,p2,Abs = calcAbs(ref,sample,threshold=threshold,refKind=refKind,merge_calibs=merge_calibs)
return E,p1,p2,Abs
def showSpectra(run=82,shots=slice(5),calibs=0,averageEachCalib=False,
normalization="auto",shifty=1,xlim=(7060,7180),showAv=True):
@ -209,7 +238,7 @@ def showAbs(run=82,shots=slice(5),normalization="auto",shifty=1,xlim=(7080,7180)
filterShot = means that it filters out the filterShot*100 percentile
"""
E = alignment.defaultE
p1,p2,abs = calcSampleAbs(run=run,threshold=threshold)
_,p1,p2,abs = calcAbsForRun(run=run,threshold=threshold)
p1_sum = p1.sum(-1)
if filterShot>0:
idx = p1_sum>np.percentile(p1_sum,filterShot*100)
@ -252,19 +281,23 @@ def showAbsWithSweep(run=(155,156),first=0,period=150,nSpectra=10,**kwards):
shots = slice(first,first+period,int(period/nSpectra))
showAbs(run=run,shots=shots,**kwards)
def smoothSpectra(E,abs_spectra,res=0.5):
def smoothSpectra(E,abs_spectra,res=0.5,skip_close=5):
from scipy import integrate
if isinstance(abs_spectra,np.ma.MaskedArray): abs_spectra = abs_spectra.filled()
if abs_spectra.ndim == 1: abs_spectra=abs_spectra[np.newaxis,:]
out = np.empty_like(abs_spectra)
for ispectrum in range(abs_spectra.shape[0]):
idx = np.isfinite(abs_spectra[ispectrum])
for ispectrum,spectrum in enumerate(abs_spectra):
idx = np.isfinite(spectrum)
Eclean = E[idx]
spectrum_clean = spectrum[idx]
for i in range(len(E)):
g = 1/np.sqrt(2*np.pi)/res*np.exp(-(E-E[i])**2/2/res**2)
tointegrate = g*abs_spectra[ispectrum]
# filter out nans
tointegrate = tointegrate[idx]
g = 1/np.sqrt(2*np.pi)/res*np.exp(-(Eclean-E[i])**2/2/res**2)
tointegrate = g*spectrum_clean
out[ispectrum,i] = integrate.simps(tointegrate,x=Eclean)
out[ispectrum][~idx]=np.nan
temp = out[ispectrum].copy()
for i,o in enumerate(temp):
if np.any( np.isnan(temp[i-skip_close:i+skip_close] ) ): out[ispectrum][i] = np.nan
return out
def doLongCalc():