first commit of the model of nh3+
This commit is contained in:
parent
210f507f58
commit
733a5d4172
|
|
@ -0,0 +1,38 @@
|
|||
!*** Relevant parameters for the analytic model
|
||||
!*** offsets:
|
||||
!*** offsets(1): morse equilibrium (N-H, Angström)
|
||||
!*** offsets(2): reference angle (H-N-H)
|
||||
!*** offsets(3): --
|
||||
!*** pat_index: vector giving the position of the
|
||||
!*** various coordinates (see below)
|
||||
!*** ppars: polynomial parameters for tmcs
|
||||
!*** vcfs: coefficients for V expressions.
|
||||
!*** wzcfs: coefficients for W & Z expressions.
|
||||
!*** ifc: inverse factorials.
|
||||
|
||||
integer matdim
|
||||
parameter (matdim=5) ! matrix is (matdim)x(matdim)
|
||||
|
||||
real*8 offsets(2)
|
||||
integer pat_index(maxnin)
|
||||
|
||||
! NH3 params
|
||||
parameter (offsets=[1.0228710942d0,120.d0])
|
||||
|
||||
!##########################################################################
|
||||
! coordinate order; the first #I number of coords are given to the
|
||||
! ANN, where #I is the number of input neurons. The position i in
|
||||
! pat_index corresponds to a coordinate, the value of pat_index(i)
|
||||
! signifies its position.
|
||||
!
|
||||
! The vector is ordered as follows:
|
||||
! a,xs,ys,xb,yb,b,rs**2,rb**2,b**2,
|
||||
! es*eb, es**3, eb**3,es**2*eb, es*eb**2
|
||||
! ri**2 := xi**2+yi**2 = ei**2; ei := (xi,yi), i = s,b
|
||||
!
|
||||
! parts not supposed to be read by ANN are marked by ';' for your
|
||||
! convenience.
|
||||
!##########################################################################
|
||||
! a,rs**2,rb**2,es*eb,es**3,eb**3,es**2*eb,es*eb**2,b**2 #I=9 (6D)
|
||||
parameter (pat_index=[1,2,3,4,5,6,7,8,9,10,11,12,13,14])
|
||||
!**************************************************************************
|
||||
|
|
@ -0,0 +1,98 @@
|
|||
module adia_mod
|
||||
implicit none
|
||||
contains
|
||||
|
||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
! % SUBROUTINE ADIA(N,P,NPAR,ymod,v,u,SKIP)
|
||||
! %
|
||||
! % determines the adiabatic energies by diagonalizing diabatic matrix.
|
||||
! % The Eingenvalues are sorted according to the best fitting ordering
|
||||
! % of the CI vectors.
|
||||
! %
|
||||
! % ATTENTION: The interface has changed. To sort by the ci's,
|
||||
! % the datavalue of the current points are given
|
||||
! %
|
||||
! % input variables:
|
||||
! % n: number of point (int)
|
||||
! % p: parameter evector(double[npar])
|
||||
! % npar: number of parameters (int)
|
||||
! % skip: .false. if everything should be done
|
||||
! %
|
||||
! % output variables:
|
||||
! % ymod: firtst nstat energies and than nci*ndiab ci's (double[ntot])
|
||||
! % v: eigenvalues (double[ndiab])
|
||||
! % u: eigenvectors (double[ndiab,ndiab])
|
||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
subroutine adia(n,p,npar,ymod,vx,u,skip)
|
||||
use dim_parameter,only: ndiab,nstat,ntot,nci,pst
|
||||
use data_module,only: q_m,x1_m,x2_m,y_m
|
||||
use diabmodel, only:diab
|
||||
use data_matrix
|
||||
!use dipole, only: diab
|
||||
implicit none
|
||||
|
||||
integer i,j !running indices
|
||||
|
||||
integer iref !getting correction or refference
|
||||
|
||||
double precision e(ndiab,ndiab) !full diabatic matrix
|
||||
double precision mx(ndiab,ndiab)
|
||||
double precision my(ndiab,ndiab)
|
||||
double precision vxs,vys,vxb,vyb
|
||||
|
||||
integer n !current point
|
||||
integer npar !number of parameters
|
||||
double precision p(npar) !parameters
|
||||
|
||||
double precision u(ndiab,ndiab),ut(ndiab,ndiab) !ci-vectors
|
||||
double precision ymod(ntot) !fitted data
|
||||
double precision vx(ndiab),vy(nstat) !eigen values
|
||||
double precision,allocatable,dimension(:,:):: mat
|
||||
logical skip,dbg
|
||||
parameter (dbg=.false.)
|
||||
! lapack variables
|
||||
integer,parameter :: lwork = 1000
|
||||
double precision work(lwork)
|
||||
integer info
|
||||
integer TYPES, BLK ! TYPE OF THE CALCULATION
|
||||
! variabke for dgemm
|
||||
|
||||
double precision,dimension(ndiab,ndiab):: ex,ey
|
||||
double precision:: alpha
|
||||
integer:: lda,ldb,beta,ldc
|
||||
double precision,dimension(ndiab,ndiab):: temp1,temp2
|
||||
call diab(ex,ey,n,x1_m(:,n),x2_m(:,n),p)
|
||||
! init eigenvector matrix
|
||||
|
||||
u = 0.d0
|
||||
skip=.false.
|
||||
ymod=0.0d0
|
||||
call Full_diab_upper(ex,ey,ymod)
|
||||
!write(*,'(16f10.4)') ex
|
||||
! ymod(1)=ex(1,1)
|
||||
! ymod(2)=ex(1,2)
|
||||
! ymod(3)=ex(1,3)
|
||||
! ymod(4)=ex(1,4)
|
||||
! ymod(5)=ex(2,2)
|
||||
! ymod(6)=ex(2,3)
|
||||
! ymod(7)=ex(2,4)
|
||||
! ymod(8)=ex(3,3)
|
||||
! ymod(9)=ex(3,4)
|
||||
! ymod(10)=ex(4,4)
|
||||
|
||||
end subroutine
|
||||
subroutine matrix_mult(C,A,B,N)
|
||||
implicit none
|
||||
integer:: n,i,j,k
|
||||
double precision,dimension(n,n):: A,B,C
|
||||
do i = 1, n ! Rows of C
|
||||
do j = 1, n ! Columns of C
|
||||
C(i,j) = 0.0 ! Initialize element
|
||||
do k = 1, n ! Dot product
|
||||
C(i,j) = C(i,j) + A(i,k) * B(k,j)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end subroutine
|
||||
|
||||
end module adia_mod
|
||||
|
|
@ -0,0 +1,367 @@
|
|||
module ctrans_mod
|
||||
use dim_parameter, only: qn
|
||||
contains
|
||||
!! subroutine ctrans
|
||||
|
||||
subroutine ctrans(q,x1,x2)
|
||||
implicit none
|
||||
include 'nnparams.incl'
|
||||
include 'JTmod.incl'
|
||||
double precision,intent(in):: q(qn)
|
||||
double precision,intent(out):: x1(qn),x2(qn)
|
||||
double precision:: cart(3,4),qint(maxnin)
|
||||
cart(:,1)=0.0d0
|
||||
cart(1:3,2:4) = reshape([ q(1:9) ], shape(cart(1:3,2:4)))
|
||||
call cart2int(cart,qint)
|
||||
x1(1:qn)=qint(1:qn)
|
||||
!x1(6)=-x1(6)
|
||||
x2(1:qn)=0.0d0 !qint(1:qn)
|
||||
!x1=q
|
||||
end subroutine ctrans
|
||||
|
||||
|
||||
subroutine cart2int(cart,qint)
|
||||
implicit none
|
||||
! This version merges both coordinate transformation routines into
|
||||
! one. JTmod's sscales(2:3) are ignored.
|
||||
! This is the first version to be compatible with one of my proper 6D fits
|
||||
! Time-stamp: <2024-10-22 13:52:59 dwilliams>
|
||||
|
||||
! Input (cartesian, in Angström)
|
||||
! cart(:,1): N
|
||||
! cart(:,1+i): Hi
|
||||
! Output
|
||||
! qint(i): order defined in JTmod.
|
||||
! Internal Variables
|
||||
! no(1:3): NO distances 1-3
|
||||
! pat_in: temporary coordinates
|
||||
! axis: main axis of NO3
|
||||
include 'nnparams.incl'
|
||||
include 'JTmod.incl'
|
||||
|
||||
|
||||
real*8 cart(3,4),qint(maxnin)
|
||||
|
||||
real*8 no(3), r1, r2, r3
|
||||
real*8 v1(3), v2(3), v3(3)
|
||||
real*8 n1(3), n2(3), n3(3), tr(3)
|
||||
real*8 ortho(3)
|
||||
real*8 pat_in(maxnin)
|
||||
logical ignore_umbrella,dbg_umbrella
|
||||
logical dbg_distances
|
||||
|
||||
!.. Debugging parameters
|
||||
!.. set umbrella to 0
|
||||
parameter (ignore_umbrella=.false.)
|
||||
! parameter (ignore_umbrella=.true.)
|
||||
|
||||
!.. break if umbrella is not 0
|
||||
parameter (dbg_umbrella=.false.)
|
||||
! parameter (dbg_umbrella=.true.)
|
||||
|
||||
!.. break for tiny distances
|
||||
parameter (dbg_distances=.false.)
|
||||
! parameter (dbg_distances=.true.)
|
||||
|
||||
integer k
|
||||
|
||||
!.. get N-O vectors and distances:
|
||||
do k=1,3
|
||||
v1(k)=cart(k,2)-cart(k,1)
|
||||
v2(k)=cart(k,3)-cart(k,1)
|
||||
v3(k)=cart(k,4)-cart(k,1)
|
||||
enddo
|
||||
no(1)=norm(v1,3)
|
||||
no(2)=norm(v2,3)
|
||||
no(3)=norm(v3,3)
|
||||
|
||||
!.. temporarily store displacements
|
||||
do k=1,3
|
||||
pat_in(k)=no(k)-offsets(1)
|
||||
enddo
|
||||
|
||||
do k=1,3
|
||||
v1(k)=v1(k)/no(1)
|
||||
v2(k)=v2(k)/no(2)
|
||||
v3(k)=v3(k)/no(3)
|
||||
enddo
|
||||
|
||||
!.. compute three normal vectors for the ONO planes:
|
||||
call xprod(n1,v1,v2)
|
||||
call xprod(n2,v2,v3)
|
||||
call xprod(n3,v3,v1)
|
||||
|
||||
do k=1,3
|
||||
tr(k)=(n1(k)+n2(k)+n3(k))/3.d0
|
||||
enddo
|
||||
r1=norm(tr,3)
|
||||
do k=1,3
|
||||
tr(k)=tr(k)/r1
|
||||
enddo
|
||||
|
||||
! rotate trisector
|
||||
call rot_trisec(tr,v1,v2,v3)
|
||||
|
||||
!.. determine trisector angle:
|
||||
if (ignore_umbrella) then
|
||||
pat_in(7)=0.0d0
|
||||
else
|
||||
pat_in(7)=pi/2.0d0 - acos(scalar(v1,tr,3))
|
||||
pat_in(7)=sign(pat_in(7),cart(1,2))
|
||||
endif
|
||||
|
||||
!.. molecule now lies in yz plane, compute projected ONO angles:
|
||||
v1(1)=0.d0
|
||||
v2(1)=0.d0
|
||||
v3(1)=0.d0
|
||||
r1=norm(v1,3)
|
||||
r2=norm(v2,3)
|
||||
r3=norm(v3,3)
|
||||
do k=2,3
|
||||
v1(k)=v1(k)/r1
|
||||
v2(k)=v2(k)/r2
|
||||
v3(k)=v3(k)/r3
|
||||
enddo
|
||||
|
||||
! make orthogonal vector to v3
|
||||
ortho(1)=0.0d0
|
||||
ortho(2)=v3(3)
|
||||
ortho(3)=-v3(2)
|
||||
|
||||
!.. projected ONO angles in radians
|
||||
pat_in(4)=get_ang(v2,v3,ortho)
|
||||
pat_in(5)=get_ang(v1,v3,ortho)
|
||||
|
||||
pat_in(6)=dabs(pat_in(5)-pat_in(4))
|
||||
|
||||
!.. account for rotational order of atoms
|
||||
if (pat_in(4).le.pat_in(5)) then
|
||||
pat_in(5)=2*pi-pat_in(4)-pat_in(6)
|
||||
else
|
||||
pat_in(4)=2*pi-pat_in(5)-pat_in(6)
|
||||
endif
|
||||
|
||||
pat_in(4)=rad2deg*pat_in(4)-offsets(2)
|
||||
pat_in(5)=rad2deg*pat_in(5)-offsets(2)
|
||||
pat_in(6)=rad2deg*pat_in(6)-offsets(2)
|
||||
pat_in(7)=rad2deg*pat_in(7)
|
||||
|
||||
call genANN_ctrans(pat_in)
|
||||
|
||||
qint(:)=pat_in(:)
|
||||
|
||||
contains
|
||||
|
||||
!-------------------------------------------------------------------
|
||||
! compute vector product n1 of vectors v1 x v2
|
||||
subroutine xprod(n1,v1,v2)
|
||||
implicit none
|
||||
|
||||
real*8 n1(3), v1(3), v2(3)
|
||||
|
||||
n1(1) = v1(2)*v2(3) - v1(3)*v2(2)
|
||||
n1(2) = v1(3)*v2(1) - v1(1)*v2(3)
|
||||
n1(3) = v1(1)*v2(2) - v1(2)*v2(1)
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
!-------------------------------------------------------------------
|
||||
! compute scalar product of vectors v1 and v2:
|
||||
real*8 function scalar(v1,v2,n)
|
||||
implicit none
|
||||
integer i, n
|
||||
real*8 v1(*), v2(*)
|
||||
|
||||
scalar=0.d0
|
||||
do i=1,n
|
||||
scalar=scalar+v1(i)*v2(i)
|
||||
enddo
|
||||
|
||||
end function
|
||||
|
||||
!-------------------------------------------------------------------
|
||||
! compute norm of vector:
|
||||
real*8 function norm(x,n)
|
||||
implicit none
|
||||
integer i, n
|
||||
real*8 x(*)
|
||||
|
||||
norm=0.d0
|
||||
do i=1,n
|
||||
norm=norm+x(i)**2
|
||||
enddo
|
||||
norm=sqrt(norm)
|
||||
|
||||
end function
|
||||
|
||||
!-------------------------------------------------------------------
|
||||
|
||||
subroutine rot_trisec(tr,v1,v2,v3)
|
||||
implicit none
|
||||
|
||||
real*8 tr(3),v1(3),v2(3),v3(3)
|
||||
|
||||
real*8 vrot(3)
|
||||
real*8 rot_ax(3)
|
||||
real*8 cos_phi,sin_phi
|
||||
|
||||
! evaluate cos(-phi) and sin(-phi), where phi is the angle between
|
||||
! tr and (1,0,0)
|
||||
cos_phi=tr(1)
|
||||
sin_phi=dsqrt(tr(2)**2+tr(3)**2)
|
||||
|
||||
if (sin_phi.lt.1.0d-12) then
|
||||
return
|
||||
endif
|
||||
|
||||
! determine rotational axis
|
||||
rot_ax(1) = 0.0d0
|
||||
rot_ax(2) = tr(3)
|
||||
rot_ax(3) = -tr(2)
|
||||
! normalize
|
||||
rot_ax=rot_ax/sin_phi
|
||||
|
||||
! now the rotation can be done using Rodrigues' rotation formula
|
||||
! v'=v*cos(p) + (k x v)sin(p) + k (k*v) (1-cos(p))
|
||||
! for v=tr k*v vanishes by construction:
|
||||
|
||||
! check that the rotation does what it should
|
||||
call rodrigues(vrot,tr,rot_ax,cos_phi,sin_phi)
|
||||
if (dsqrt(vrot(2)**2+vrot(3)**2).gt.1.0d-12) then
|
||||
write(6,*) "ERROR: BROKEN TRISECTOR"
|
||||
stop
|
||||
endif
|
||||
tr=vrot
|
||||
|
||||
call rodrigues(vrot,v1,rot_ax,cos_phi,sin_phi)
|
||||
v1=vrot
|
||||
call rodrigues(vrot,v2,rot_ax,cos_phi,sin_phi)
|
||||
v2=vrot
|
||||
call rodrigues(vrot,v3,rot_ax,cos_phi,sin_phi)
|
||||
v3=vrot
|
||||
|
||||
|
||||
end subroutine
|
||||
|
||||
!-------------------------------------------------------------------
|
||||
|
||||
subroutine rodrigues(vrot,v,axis,cos_phi,sin_phi)
|
||||
implicit none
|
||||
real*8 vrot(3),v(3),axis(3)
|
||||
real*8 cos_phi,sin_phi
|
||||
|
||||
real*8 ortho(3)
|
||||
|
||||
call xprod(ortho,axis,v)
|
||||
vrot = v*cos_phi + ortho*sin_phi+axis*scalar(axis,v,3)*(1-cos_phi)
|
||||
|
||||
end subroutine
|
||||
|
||||
!-------------------------------------------------------------------
|
||||
|
||||
real*8 function get_ang(v,xaxis,yaxis)
|
||||
implicit none
|
||||
! get normalized [0:2pi) angle from vectors in the yz plane
|
||||
real*8 v(3),xaxis(3),yaxis(3)
|
||||
|
||||
real*8 phi
|
||||
|
||||
real*8 pi
|
||||
parameter (pi=3.141592653589793d0)
|
||||
|
||||
phi=atan2(scalar(yaxis,v,3),scalar(xaxis,v,3))
|
||||
if (phi.lt.0.0d0) then
|
||||
phi=2*pi+phi
|
||||
endif
|
||||
get_ang=phi
|
||||
|
||||
end function
|
||||
|
||||
end subroutine cart2int
|
||||
subroutine genANN_ctrans(pat_in)
|
||||
implicit none
|
||||
|
||||
include 'nnparams.incl'
|
||||
include 'JTmod.incl'
|
||||
|
||||
real*8 pat_in(maxnin)
|
||||
|
||||
real*8 raw_in(maxnin),off_in(maxnin),ptrans_in(7)
|
||||
real*8 r0
|
||||
real*8 a,b,xs,ys,xb,yb
|
||||
|
||||
integer k
|
||||
|
||||
off_in(1:7)=pat_in(1:7)
|
||||
r0=offsets(1)
|
||||
|
||||
! transform primitives
|
||||
! recover raw distances from offset coords
|
||||
do k=1,3
|
||||
raw_in(k)=off_in(k)+offsets(1)
|
||||
enddo
|
||||
|
||||
do k=1,3
|
||||
ptrans_in(k)=off_in(k)
|
||||
enddo
|
||||
|
||||
! rescale ONO angles
|
||||
ptrans_in(4)=deg2rad*off_in(4)
|
||||
ptrans_in(5)=deg2rad*off_in(5)
|
||||
ptrans_in(6)=deg2rad*off_in(6)
|
||||
! rescale umbrella
|
||||
ptrans_in(7)=off_in(7)*deg2rad
|
||||
|
||||
! compute symmetry coordinates
|
||||
|
||||
! A (breathing)
|
||||
a=(ptrans_in(1)+ptrans_in(2)+ptrans_in(3))/dsqrt(3.0d0)
|
||||
! ES
|
||||
call prim2emode(ptrans_in(1:3),xs,ys)
|
||||
! EB
|
||||
call prim2emode(ptrans_in(4:6),xb,yb)
|
||||
! B (umbrella)
|
||||
b=ptrans_in(7)
|
||||
|
||||
! overwrite input with output
|
||||
|
||||
pat_in(pat_index(1))=a ! 1
|
||||
pat_in(pat_index(2))=xs
|
||||
pat_in(pat_index(3))=ys
|
||||
pat_in(pat_index(4))=xb
|
||||
pat_in(pat_index(5))=yb
|
||||
pat_in(pat_index(6))=b
|
||||
! totally symmetric monomials
|
||||
pat_in(pat_index(7))=xs**2 + ys**2 ! 2
|
||||
pat_in(pat_index(8))=xb**2 + yb**2 ! 3
|
||||
pat_in(pat_index(9))=b**2 ! 9
|
||||
pat_in(pat_index(10))=xs*xb+ys*yb ! 4
|
||||
! S^3, B^3
|
||||
pat_in(pat_index(11))=xs*(xs**2-3*ys**2) ! 5
|
||||
pat_in(pat_index(12))=xb*(xb**2-3*yb**2) ! 6
|
||||
! S^2 B, S B^2
|
||||
pat_in(pat_index(13))=xb*(xs**2-ys**2) - 2*yb*xs*ys ! 7
|
||||
pat_in(pat_index(14))=xs*(xb**2-yb**2) - 2*ys*xb*yb ! 8
|
||||
|
||||
do k=11,14
|
||||
pat_in(pat_index(k))=tanh(0.1d0*pat_in(pat_index(k)))*10.0d0
|
||||
enddo
|
||||
|
||||
|
||||
|
||||
|
||||
end subroutine
|
||||
subroutine prim2emode(prim,ex,ey)
|
||||
implicit none
|
||||
! Takes a 2D-vector prim and returns the degenerate modes x and y
|
||||
! following our standard conventions.
|
||||
|
||||
real*8 prim(3),ex,ey
|
||||
|
||||
ex=(2.0d0*prim(1)-prim(2)-prim(3))/dsqrt(6.0d0)
|
||||
ey=(prim(2)-prim(3))/dsqrt(2.0d0)
|
||||
|
||||
end
|
||||
end module ctrans_mod
|
||||
|
||||
|
|
@ -0,0 +1,40 @@
|
|||
! <subroutine for manipulating the input Data before the Fit
|
||||
subroutine data_transform(q,x1,x2,y,wt,p,npar,p_act)
|
||||
use dim_parameter,only : nstat,pst,ntot,qn,numdatpt,ndiab
|
||||
use ctrans_mod, only: ctrans
|
||||
use data_matrix
|
||||
! use david_ctrans_mod, only: ctrans_d
|
||||
implicit none
|
||||
! IN: variables
|
||||
integer npar
|
||||
double precision q(qn,numdatpt),x1(qn,numdatpt),x2(qn,numdatpt)
|
||||
double precision y(ntot,numdatpt),wt(ntot,numdatpt)
|
||||
double precision p(npar),mat_x(ndiab,ndiab),mat_y(ndiab,ndiab)
|
||||
double precision v(ndiab,ndiab),E(nstat)
|
||||
integer p_act(npar), pt
|
||||
logical dbg
|
||||
parameter (dbg=.false.)
|
||||
integer TYPES,BLK ! TYPE OF THE CALCULATION AND THE BLOCK IF TYEPE IS 3
|
||||
double precision U(ndiab,ndiab), U_ref(ndiab,ndiab) ! Transformation matrix
|
||||
|
||||
|
||||
|
||||
! get the ref transformation matrix
|
||||
!call eval_surface(E,V,U_ref,q(1:qn,1),p)
|
||||
|
||||
do pt=1,numdatpt
|
||||
call ctrans(q(1:qn,pt),x1(:,pt),x2(:,pt))! ctrans the dipole cooordinate.
|
||||
!call ctrans_pes(q(1:qn,pt),x1(:,pt),x2(:,pt))
|
||||
write(7,'(6f18.8)') x1(1:6,pt)
|
||||
y(11:ntot,pt)=-y(11:ntot,pt)
|
||||
enddo
|
||||
|
||||
call weight(wt,y)
|
||||
end subroutine
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,88 @@
|
|||
module keys_mod
|
||||
implicit none
|
||||
contains
|
||||
!program gen_key
|
||||
!implicit none
|
||||
!call init_keys()
|
||||
!end program gen_key
|
||||
subroutine init_keys
|
||||
use io_parameters, only: key
|
||||
character(len=1) prefix(4)
|
||||
parameter (prefix=['N','P','A','S'])
|
||||
!character (len=20) key(4,108)
|
||||
|
||||
character(len=16) parname(24)
|
||||
integer i,j
|
||||
! Defining keys for potential
|
||||
! the electronic states are ordered as: A2" E' and A1'
|
||||
! the name convention here is : A2 E1 A1
|
||||
|
||||
! Naming
|
||||
!--------------------
|
||||
! V: V-TERM OR diagonal term
|
||||
! J: Jahn teller coupling term in E
|
||||
! P: pseudo jahn teller between As and E
|
||||
|
||||
! S: it involves the symmetric term of x**2+y**2
|
||||
! N: It does not involve symmetric term
|
||||
|
||||
|
||||
! diagonal term for 4 states
|
||||
! no zeroth order in V
|
||||
|
||||
|
||||
parname( 1)='VA2N1' ! order 1
|
||||
parname( 2)='VE1N1' ! order 1 witH N
|
||||
parname( 3)='VA1N1' ! order 1 with N
|
||||
parname( 4)='VA2N2' ! order 2
|
||||
parname( 5)='VE1N2' ! order 2 witH N
|
||||
parname( 6)='VA1N2' ! order 2 with N
|
||||
parname( 7)='VA2N3' ! order 3
|
||||
parname( 8)='VE1N3' ! order 3 witH N
|
||||
parname( 9)='VA1N3' ! order 3 with N
|
||||
! Jahn teller within E
|
||||
parname(10)='JE1N0' ! order 0 with N
|
||||
parname(11)='JE1N1' ! order 1 with N
|
||||
parname(12)='JE1N2' ! order 2
|
||||
parname(13)='JE1N3' ! order 3 ! this has 8 terms
|
||||
|
||||
|
||||
! PSeudo Jahn teller couplings
|
||||
|
||||
! coupling of A2 with E
|
||||
parname(14)='PA2E1N0' ! order 0 ! is not there
|
||||
parname(15)='PA2E1N1' ! order 1
|
||||
parname(16)='PA2E1N2' ! Order 2
|
||||
parname(17)='PA2E1N3' !
|
||||
! coupling of A2 with A1
|
||||
!parname(17)='PA2A1N0' ! order 0 ! is not there
|
||||
parname(18)='PA2A1N1' ! order 1
|
||||
parname(19)='PA2A1N2' ! order 2
|
||||
! no order 3 for A2 with A1
|
||||
! coupling of A1 with other
|
||||
! A2 with A1 is already included above
|
||||
|
||||
parname(20)='PE1A1N0' ! order 0
|
||||
parname(21)='PE1A1N1' ! order 1
|
||||
parname(22)='PE1A1N2' ! order 2
|
||||
parname(23)='PE1A1N3' ! order 3
|
||||
|
||||
|
||||
parname(24)='TYPE_CAL'
|
||||
|
||||
do i=1,22
|
||||
do j=1,4
|
||||
key(j, i)=prefix(j)//trim(parname(i))//':' ! first 86 keys are the potential keys
|
||||
!write(*,*) key(j, i)
|
||||
enddo
|
||||
!write(*,*) ''
|
||||
enddo
|
||||
!do i=1,108
|
||||
! do j=1,4
|
||||
! write(*,*) key(j,i)
|
||||
! enddo
|
||||
! write(*,*) ""
|
||||
! enddo
|
||||
end subroutine
|
||||
|
||||
end module keys_mod
|
||||
|
|
@ -0,0 +1,301 @@
|
|||
module data_matrix
|
||||
use dim_parameter, only:ndiab,nstat,ntot,pst,qn
|
||||
! use surface_mod, only: eval_surface
|
||||
contains
|
||||
! subroutine trace
|
||||
|
||||
subroutine trace_mat(mx,my,y)
|
||||
IMPLICIT NONE
|
||||
integer::i
|
||||
double precision,intent(inout):: y(:)
|
||||
double precision, intent(in):: mx(:,:),my(:,:)
|
||||
y=0.0d0
|
||||
|
||||
do i=1,ndiab
|
||||
y(1)=y(1)+mx(i,i)
|
||||
y(2)=y(2)+my(i,i)
|
||||
enddo
|
||||
|
||||
END SUBROUTINE trace_mat
|
||||
!! subroutine Ydata to matrix
|
||||
|
||||
subroutine Y2mat(Y,Mx,My)
|
||||
IMPLICIT NONE
|
||||
integer:: ii,i,j
|
||||
double precision, intent(in):: y(:)
|
||||
double precision,intent(out):: Mx(ndiab,ndiab),My(ndiab,ndiab)
|
||||
|
||||
!if (ndiab .ne. 4 ) then
|
||||
!write(*,*) " NDIAB should be equal to 4",NDIAB
|
||||
!write(*,*) "CHECK DATA_TRANSFORM TO MAKE IT ADAPTABLE"
|
||||
!stop
|
||||
!endif
|
||||
ii=1
|
||||
do i=1,ndiab
|
||||
do j=i,ndiab
|
||||
! !mx
|
||||
|
||||
mx(i,j)=y(ii)
|
||||
! ! My
|
||||
my(i,j)=y((ntot/2)+ii)
|
||||
!
|
||||
ii=ii+1
|
||||
enddo
|
||||
enddo
|
||||
call coppy_2_low(mx)
|
||||
call coppy_2_low(my)
|
||||
end subroutine
|
||||
|
||||
subroutine Full_diab_upper(mx,my,y)
|
||||
implicit none
|
||||
double precision,intent(inout) :: y(:)
|
||||
double precision, intent(in) :: mx(ndiab,ndiab), my(ndiab,ndiab)
|
||||
integer i,j,ii
|
||||
ii=1
|
||||
y=0.0d0
|
||||
|
||||
do i=1,ndiab
|
||||
do j=i,ndiab
|
||||
! mx
|
||||
y(ii) = mx(i,j)
|
||||
! my
|
||||
y((ntot/2)+ii) = my(i,j)
|
||||
! increment the index
|
||||
ii=ii+1
|
||||
enddo
|
||||
enddo
|
||||
end subroutine Full_diab_upper
|
||||
|
||||
|
||||
Subroutine adiabatic_transform(mx,my,U)
|
||||
implicit none
|
||||
double precision, intent(inout) :: mx(ndiab,ndiab), my(ndiab,ndiab)
|
||||
double precision, dimension(:,:), intent(inout) :: U
|
||||
double precision, dimension(ndiab,ndiab) :: temp1, temp2
|
||||
integer i, j
|
||||
! Transform mx and my to adiabatic basis
|
||||
temp1 = matmul(mx, transpose(U))
|
||||
mx = matmul(U, temp1)
|
||||
temp2 = matmul(my, transpose(U))
|
||||
my = matmul(U, temp2)
|
||||
|
||||
end subroutine adiabatic_transform
|
||||
|
||||
! the eigenvalue of the dipole
|
||||
|
||||
SUBROUTINE Eigen(mx,my,Yres)
|
||||
implicit none
|
||||
double precision,dimension(:,:),intent(in) :: mx,my
|
||||
double precision,dimension(:),intent(out) :: Yres
|
||||
double precision,dimension(size(mx,1),size(mx,2)) :: vx,vy
|
||||
double precision,dimension(size(mx,1),size(my,2)) :: temp
|
||||
! create a temorary matrix fo the eigenvctors
|
||||
|
||||
double precision, allocatable :: mux(:,:), muy(:,:)
|
||||
|
||||
! Lapak parameters
|
||||
integer :: n,info,i
|
||||
integer,parameter :: lwork = 100
|
||||
double precision :: work(lwork)
|
||||
Yres = 0.0d0
|
||||
Allocate(mux,source=mx)
|
||||
call DSYEV('V', 'U', size(mx,1), mux, size(mx,1), vx, work, lwork, info)
|
||||
if (info /= 0) then
|
||||
write(*,*) "Error in Eigenvalue decomposition of mx info = ", info
|
||||
stop
|
||||
end if
|
||||
deallocate(mux)
|
||||
Allocate(muy,source=my)
|
||||
call DSYEV('V', 'U', size(my,1), muy, size(my,1), vy, work, lwork, info)
|
||||
if (info /= 0) then
|
||||
write(*,*) "Error in Eigenvalue decomposition of my info = ", info
|
||||
stop
|
||||
end if
|
||||
deallocate(muy)
|
||||
Yres(1:size(mx,1)) = vx(1:size(mx,1),1)
|
||||
Yres(size(mx,1)+1:2*size(mx,1)) = vy(1:size(my,1),1)
|
||||
end subroutine
|
||||
|
||||
subroutine copy_2_upper(m)
|
||||
implicit none
|
||||
double precision, intent(inout) :: m(:,:)
|
||||
integer :: i,j
|
||||
! copy the lower part of the matrix to the upper part
|
||||
do i=1,size(m,1)
|
||||
do j=1,i-1
|
||||
m(j,i) = m(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end subroutine copy_2_upper
|
||||
|
||||
subroutine coppy_2_low(m)
|
||||
implicit none
|
||||
double precision, intent(inout) :: m(:,:)
|
||||
integer :: i,j
|
||||
! copy the upper part of the matrix to the lower part
|
||||
do i=1,size(m,1)
|
||||
do j=i+1,size(m,2)
|
||||
m(j,i) = m(i,j)
|
||||
enddo
|
||||
enddo
|
||||
end subroutine coppy_2_low
|
||||
|
||||
|
||||
!1 SUBROUTNE BLOCKS
|
||||
!! EACH BLOCK OF dIABTIC MATRIX
|
||||
|
||||
SUBROUTINE block_diab(mx,my,Y,blk)
|
||||
implicit none
|
||||
double precision, intent(inout):: Y(:)
|
||||
double precision, intent(in) :: mx(ndiab,ndiab), my(ndiab,ndiab)
|
||||
integer, intent(in) :: blk
|
||||
integer i,j,ii,nn
|
||||
y=0.0d0
|
||||
select case (blk)
|
||||
case(1)
|
||||
! fill the first E1 block state 2 &3
|
||||
y(1)=mx(2,2)
|
||||
y(2)=mx(2,3)
|
||||
y(3)=mx(3,2)
|
||||
y(4)=mx(3,3)
|
||||
y(5)=my(2,2)
|
||||
y(6)=my(2,3)
|
||||
y(7)=my(3,2)
|
||||
y(8)=my(3,3)
|
||||
|
||||
case(2)
|
||||
! fill A2 coupling with E1
|
||||
y(1)=mx(1,2)
|
||||
y(2)=mx(1,3)
|
||||
y(3)=mx(2,1)
|
||||
y(4)=mx(3,1)
|
||||
y(5)=my(1,2)
|
||||
y(6)=my(1,3)
|
||||
y(7)=my(2,1)
|
||||
y(8)=my(3,1)
|
||||
case(3)
|
||||
! Filling the A1 coupling with E2
|
||||
y(1)=mx(2,4)
|
||||
y(2)=mx(3,4)
|
||||
y(3)=mx(4,2)
|
||||
y(4)=mx(4,3)
|
||||
! my
|
||||
y(5)=my(2,4)
|
||||
y(6)=my(3,4)
|
||||
y(7)=my(4,2)
|
||||
y(8)=my(4,3)
|
||||
case(4)
|
||||
! filling the block of A2 coupling with Es
|
||||
y(1)=mx(1,1)
|
||||
y(2)=mx(1,4)
|
||||
y(3)=mx(4,4)
|
||||
! my
|
||||
y(5)=my(1,1)
|
||||
y(6)=my(1,4)
|
||||
y(7)=my(4,4)
|
||||
|
||||
|
||||
case default
|
||||
write(*,*) "Error in block_diab subroutine, block not recognized"
|
||||
write(*,*) "The block is:", blk
|
||||
stop
|
||||
end select
|
||||
end subroutine block_diab
|
||||
subroutine ident(A)
|
||||
implicit none
|
||||
integer i,j
|
||||
double precision,intent(inout)::A(:,:)
|
||||
do i=1,size(A,1)
|
||||
do j=1,size(A,1)
|
||||
if (i==j) then
|
||||
A(i,j)=1.0d0
|
||||
else
|
||||
A(i,j)=0.0d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
end subroutine
|
||||
|
||||
|
||||
! subroutine trasform the U matrix
|
||||
subroutine transform_U(U,q)
|
||||
implicit none
|
||||
double precision, intent(inout) :: U(ndiab,ndiab)
|
||||
double precision, intent(in) :: q(qn)
|
||||
integer i,max_row
|
||||
logical,parameter :: dbg_sign =.true.
|
||||
double precision :: theta
|
||||
do i=1,ndiab
|
||||
max_row = maxloc(abs(U(:,i)),1)
|
||||
if (U(max_row,i) .lt. 0) then
|
||||
U(:,i) = -1.0*U(:,i)
|
||||
endif
|
||||
enddo
|
||||
if (dbg_sign) then
|
||||
theta=atan(q(3)/q(2))
|
||||
U=sign(1.0d0,cos(theta))*sign(1.0d0,sin(theta))*U
|
||||
endif
|
||||
|
||||
end subroutine transform_U
|
||||
|
||||
subroutine write_type_calc(p,id_write)
|
||||
! Subroutine to write the type of calculation
|
||||
implicit none
|
||||
double precision, intent(in) :: p(:)
|
||||
integer, intent(in) :: id_write
|
||||
integer :: type_calc, blk
|
||||
type_calc = int(p(pst(1,108)))
|
||||
blk = int(p(pst(1,108)+1))
|
||||
|
||||
if (type_calc ==1) then
|
||||
write(id_write,*) "Type of calculation: TRACE"
|
||||
else if (type_calc ==2) then
|
||||
write(id_write,*) "Type of calculation: EIGENVALUE"
|
||||
else if (type_calc ==3) then
|
||||
IF (blk == 1) then
|
||||
write(id_write,*) "Type of calculation: E' BLOCK"
|
||||
ELSE IF (BLK ==2) THEN
|
||||
write(id_write,*) "Type of calculation: COUPLING BLOCK 1 & 2"
|
||||
ELSE IF (BLK ==3) THEN
|
||||
write(id_write,*) "Type of calculation: cOUPLING BLOCK 4 &2 "
|
||||
ELSE IF (BLK ==4) THEN
|
||||
write(id_write,*) "Type of calculation: A(11),A(14),A(44) ELEMENTS"
|
||||
ELSE
|
||||
write(id_write,*) "Type of calculation: Diabatic transformation with unknown block size", blk
|
||||
END IF
|
||||
|
||||
else if (type_calc ==4) then
|
||||
write(id_write,*) "Type of calculation: Full Diabatic Matrix"
|
||||
else if (type_calc ==5) then
|
||||
write(id_write,*) "Type of calculation: Transformation matrix U"
|
||||
else
|
||||
write(id_write,*) "Error in type of calculation:", type_calc
|
||||
stop
|
||||
end if
|
||||
END SUBROUTINE write_type_calc
|
||||
|
||||
!! subroutine for writting the transformtion matrix U
|
||||
subroutine Transformation_mat(temp,v,y)
|
||||
implicit none
|
||||
double precision, intent(in) :: temp(ndiab,ndiab), v(:)
|
||||
double precision, intent(inout) :: y(:)
|
||||
double precision :: U(ndiab,ndiab )
|
||||
integer i,j,ii
|
||||
U(1:ndiab,1:ndiab) = temp(1:ndiab,1:ndiab)
|
||||
!call transform_U(U)
|
||||
|
||||
y=0.0d0
|
||||
!y(1:4) = v(1:4) ! copy the first 4 elements of v to y
|
||||
ii=1
|
||||
do i=1,ndiab
|
||||
do j=1,ndiab
|
||||
y(ii) = U(i,j)
|
||||
ii=ii+1
|
||||
enddo
|
||||
enddo
|
||||
y(17:20)=v(1:4) ! copy the first 4 elements of v to y
|
||||
end subroutine
|
||||
|
||||
|
||||
|
||||
end module
|
||||
|
|
@ -0,0 +1,375 @@
|
|||
module diabmodel
|
||||
use dim_parameter,only:qn,ndiab,pst
|
||||
use accuracy_constants, only:dp,idp
|
||||
implicit none
|
||||
logical :: debug=.false.
|
||||
contains
|
||||
|
||||
subroutine diab(ex,ey,n,x1,x2,p)
|
||||
use ctrans_mod, only:ctrans
|
||||
integer,intent(in),optional :: n ! number of parameter & nmbr of points \
|
||||
integer id
|
||||
integer key,i,j
|
||||
double precision, intent(in)::x1(qn),x2(qn)
|
||||
double precision, contiguous,intent(in):: p(:)! array containing parameters
|
||||
double precision, intent(out)::ex(ndiab,ndiab),ey(ndiab,ndiab)
|
||||
key =1
|
||||
call diab_x(ex,x1,x2,key,p)
|
||||
!ey=0.0d0
|
||||
call diab_y(ey,x1,x2,key,p)
|
||||
end subroutine
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
subroutine diab_x(e,q,t,key,p)
|
||||
real(dp),intent(in)::q(qn),t(qn)
|
||||
real(dp),intent(out)::e(:,:)
|
||||
integer(idp),intent(in)::key
|
||||
real(dp),intent(in),contiguous::p(:)
|
||||
integer(idp) id,i,j
|
||||
real(dp) tmp_v,xs,xb,ys,yb,a,b,ss,sb,v3_vec(8)
|
||||
xs=q(2)
|
||||
ys=q(3)
|
||||
xb=q(4)
|
||||
yb=q(5)
|
||||
a=q(1)
|
||||
b=q(6)
|
||||
|
||||
ss=xs**2+ys**2 ! totaly symmetric term
|
||||
sb=xb**2+yb**2
|
||||
|
||||
v3_vec( 1) = xs*(xs**2-3*ys**2)
|
||||
v3_vec( 2) = xb*(xb**2-3*yb**2)
|
||||
v3_vec( 3) = xb*(xs**2-ys**2) - 2*yb*xs*ys
|
||||
v3_vec( 4) = xs*(xb**2-yb**2) - 2*ys*xb*yb
|
||||
v3_vec( 5) = ys*(3*xs**2-ys**2)
|
||||
v3_vec( 6) = yb*(3*xb**2-yb**2)
|
||||
v3_vec( 7) = yb*(xs**2-ys**2)+2*xb*xs*ys
|
||||
v3_vec( 8) = ys*(xb**2-yb**2)+2*xs*xb*yb
|
||||
|
||||
|
||||
|
||||
e=0.0d0
|
||||
|
||||
|
||||
|
||||
id=key !1
|
||||
! V-term
|
||||
! order 1
|
||||
e(1,1)=e(1,1)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
id=id+1 !2
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
id=id+1 !3
|
||||
e(4,4)=e(4,4)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
! order 2
|
||||
id=id+1 !4
|
||||
e(1,1)=e(1,1)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)
|
||||
id=id+1 !5
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) +&
|
||||
p(pst(1,id)+2)*(xs*xb-ys*yb)
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) +&
|
||||
p(pst(1,id)+2)*(xs*xb-ys*yb)
|
||||
id=id+1 !6
|
||||
e(4,4)=e(4,4)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) + &
|
||||
p(pst(1,id)+2)*(xs*xb-ys*yb)
|
||||
! order 3
|
||||
id=id+1 !7
|
||||
e(1,1)=e(1,1)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb
|
||||
id=id+1 !8
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb
|
||||
id=id+1 !9
|
||||
e(4,4)=e(4,4)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb
|
||||
|
||||
! JAHN TELLER COUPLING W AND Z
|
||||
! order 0
|
||||
id=id+1 !10
|
||||
e(2,2)=e(2,2)+p(pst(1,id))
|
||||
e(3,3)=e(3,3)-p(pst(1,id))
|
||||
! order 1
|
||||
id=id+1 !11
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
e(3,3)=e(3,3)-p(pst(1,id))*xs-p(pst(1,id)+1)*xb
|
||||
e(2,3)=e(2,3)-p(pst(1,id))*ys-p(pst(1,id)+1)*yb
|
||||
! order 2
|
||||
id=id+1 !12
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)+p(pst(1,id)+3)*ss+p(pst(1,id)+4)*sb
|
||||
e(3,3)=e(3,3)-(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)+p(pst(1,id)+3)*ss+p(pst(1,id)+4)*sb)
|
||||
e(2,3)=e(2,3)+p(pst(1,id))*2*xs*ys+p(pst(1,id)+1)*2*xb*yb+ &
|
||||
p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
! order 3
|
||||
|
||||
id=id+1 !13
|
||||
do i=1,4
|
||||
j=i-1
|
||||
e(2,2)=e(2,2)+(p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i)
|
||||
e(3,3)=e(3,3)-(p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i)
|
||||
e(2,3)=e(2,3)+(-p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i+4)
|
||||
enddo
|
||||
|
||||
e(2,2)=e(2,2)+p(pst(1,id)+8)*xs*ss+p(pst(1,id)+9)*xb*sb
|
||||
e(3,3)=e(3,3)-(p(pst(1,id)+8)*xs*ss+p(pst(1,id)+9)*xb*sb)
|
||||
e(2,3)=e(2,3)-p(pst(1,id)+8)*ys*ss-p(pst(1,id)+9)*yb*sb
|
||||
! PSEUDO JAHN TELLER
|
||||
|
||||
! A2 ground state coupled with E
|
||||
! ###################################################
|
||||
! ###################################################
|
||||
|
||||
! order 0
|
||||
id=id+1 !14
|
||||
e(1,2)=e(1,2)+b*p(pst(1,id))
|
||||
|
||||
! order 1
|
||||
id=id+1 !15
|
||||
e(1,2)=e(1,2)+b*(p(pst(1,id))*xs+p(pst(1,id)+1)*xb)
|
||||
e(1,3)=e(1,3)+b*(p(pst(1,id))*ys+p(pst(1,id)+1)*yb)
|
||||
! order 2
|
||||
id=id+1 !16
|
||||
e(1,2)=e(1,2)+b*(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb) + p(pst(1,id)+3)*(xs**2+ys**2))
|
||||
e(1,3)=e(1,3)-b*(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)&
|
||||
+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
||||
! order 3
|
||||
id =id+1 ! 17
|
||||
|
||||
do i=1,4
|
||||
e(1,2)=e(1,2)+b*(p(pst(1,id)+(i-1))+p(pst(1,id)+(i+3)))*v3_vec(i)
|
||||
e(1,3)=e(1,3)+b*(p(pst(1,id)+(i-1))-p(pst(1,id)+(i+3)))*v3_vec(i+4)
|
||||
enddo
|
||||
|
||||
|
||||
|
||||
!! THE COUPLING OF A2 WITH A1
|
||||
!####################################################
|
||||
!####################################################
|
||||
! order 1
|
||||
id=id+1 !18
|
||||
e(1,4)=e(1,4)+b*(p(pst(1,id))*xs+p(pst(1,id)+1)*xb)
|
||||
id=id+1 !19
|
||||
e(1,4)=e(1,4)+b*(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb))
|
||||
|
||||
|
||||
!!! THE COUPLING OF A1 WITH E
|
||||
!!####################################################
|
||||
!####################################################
|
||||
! order 0
|
||||
id=id+1 !20
|
||||
e(2,4)=e(2,4)+p(pst(1,id))
|
||||
|
||||
! order 1
|
||||
id=id+1 !21
|
||||
e(2,4)=e(2,4)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
e(3,4)=e(3,4)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
|
||||
! order 2
|
||||
id=id+1 !22
|
||||
e(2,4)=e(2,4)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb) +p(pst(1,id)+3)*(xs**2+ys**2)
|
||||
e(3,4)=e(3,4)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
|
||||
-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
! order 3
|
||||
id=id+1 !23
|
||||
do i=1,4
|
||||
e(2,4)=e(2,4)+(p(pst(1,id)+(i-1))+p(pst(1,id)+(i+3)))*v3_vec(i)
|
||||
e(3,4)=e(3,4)+(p(pst(1,id)+(i-1))-p(pst(1,id)+(i+3)))*v3_vec(i+4)
|
||||
enddo
|
||||
|
||||
!! End of the model
|
||||
|
||||
e(2,1)=e(1,2)
|
||||
e(3,1)=e(1,3)
|
||||
e(3,2)=e(2,3)
|
||||
e(4,1)=e(1,4)
|
||||
e(4,2)=e(2,4)
|
||||
e(4,3)=e(3,4)
|
||||
end subroutine diab_x
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
! THE Y COMPONENT OF DIPOLE
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
subroutine diab_y(e,q,t,key,p)
|
||||
!integer(idp), intent(in)::npar
|
||||
real(dp),intent(in)::q(qn),t(qn)
|
||||
real(dp),intent(out)::e(:,:)
|
||||
integer(idp),intent(in):: key
|
||||
real(dp),intent(in),contiguous::p(:)
|
||||
integer(idp) id,i,j
|
||||
real(dp) tmp_v,ys,xb,a,b,xs,yb,ss,sb,v3_vec(8)
|
||||
xs=q(2)
|
||||
ys=q(3)
|
||||
xb=q(4)
|
||||
yb=q(5)
|
||||
a=q(1)
|
||||
b=q(6)
|
||||
|
||||
ss=xs**2+ys**2 ! totaly symmetric term
|
||||
sb=xb**2+yb**2
|
||||
|
||||
v3_vec( 1) = xs*(xs**2-3*ys**2)
|
||||
v3_vec( 2) = xb*(xb**2-3*yb**2)
|
||||
v3_vec( 3) = xb*(xs**2-ys**2) - 2*yb*xs*ys
|
||||
v3_vec( 4) = xs*(xb**2-yb**2) - 2*ys*xb*yb
|
||||
v3_vec( 5) = ys*(3*xs**2-ys**2)
|
||||
v3_vec( 6) = yb*(3*xb**2-yb**2)
|
||||
v3_vec( 7) = yb*(xs**2-ys**2)+2*xb*xs*ys
|
||||
v3_vec( 8) = ys*(xb**2-yb**2)+2*xs*xb*yb
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
e=0.0d0
|
||||
! V-term
|
||||
id=key !1
|
||||
e(1,1)=e(1,1)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
|
||||
id=id+1 !2
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
id=id+1 !3
|
||||
e(4,4)=e(4,4)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
! order 2
|
||||
id=id+1 !4
|
||||
e(1,1)=e(1,1)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
|
||||
-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
id=id+1 !5
|
||||
e(2,2)=e(2,2)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
|
||||
-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
|
||||
|
||||
e(3,3)=e(3,3)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
|
||||
-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
id=id+1 !6
|
||||
e(4,4)=e(4,4)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
|
||||
-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
! order 3
|
||||
id=id+1 !7
|
||||
e(1,1)=e(1,1)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb
|
||||
id=id+1 !8
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb
|
||||
id=id+1 !9
|
||||
e(4,4)=e(4,4)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb
|
||||
|
||||
! V- term + totally symmetric coord a
|
||||
|
||||
! JAHN TELLER COUPLING TERM
|
||||
! order 0
|
||||
id=id+1 !10
|
||||
e(2,3)=e(2,3)+p(pst(1,id))
|
||||
! order 1
|
||||
|
||||
id=id+1 !11
|
||||
e(2,2)=e(2,2)-p(pst(1,id))*ys-p(pst(1,id)+1)*yb
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
e(2,3)=e(2,3)-p(pst(1,id))*xs-p(pst(1,id)+1)*xb
|
||||
!id=id+1 !12
|
||||
! order 2
|
||||
id=id+1 !12
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*2*xs*ys+p(pst(1,id)+1)*2*xb*yb+p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
e(3,3)=e(3,3)-p(pst(1,id))*2*xs*ys-p(pst(1,id)+1)*2*xb*yb-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
e(2,3)=e(2,3)-(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)) &
|
||||
-p(pst(1,id)+2)*(xs*xb-ys*yb)+p(pst(1,id)+3)*ss+p(pst(1,id)+4)*sb
|
||||
! order 3
|
||||
id=id+1 !13
|
||||
do i=1,4
|
||||
j=i-1
|
||||
e(2,2)=e(2,2)+(p(pst(1,id)+j)-p(pst(1,id)+j+4))*v3_vec(i+4)
|
||||
e(3,3)=e(3,3)-(p(pst(1,id)+j)-p(pst(1,id)+j+4))*v3_vec(i+4)
|
||||
e(2,3)=e(2,3)+(p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i)
|
||||
enddo
|
||||
e(2,2)=e(2,2)-p(pst(1,id)+8)*ys*ss-p(pst(1,id)+9)*yb*sb
|
||||
e(3,3)=e(3,3)+p(pst(1,id)+8)*ys*ss+p(pst(1,id)+9)*yb*sb
|
||||
e(2,3)=e(2,3)-p(pst(1,id)+8)*xs*ss-p(pst(1,id)+1)*xb*sb
|
||||
! PSEUDO JAHN TELLER
|
||||
! ORDER 0
|
||||
! THE COUPLING OF A2 GROUND STATE WITH E
|
||||
! ###################################################
|
||||
! ###################################################
|
||||
! order 0
|
||||
id=id+1 !14
|
||||
e(1,3)=e(1,3)-b*(p(pst(1,id)))
|
||||
! order 1
|
||||
id=id+1 !15
|
||||
e(1,2)=e(1,2)-b*(p(pst(1,id))*ys+p(pst(1,id)+1)*yb)
|
||||
e(1,3)=e(1,3)+b*(p(pst(1,id))*xs+p(pst(1,id)+1)*xb)
|
||||
|
||||
! order 2
|
||||
id=id+1 !16
|
||||
e(1,2)=e(1,2)+b*(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)&
|
||||
+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
||||
e(1,3)=e(1,3)+b*(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb) - p(pst(1,id)+3)*(xs**2+ys**2))
|
||||
|
||||
! order 3
|
||||
id = id+1 ! 17
|
||||
do i=1,4
|
||||
e(1,2)=e(1,2)+b*(p(pst(1,id)+(i-1))-p(pst(1,id)+(i+3)))*v3_vec(i+4)
|
||||
e(1,3)=e(1,3)-b*(p(pst(1,id)+(i-1))+p(pst(1,id)+(i+3)))*v3_vec(i)
|
||||
enddo
|
||||
|
||||
|
||||
! THE COUPLING OF A2 WITH A1
|
||||
!####################################################
|
||||
!####################################################
|
||||
! order 1
|
||||
id=id+1 !17
|
||||
e(1,4)=e(1,4)+b*(p(pst(1,id))*ys+p(pst(1,id)+1)*yb)
|
||||
! order 2
|
||||
id=id+1 !18
|
||||
e(1,4)=e(1,4)-b*(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)&
|
||||
+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
||||
|
||||
|
||||
! THE COUPLING OF A1 WITH E
|
||||
!####################################################
|
||||
!####################################################
|
||||
! order 0
|
||||
id=id+1 !19
|
||||
e(3,4)=e(3,4)-p(pst(1,id))
|
||||
! order 1
|
||||
id=id+1 !20
|
||||
e(2,4)=e(2,4)-p(pst(1,id))*ys-p(pst(1,id)+1)*yb
|
||||
e(3,4)=e(3,4)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
! order 2
|
||||
id=id+1 !21
|
||||
e(2,4)=e(2,4)+p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb) &
|
||||
+p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
e(3,4)=e(3,4)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb) - p(pst(1,id)+3)*(xs**2+ys**2)
|
||||
|
||||
id =id+1 ! 23
|
||||
! order 3
|
||||
do i=1,4
|
||||
e(2,4)=e(2,4)+(p(pst(1,id)+(i-1))-p(pst(1,id)+(i+3)))*v3_vec(i+4)
|
||||
e(3,4)=e(3,4)-(p(pst(1,id)+(i-1))+p(pst(1,id)+(i+3)))*v3_vec(i)
|
||||
enddo
|
||||
! end of the model
|
||||
e(2,1)=e(1,2)
|
||||
e(3,1)=e(1,3)
|
||||
e(3,2)=e(2,3)
|
||||
e(4,1)=e(1,4)
|
||||
e(4,2)=e(2,4)
|
||||
e(4,3)=e(3,4)
|
||||
end subroutine diab_y
|
||||
|
||||
subroutine copy_2_lower_triangle(mat)
|
||||
real(dp), intent(inout) :: mat(:, :)
|
||||
integer :: m, n
|
||||
! write lower triangle of matrix symmetrical
|
||||
do n = 2, size(mat, 1)
|
||||
do m = 1, n - 1
|
||||
mat(n, m) = mat(m, n)
|
||||
end do
|
||||
end do
|
||||
end subroutine copy_2_lower_triangle
|
||||
|
||||
end module diabmodel
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
|
@ -0,0 +1,82 @@
|
|||
module d3h_umb_stretch_lib
|
||||
use accuracy_constants, only: dp,idp
|
||||
implicit none
|
||||
private
|
||||
public eval_surface, init_surface,eval_matrix
|
||||
real(dp), dimension(:), allocatable :: p
|
||||
contains
|
||||
subroutine eval_surface(e, w, u, x1)
|
||||
use ctrans_mod, only: ctrans
|
||||
use diabmodel, only: diab
|
||||
use dim_parameter, only: ndiab
|
||||
implicit none
|
||||
real(dp), dimension(:, :), intent(out) :: w, u
|
||||
real(dp), dimension(:), intent(out) :: e
|
||||
real(dp), dimension(:), intent(in) :: x1
|
||||
real(dp), dimension(size(x1, 1)) :: s, t
|
||||
real(dp), allocatable, dimension(:, :) :: Mat
|
||||
|
||||
!coordinate transformation if needed
|
||||
call ctrans(x1, s, t)
|
||||
|
||||
block
|
||||
! lapack variables
|
||||
integer(kind=idp), parameter :: lwork = 1000
|
||||
real(kind=dp) work(lwork)
|
||||
integer(kind=idp) info
|
||||
!evaluate model
|
||||
call diab(w, 1, x1, s, t, p, size(p, 1))
|
||||
allocate (Mat, source=w)
|
||||
call dsyev('V', 'U', ndiab, Mat, ndiab, e, work, lwork, info)
|
||||
u(:, :) = Mat(:, :)
|
||||
deallocate (Mat)
|
||||
end block
|
||||
|
||||
end subroutine eval_surface
|
||||
|
||||
subroutine eval_matrix(w,x1)
|
||||
use ctrans_mod, only: ctrans
|
||||
use diabmodel, only: diab
|
||||
implicit none
|
||||
real(dp), dimension(:, :), intent(out) :: w
|
||||
real(dp), dimension(:), intent(in) :: x1
|
||||
real(dp), dimension(size(x1, 1)) :: s, t
|
||||
|
||||
!coordinate transformation if needed
|
||||
call ctrans(x1, s, t)
|
||||
call diab(w, 1, x1, s, t, p, size(p, 1))
|
||||
end subroutine eval_matrix
|
||||
|
||||
subroutine init_surface()
|
||||
use dim_parameter, only: ndiab, nstat, ntot, nci ,qn
|
||||
use parameterkeys, only: parameterkey_read
|
||||
use fileread_mod, only: get_datfile, internalize_datfile
|
||||
use io_parameters, only: llen
|
||||
use accuracy_constants, only: dp
|
||||
implicit none
|
||||
character(len=llen), allocatable, dimension(:) :: infile
|
||||
|
||||
qn = 9
|
||||
ndiab = 4
|
||||
nstat = 4
|
||||
nci = 4
|
||||
ntot = ndiab + nstat + nci
|
||||
|
||||
block
|
||||
character(len=:),allocatable :: datnam
|
||||
integer :: linenum
|
||||
datnam = 'planar+pyramidal.par.save'
|
||||
! datnam = 'umbstr.par.save'
|
||||
call internalize_datfile(datnam, infile, linenum, llen)
|
||||
end block
|
||||
|
||||
!read parameters from file
|
||||
block
|
||||
real(dp), dimension(:), allocatable :: p_spread
|
||||
integer,dimension(:),allocatable :: p_act
|
||||
integer :: npar
|
||||
real(dp), parameter :: facspread = 1.0_dp, gspread = 1.0_dp
|
||||
call parameterkey_read(infile, size(infile, 1), p, p_act, p_spread, npar, gspread, facspread)
|
||||
end block
|
||||
end subroutine init_surface
|
||||
end module d3h_umb_stretch_lib
|
||||
|
|
@ -0,0 +1,530 @@
|
|||
!Start of Element: EV 3
|
||||
!Start of Element: A2V 18
|
||||
!Start of Element: A1V 33
|
||||
!Start of Element: EWZ 48
|
||||
!Start of Element: A1EWZ 60
|
||||
!Start of Element: A2EQWZ 72
|
||||
!Start of Element: A2A1Q 78
|
||||
module keys_mod
|
||||
implicit none
|
||||
contains
|
||||
subroutine init_keys
|
||||
use io_parameters, only: key
|
||||
|
||||
key(1,1) = 'NEXITEN:'
|
||||
key(2,1) = 'PEXITEN:'
|
||||
key(3,1) = 'AEXITEN:'
|
||||
key(4,1) = 'SEXITEN:'
|
||||
|
||||
|
||||
key(1,2) = 'NTMC_CH:'
|
||||
key(2,2) = 'PTMC_CH:'
|
||||
key(3,2) = 'ATMC_CH:'
|
||||
key(4,2) = 'STMC_CH:'
|
||||
|
||||
|
||||
key(1,3) = 'NEVA1:'
|
||||
key(2,3) = 'PEVA1:'
|
||||
key(3,3) = 'AEVA1:'
|
||||
key(4,3) = 'SEVA1:'
|
||||
|
||||
|
||||
key(1,4) = 'NEVU:'
|
||||
key(2,4) = 'PEVU:'
|
||||
key(3,4) = 'AEVU:'
|
||||
key(4,4) = 'SEVU:'
|
||||
|
||||
|
||||
key(1,5) = 'NEVE1:'
|
||||
key(2,5) = 'PEVE1:'
|
||||
key(3,5) = 'AEVE1:'
|
||||
key(4,5) = 'SEVE1:'
|
||||
|
||||
|
||||
key(1,6) = 'NEVE2:'
|
||||
key(2,6) = 'PEVE2:'
|
||||
key(3,6) = 'AEVE2:'
|
||||
key(4,6) = 'SEVE2:'
|
||||
|
||||
|
||||
key(1,7) = 'NEVA1U:'
|
||||
key(2,7) = 'PEVA1U:'
|
||||
key(3,7) = 'AEVA1U:'
|
||||
key(4,7) = 'SEVA1U:'
|
||||
|
||||
|
||||
key(1,8) = 'NEVA1E1:'
|
||||
key(2,8) = 'PEVA1E1:'
|
||||
key(3,8) = 'AEVA1E1:'
|
||||
key(4,8) = 'SEVA1E1:'
|
||||
|
||||
|
||||
key(1,9) = 'NEVA1E2:'
|
||||
key(2,9) = 'PEVA1E2:'
|
||||
key(3,9) = 'AEVA1E2:'
|
||||
key(4,9) = 'SEVA1E2:'
|
||||
|
||||
|
||||
key(1,10) = 'NEVUE1:'
|
||||
key(2,10) = 'PEVUE1:'
|
||||
key(3,10) = 'AEVUE1:'
|
||||
key(4,10) = 'SEVUE1:'
|
||||
|
||||
|
||||
key(1,11) = 'NEVUE2:'
|
||||
key(2,11) = 'PEVUE2:'
|
||||
key(3,11) = 'AEVUE2:'
|
||||
key(4,11) = 'SEVUE2:'
|
||||
|
||||
|
||||
key(1,12) = 'NEVE1E2:'
|
||||
key(2,12) = 'PEVE1E2:'
|
||||
key(3,12) = 'AEVE1E2:'
|
||||
key(4,12) = 'SEVE1E2:'
|
||||
|
||||
|
||||
key(1,13) = 'NEVA1UE1:'
|
||||
key(2,13) = 'PEVA1UE1:'
|
||||
key(3,13) = 'AEVA1UE1:'
|
||||
key(4,13) = 'SEVA1UE1:'
|
||||
|
||||
|
||||
key(1,14) = 'NEVA1UE2:'
|
||||
key(2,14) = 'PEVA1UE2:'
|
||||
key(3,14) = 'AEVA1UE2:'
|
||||
key(4,14) = 'SEVA1UE2:'
|
||||
|
||||
|
||||
key(1,15) = 'NEVA1E1E2:'
|
||||
key(2,15) = 'PEVA1E1E2:'
|
||||
key(3,15) = 'AEVA1E1E2:'
|
||||
key(4,15) = 'SEVA1E1E2:'
|
||||
|
||||
|
||||
key(1,16) = 'NEVUE1E2:'
|
||||
key(2,16) = 'PEVUE1E2:'
|
||||
key(3,16) = 'AEVUE1E2:'
|
||||
key(4,16) = 'SEVUE1E2:'
|
||||
|
||||
|
||||
key(1,17) = 'NEVA1UE1E2:'
|
||||
key(2,17) = 'PEVA1UE1E2:'
|
||||
key(3,17) = 'AEVA1UE1E2:'
|
||||
key(4,17) = 'SEVA1UE1E2:'
|
||||
|
||||
|
||||
key(1,18) = 'NA2VA1:'
|
||||
key(2,18) = 'PA2VA1:'
|
||||
key(3,18) = 'AA2VA1:'
|
||||
key(4,18) = 'SA2VA1:'
|
||||
|
||||
|
||||
key(1,19) = 'NA2VU:'
|
||||
key(2,19) = 'PA2VU:'
|
||||
key(3,19) = 'AA2VU:'
|
||||
key(4,19) = 'SA2VU:'
|
||||
|
||||
|
||||
key(1,20) = 'NA2VE1:'
|
||||
key(2,20) = 'PA2VE1:'
|
||||
key(3,20) = 'AA2VE1:'
|
||||
key(4,20) = 'SA2VE1:'
|
||||
|
||||
|
||||
key(1,21) = 'NA2VE2:'
|
||||
key(2,21) = 'PA2VE2:'
|
||||
key(3,21) = 'AA2VE2:'
|
||||
key(4,21) = 'SA2VE2:'
|
||||
|
||||
|
||||
key(1,22) = 'NA2VA1U:'
|
||||
key(2,22) = 'PA2VA1U:'
|
||||
key(3,22) = 'AA2VA1U:'
|
||||
key(4,22) = 'SA2VA1U:'
|
||||
|
||||
|
||||
key(1,23) = 'NA2VA1E1:'
|
||||
key(2,23) = 'PA2VA1E1:'
|
||||
key(3,23) = 'AA2VA1E1:'
|
||||
key(4,23) = 'SA2VA1E1:'
|
||||
|
||||
|
||||
key(1,24) = 'NA2VA1E2:'
|
||||
key(2,24) = 'PA2VA1E2:'
|
||||
key(3,24) = 'AA2VA1E2:'
|
||||
key(4,24) = 'SA2VA1E2:'
|
||||
|
||||
|
||||
key(1,25) = 'NA2VUE1:'
|
||||
key(2,25) = 'PA2VUE1:'
|
||||
key(3,25) = 'AA2VUE1:'
|
||||
key(4,25) = 'SA2VUE1:'
|
||||
|
||||
|
||||
key(1,26) = 'NA2VUE2:'
|
||||
key(2,26) = 'PA2VUE2:'
|
||||
key(3,26) = 'AA2VUE2:'
|
||||
key(4,26) = 'SA2VUE2:'
|
||||
|
||||
|
||||
key(1,27) = 'NA2VE1E2:'
|
||||
key(2,27) = 'PA2VE1E2:'
|
||||
key(3,27) = 'AA2VE1E2:'
|
||||
key(4,27) = 'SA2VE1E2:'
|
||||
|
||||
|
||||
key(1,28) = 'NA2VA1UE1:'
|
||||
key(2,28) = 'PA2VA1UE1:'
|
||||
key(3,28) = 'AA2VA1UE1:'
|
||||
key(4,28) = 'SA2VA1UE1:'
|
||||
|
||||
|
||||
key(1,29) = 'NA2VA1UE2:'
|
||||
key(2,29) = 'PA2VA1UE2:'
|
||||
key(3,29) = 'AA2VA1UE2:'
|
||||
key(4,29) = 'SA2VA1UE2:'
|
||||
|
||||
|
||||
key(1,30) = 'NA2VA1E1E2:'
|
||||
key(2,30) = 'PA2VA1E1E2:'
|
||||
key(3,30) = 'AA2VA1E1E2:'
|
||||
key(4,30) = 'SA2VA1E1E2:'
|
||||
|
||||
|
||||
key(1,31) = 'NA2VUE1E2:'
|
||||
key(2,31) = 'PA2VUE1E2:'
|
||||
key(3,31) = 'AA2VUE1E2:'
|
||||
key(4,31) = 'SA2VUE1E2:'
|
||||
|
||||
|
||||
key(1,32) = 'NA2VA1UE1E2:'
|
||||
key(2,32) = 'PA2VA1UE1E2:'
|
||||
key(3,32) = 'AA2VA1UE1E2:'
|
||||
key(4,32) = 'SA2VA1UE1E2:'
|
||||
|
||||
|
||||
key(1,33) = 'NA1VA1:'
|
||||
key(2,33) = 'PA1VA1:'
|
||||
key(3,33) = 'AA1VA1:'
|
||||
key(4,33) = 'SA1VA1:'
|
||||
|
||||
|
||||
key(1,34) = 'NA1VU:'
|
||||
key(2,34) = 'PA1VU:'
|
||||
key(3,34) = 'AA1VU:'
|
||||
key(4,34) = 'SA1VU:'
|
||||
|
||||
|
||||
key(1,35) = 'NA1VE1:'
|
||||
key(2,35) = 'PA1VE1:'
|
||||
key(3,35) = 'AA1VE1:'
|
||||
key(4,35) = 'SA1VE1:'
|
||||
|
||||
|
||||
key(1,36) = 'NA1VE2:'
|
||||
key(2,36) = 'PA1VE2:'
|
||||
key(3,36) = 'AA1VE2:'
|
||||
key(4,36) = 'SA1VE2:'
|
||||
|
||||
|
||||
key(1,37) = 'NA1VA1U:'
|
||||
key(2,37) = 'PA1VA1U:'
|
||||
key(3,37) = 'AA1VA1U:'
|
||||
key(4,37) = 'SA1VA1U:'
|
||||
|
||||
|
||||
key(1,38) = 'NA1VA1E1:'
|
||||
key(2,38) = 'PA1VA1E1:'
|
||||
key(3,38) = 'AA1VA1E1:'
|
||||
key(4,38) = 'SA1VA1E1:'
|
||||
|
||||
|
||||
key(1,39) = 'NA1VA1E2:'
|
||||
key(2,39) = 'PA1VA1E2:'
|
||||
key(3,39) = 'AA1VA1E2:'
|
||||
key(4,39) = 'SA1VA1E2:'
|
||||
|
||||
|
||||
key(1,40) = 'NA1VUE1:'
|
||||
key(2,40) = 'PA1VUE1:'
|
||||
key(3,40) = 'AA1VUE1:'
|
||||
key(4,40) = 'SA1VUE1:'
|
||||
|
||||
|
||||
key(1,41) = 'NA1VUE2:'
|
||||
key(2,41) = 'PA1VUE2:'
|
||||
key(3,41) = 'AA1VUE2:'
|
||||
key(4,41) = 'SA1VUE2:'
|
||||
|
||||
|
||||
key(1,42) = 'NA1VE1E2:'
|
||||
key(2,42) = 'PA1VE1E2:'
|
||||
key(3,42) = 'AA1VE1E2:'
|
||||
key(4,42) = 'SA1VE1E2:'
|
||||
|
||||
|
||||
key(1,43) = 'NA1VA1UE1:'
|
||||
key(2,43) = 'PA1VA1UE1:'
|
||||
key(3,43) = 'AA1VA1UE1:'
|
||||
key(4,43) = 'SA1VA1UE1:'
|
||||
|
||||
|
||||
key(1,44) = 'NA1VA1UE2:'
|
||||
key(2,44) = 'PA1VA1UE2:'
|
||||
key(3,44) = 'AA1VA1UE2:'
|
||||
key(4,44) = 'SA1VA1UE2:'
|
||||
|
||||
|
||||
key(1,45) = 'NA1VA1E1E2:'
|
||||
key(2,45) = 'PA1VA1E1E2:'
|
||||
key(3,45) = 'AA1VA1E1E2:'
|
||||
key(4,45) = 'SA1VA1E1E2:'
|
||||
|
||||
|
||||
key(1,46) = 'NA1VUE1E2:'
|
||||
key(2,46) = 'PA1VUE1E2:'
|
||||
key(3,46) = 'AA1VUE1E2:'
|
||||
key(4,46) = 'SA1VUE1E2:'
|
||||
|
||||
|
||||
key(1,47) = 'NA1VA1UE1E2:'
|
||||
key(2,47) = 'PA1VA1UE1E2:'
|
||||
key(3,47) = 'AA1VA1UE1E2:'
|
||||
key(4,47) = 'SA1VA1UE1E2:'
|
||||
|
||||
|
||||
key(1,48) = 'NEWZE1:'
|
||||
key(2,48) = 'PEWZE1:'
|
||||
key(3,48) = 'AEWZE1:'
|
||||
key(4,48) = 'SEWZE1:'
|
||||
|
||||
|
||||
key(1,49) = 'NEWZE2:'
|
||||
key(2,49) = 'PEWZE2:'
|
||||
key(3,49) = 'AEWZE2:'
|
||||
key(4,49) = 'SEWZE2:'
|
||||
|
||||
|
||||
key(1,50) = 'NEWZE1A1:'
|
||||
key(2,50) = 'PEWZE1A1:'
|
||||
key(3,50) = 'AEWZE1A1:'
|
||||
key(4,50) = 'SEWZE1A1:'
|
||||
|
||||
|
||||
key(1,51) = 'NEWZE2A1:'
|
||||
key(2,51) = 'PEWZE2A1:'
|
||||
key(3,51) = 'AEWZE2A1:'
|
||||
key(4,51) = 'SEWZE2A1:'
|
||||
|
||||
|
||||
key(1,52) = 'NEWZE1U:'
|
||||
key(2,52) = 'PEWZE1U:'
|
||||
key(3,52) = 'AEWZE1U:'
|
||||
key(4,52) = 'SEWZE1U:'
|
||||
|
||||
|
||||
key(1,53) = 'NEWZE2U:'
|
||||
key(2,53) = 'PEWZE2U:'
|
||||
key(3,53) = 'AEWZE2U:'
|
||||
key(4,53) = 'SEWZE2U:'
|
||||
|
||||
|
||||
key(1,54) = 'NEWZE1A1U:'
|
||||
key(2,54) = 'PEWZE1A1U:'
|
||||
key(3,54) = 'AEWZE1A1U:'
|
||||
key(4,54) = 'SEWZE1A1U:'
|
||||
|
||||
|
||||
key(1,55) = 'NEWZE2A1U:'
|
||||
key(2,55) = 'PEWZE2A1U:'
|
||||
key(3,55) = 'AEWZE2A1U:'
|
||||
key(4,55) = 'SEWZE2A1U:'
|
||||
|
||||
|
||||
key(1,56) = 'NEWZE1E2:'
|
||||
key(2,56) = 'PEWZE1E2:'
|
||||
key(3,56) = 'AEWZE1E2:'
|
||||
key(4,56) = 'SEWZE1E2:'
|
||||
|
||||
|
||||
key(1,57) = 'NEWZE1E2A1:'
|
||||
key(2,57) = 'PEWZE1E2A1:'
|
||||
key(3,57) = 'AEWZE1E2A1:'
|
||||
key(4,57) = 'SEWZE1E2A1:'
|
||||
|
||||
|
||||
key(1,58) = 'NEWZE1E2U:'
|
||||
key(2,58) = 'PEWZE1E2U:'
|
||||
key(3,58) = 'AEWZE1E2U:'
|
||||
key(4,58) = 'SEWZE1E2U:'
|
||||
|
||||
|
||||
key(1,59) = 'NEWZE1E2A1U:'
|
||||
key(2,59) = 'PEWZE1E2A1U:'
|
||||
key(3,59) = 'AEWZE1E2A1U:'
|
||||
key(4,59) = 'SEWZE1E2A1U:'
|
||||
|
||||
|
||||
key(1,60) = 'NA1EWZE1:'
|
||||
key(2,60) = 'PA1EWZE1:'
|
||||
key(3,60) = 'AA1EWZE1:'
|
||||
key(4,60) = 'SA1EWZE1:'
|
||||
|
||||
|
||||
key(1,61) = 'NA1EWZE2:'
|
||||
key(2,61) = 'PA1EWZE2:'
|
||||
key(3,61) = 'AA1EWZE2:'
|
||||
key(4,61) = 'SA1EWZE2:'
|
||||
|
||||
|
||||
key(1,62) = 'NA1EWZE1A1:'
|
||||
key(2,62) = 'PA1EWZE1A1:'
|
||||
key(3,62) = 'AA1EWZE1A1:'
|
||||
key(4,62) = 'SA1EWZE1A1:'
|
||||
|
||||
|
||||
key(1,63) = 'NA1EWZE2A1:'
|
||||
key(2,63) = 'PA1EWZE2A1:'
|
||||
key(3,63) = 'AA1EWZE2A1:'
|
||||
key(4,63) = 'SA1EWZE2A1:'
|
||||
|
||||
|
||||
key(1,64) = 'NA1EWZE1U:'
|
||||
key(2,64) = 'PA1EWZE1U:'
|
||||
key(3,64) = 'AA1EWZE1U:'
|
||||
key(4,64) = 'SA1EWZE1U:'
|
||||
|
||||
|
||||
key(1,65) = 'NA1EWZE2U:'
|
||||
key(2,65) = 'PA1EWZE2U:'
|
||||
key(3,65) = 'AA1EWZE2U:'
|
||||
key(4,65) = 'SA1EWZE2U:'
|
||||
|
||||
|
||||
key(1,66) = 'NA1EWZE1A1U:'
|
||||
key(2,66) = 'PA1EWZE1A1U:'
|
||||
key(3,66) = 'AA1EWZE1A1U:'
|
||||
key(4,66) = 'SA1EWZE1A1U:'
|
||||
|
||||
|
||||
key(1,67) = 'NA1EWZE2A1U:'
|
||||
key(2,67) = 'PA1EWZE2A1U:'
|
||||
key(3,67) = 'AA1EWZE2A1U:'
|
||||
key(4,67) = 'SA1EWZE2A1U:'
|
||||
|
||||
|
||||
key(1,68) = 'NA1EWZE1E2:'
|
||||
key(2,68) = 'PA1EWZE1E2:'
|
||||
key(3,68) = 'AA1EWZE1E2:'
|
||||
key(4,68) = 'SA1EWZE1E2:'
|
||||
|
||||
|
||||
key(1,69) = 'NA1EWZE1E2A1:'
|
||||
key(2,69) = 'PA1EWZE1E2A1:'
|
||||
key(3,69) = 'AA1EWZE1E2A1:'
|
||||
key(4,69) = 'SA1EWZE1E2A1:'
|
||||
|
||||
|
||||
key(1,70) = 'NA1EWZE1E2U:'
|
||||
key(2,70) = 'PA1EWZE1E2U:'
|
||||
key(3,70) = 'AA1EWZE1E2U:'
|
||||
key(4,70) = 'SA1EWZE1E2U:'
|
||||
|
||||
|
||||
key(1,71) = 'NA1EWZE1E2A1U:'
|
||||
key(2,71) = 'PA1EWZE1E2A1U:'
|
||||
key(3,71) = 'AA1EWZE1E2A1U:'
|
||||
key(4,71) = 'SA1EWZE1E2A1U:'
|
||||
|
||||
|
||||
key(1,72) = 'NA2EQWZE1U:'
|
||||
key(2,72) = 'PA2EQWZE1U:'
|
||||
key(3,72) = 'AA2EQWZE1U:'
|
||||
key(4,72) = 'SA2EQWZE1U:'
|
||||
|
||||
|
||||
key(1,73) = 'NA2EQWZE2U:'
|
||||
key(2,73) = 'PA2EQWZE2U:'
|
||||
key(3,73) = 'AA2EQWZE2U:'
|
||||
key(4,73) = 'SA2EQWZE2U:'
|
||||
|
||||
|
||||
key(1,74) = 'NA2EQWZE1UA1:'
|
||||
key(2,74) = 'PA2EQWZE1UA1:'
|
||||
key(3,74) = 'AA2EQWZE1UA1:'
|
||||
key(4,74) = 'SA2EQWZE1UA1:'
|
||||
|
||||
|
||||
key(1,75) = 'NA2EQWZE2UA1:'
|
||||
key(2,75) = 'PA2EQWZE2UA1:'
|
||||
key(3,75) = 'AA2EQWZE2UA1:'
|
||||
key(4,75) = 'SA2EQWZE2UA1:'
|
||||
|
||||
|
||||
key(1,76) = 'NA2EQWZE1E2U:'
|
||||
key(2,76) = 'PA2EQWZE1E2U:'
|
||||
key(3,76) = 'AA2EQWZE1E2U:'
|
||||
key(4,76) = 'SA2EQWZE1E2U:'
|
||||
|
||||
|
||||
key(1,77) = 'NA2EQWZE1E2UA1:'
|
||||
key(2,77) = 'PA2EQWZE1E2UA1:'
|
||||
key(3,77) = 'AA2EQWZE1E2UA1:'
|
||||
key(4,77) = 'SA2EQWZE1E2UA1:'
|
||||
|
||||
|
||||
key(1,78) = 'NA2A1QU:'
|
||||
key(2,78) = 'PA2A1QU:'
|
||||
key(3,78) = 'AA2A1QU:'
|
||||
key(4,78) = 'SA2A1QU:'
|
||||
|
||||
|
||||
key(1,79) = 'NA2A1QUA1:'
|
||||
key(2,79) = 'PA2A1QUA1:'
|
||||
key(3,79) = 'AA2A1QUA1:'
|
||||
key(4,79) = 'SA2A1QUA1:'
|
||||
|
||||
|
||||
key(1,80) = 'NA2A1QUE1:'
|
||||
key(2,80) = 'PA2A1QUE1:'
|
||||
key(3,80) = 'AA2A1QUE1:'
|
||||
key(4,80) = 'SA2A1QUE1:'
|
||||
|
||||
|
||||
key(1,81) = 'NA2A1QUE2:'
|
||||
key(2,81) = 'PA2A1QUE2:'
|
||||
key(3,81) = 'AA2A1QUE2:'
|
||||
key(4,81) = 'SA2A1QUE2:'
|
||||
|
||||
|
||||
key(1,82) = 'NA2A1QUA1E1:'
|
||||
key(2,82) = 'PA2A1QUA1E1:'
|
||||
key(3,82) = 'AA2A1QUA1E1:'
|
||||
key(4,82) = 'SA2A1QUA1E1:'
|
||||
|
||||
|
||||
key(1,83) = 'NA2A1QUA1E2:'
|
||||
key(2,83) = 'PA2A1QUA1E2:'
|
||||
key(3,83) = 'AA2A1QUA1E2:'
|
||||
key(4,83) = 'SA2A1QUA1E2:'
|
||||
|
||||
|
||||
key(1,84) = 'NA2A1QUE1E2:'
|
||||
key(2,84) = 'PA2A1QUE1E2:'
|
||||
key(3,84) = 'AA2A1QUE1E2:'
|
||||
key(4,84) = 'SA2A1QUE1E2:'
|
||||
|
||||
|
||||
key(1,85) = 'NA2A1QUA1E1E2:'
|
||||
key(2,85) = 'PA2A1QUA1E1E2:'
|
||||
key(3,85) = 'AA2A1QUA1E1E2:'
|
||||
key(4,85) = 'SA2A1QUA1E1E2:'
|
||||
|
||||
key(1,86) = 'NCORECORE:'
|
||||
key(2,86) = 'PCORECORE:'
|
||||
key(3,86) = 'ACORECORE:'
|
||||
key(4,86) = 'SCORECORE:'
|
||||
|
||||
|
||||
end subroutine init_keys
|
||||
end module
|
||||
|
|
@ -0,0 +1,671 @@
|
|||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
! % SUBROUTINE CTRANS(...)
|
||||
! %
|
||||
! % M. Vossel 21.03.2023
|
||||
! %
|
||||
! % Routine to transform symmetryinput coordinates to symmetrized
|
||||
! % coordinates. Distances Are discribet by Morse coordinates or
|
||||
! % TMC depending on Set Parameters in the Genetic Input.
|
||||
! %
|
||||
! % input variables
|
||||
! % q:
|
||||
! % q(1): H1x
|
||||
! % q(2): y
|
||||
! % q(3): z
|
||||
! % q(4): H2x
|
||||
! % q(5): y
|
||||
! % q(6): z
|
||||
! % q(7): H3x
|
||||
! % q(8): y
|
||||
! % q(9): z
|
||||
!
|
||||
!
|
||||
!
|
||||
! % Internal variables:
|
||||
! % t: primitive coordinates (double[qn])
|
||||
! % t(1):
|
||||
! % t(2):
|
||||
! % t(3):
|
||||
! % t(4):
|
||||
! % t(5):
|
||||
! % t(6):
|
||||
! % t(7):
|
||||
! % t(8):
|
||||
! % t(9):
|
||||
! % t: dummy (double[qn])
|
||||
! % p: parameter vector
|
||||
! % npar: length of parameter vector
|
||||
! %
|
||||
! % Output variables
|
||||
! % s: symmetrized coordinates (double[qn])
|
||||
! % s(1): CH-symetric streatch
|
||||
! % s(2): CH-asymetric streatch-ex
|
||||
! % s(3): CH-asymetric streatch-ey
|
||||
! % s(4): CH-bend-ex
|
||||
! % s(5): CH-bend-ey
|
||||
! % s(6): CH-umbrella
|
||||
! % s(7): CH-umbrella**2
|
||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
module ctrans_pes_mod
|
||||
use accuracy_constants, only: dp, idp
|
||||
implicit none
|
||||
! precalculate pi, 2*pi and angle to radian conversion
|
||||
real(dp), parameter :: pi = 4.0_dp*datan(1.0_dp)
|
||||
real(dp), parameter :: pi2 = 2.0_dp*pi
|
||||
real(dp), parameter :: ang2rad = pi/180.0_dp
|
||||
! precalculate roots
|
||||
real(dp), parameter:: sq2 = 1.0_dp/dsqrt(2.0_dp)
|
||||
real(dp), parameter:: sq3 = 1.0_dp/dsqrt(3.0_dp)
|
||||
real(dp), parameter:: sq6 = 1.0_dp/dsqrt(6.0_dp)
|
||||
! change distances for equilibrium
|
||||
real(dp), parameter :: dchequi = 1.02289024_dp
|
||||
|
||||
contains
|
||||
subroutine ctrans_pes(q, s, t, invariants)
|
||||
use dim_parameter, only: qn
|
||||
integer(idp) k !running indices
|
||||
real(dp), intent(in) :: q(qn) !given coordinates
|
||||
real(dp), intent(out) :: s(qn) !output coordinates symmetry adapted and scaled
|
||||
real(dp), intent(out) :: t(qn) !output coordinates symmetry adapted but not scaled
|
||||
! ANN Variables
|
||||
real(dp), optional, intent(out) :: invariants(:)
|
||||
! kartesian coordianates copy from MeF+ so substitute c by n and removed f
|
||||
real(dp) ch1(3), ch2(3), ch3(3), c_atom(3)
|
||||
real(dp) nh1(3), nh2(3), nh3(3)
|
||||
real(dp) zaxis(3), xaxis(3), yaxis(3)
|
||||
real(dp) ph1(3), ph2(3), ph3(3)
|
||||
! primitive coordinates
|
||||
real(dp) dch1, dch2, dch3 !nh-distances
|
||||
real(dp) umb !Umbrella Angle from xy-plane
|
||||
|
||||
! Symmetry coordinates
|
||||
real(dp) aR !a1-modes H-Dist.,
|
||||
real(dp) exR, exAng !ex components H-Dist., H-Ang.
|
||||
real(dp) eyR, eyAng !ey components H-Dist., H-Ang.
|
||||
! debugging
|
||||
logical, parameter :: dbg = .false.
|
||||
|
||||
! initialize coordinate vectors
|
||||
s = 0.0_dp
|
||||
t = 0.0_dp
|
||||
|
||||
! write kartesian coords for readability
|
||||
c_atom = 0.0_dp
|
||||
do k = 1, 3
|
||||
ch1(k) = q(k)
|
||||
ch2(k) = q(k + 3)
|
||||
ch3(k) = q(k + 6)
|
||||
end do
|
||||
|
||||
! construct z-axis
|
||||
nh1 = normalized(ch1)
|
||||
nh2 = normalized(ch2)
|
||||
nh3 = normalized(ch3)
|
||||
zaxis = create_plane(nh1, nh2, nh3)
|
||||
|
||||
! calculate bonding distance
|
||||
dch1 = norm(ch1)
|
||||
dch2 = norm(ch2)
|
||||
dch3 = norm(ch3)
|
||||
|
||||
! construct symmertic and antisymmetric strech
|
||||
aR = symmetrize(dch1 - dchequi, dch2 - dchequi, dch3 - dchequi, 'a')
|
||||
exR = symmetrize(dch1, dch2, dch3, 'x')
|
||||
eyR = symmetrize(dch1, dch2, dch3, 'y')
|
||||
|
||||
! construc x-axis and y axis
|
||||
ph1 = normalized(project_point_into_plane(nh1, zaxis, c_atom))
|
||||
xaxis = normalized(ph1)
|
||||
yaxis = xproduct(zaxis, xaxis) ! right hand side koordinates
|
||||
|
||||
! project H atoms into C plane
|
||||
ph2 = normalized(project_point_into_plane(nh2, zaxis, c_atom))
|
||||
ph3 = normalized(project_point_into_plane(nh3, zaxis, c_atom))
|
||||
|
||||
call construct_HBend(exAng, eyAng, ph1, ph2, ph3, xaxis, yaxis)
|
||||
umb = construct_umbrella(nh1, nh2, nh3, zaxis)
|
||||
|
||||
! set symmetry coordinates and even powers of umbrella
|
||||
s(1) = dch1-dchequi!aR
|
||||
s(2) = dch2-dchequi!exR
|
||||
s(3) = dch3-dchequi!eyR
|
||||
s(4) = exAng
|
||||
s(5) = eyAng
|
||||
s(6) = umb
|
||||
s(7) = umb**2
|
||||
s(8) = 0
|
||||
s(9) = 0
|
||||
! pairwise distances as second coordinate set
|
||||
t = 0._dp
|
||||
call pair_distance(q, t(1:6))
|
||||
call Hplane_pairdistances(ph1,ph2,ph3,t(7:9))
|
||||
|
||||
if (dbg) write (6, '("sym coords s=",9f16.8)') s(1:qn)
|
||||
if (dbg) write (6, '("sym coords t=",9f16.8)') t(1:qn)
|
||||
if (present(invariants)) then
|
||||
call get_invariants(s, invariants)
|
||||
end if
|
||||
end subroutine ctrans_pes
|
||||
|
||||
subroutine pair_distance(q, r)
|
||||
real(dp), intent(in) :: q(9)
|
||||
real(dp), intent(out) :: r(6)
|
||||
real(dp) :: atom(3, 4)
|
||||
integer :: n, k, count
|
||||
|
||||
!atom order: H1 H2 H3 N
|
||||
atom(:, 1:3) = reshape(q, [3, 3])
|
||||
atom(:, 4) = (/0.0_dp, 0.0_dp, 0.0_dp/)
|
||||
|
||||
! distance order 12 13 14 23 24 34
|
||||
count = 0
|
||||
do n = 1, size(atom, 2)
|
||||
do k = n + 1, size(atom, 2)
|
||||
count = count + 1
|
||||
r(count) = sqrt(sum((atom(:, k) - atom(:, n))**2))
|
||||
end do
|
||||
end do
|
||||
end subroutine pair_distance
|
||||
|
||||
subroutine Hplane_pairdistances(ph1,ph2,ph3, r)
|
||||
real(dp), intent(in),dimension(3) :: ph1,ph2,ph3
|
||||
real(dp), intent(out) :: r(3)
|
||||
real(dp) :: x(3)
|
||||
x = ph1-ph2
|
||||
r(1) = norm(x)
|
||||
x = ph2-ph3
|
||||
r(2) = norm(x)
|
||||
x = ph3-ph1
|
||||
r(3) = norm(x)
|
||||
end subroutine Hplane_pairdistances
|
||||
|
||||
function morse_and_symmetrize(x,p,pst) result(s)
|
||||
real(dp), intent(in),dimension(3) :: x
|
||||
real(dp), intent(in),dimension(11) :: p
|
||||
integer, intent(in),dimension(2) :: pst
|
||||
integer :: k
|
||||
real(dp), dimension(3) :: s
|
||||
real(dp), dimension(3) :: t
|
||||
|
||||
! Morse transform
|
||||
do k=1,3
|
||||
t(k) = morse_transform(x(k), p, pst)
|
||||
end do
|
||||
s(1) = symmetrize(t(1), t(2), t(3), 'a')
|
||||
s(2) = symmetrize(t(1), t(2), t(3), 'x')
|
||||
s(3) = symmetrize(t(1), t(2), t(3), 'y')
|
||||
end function morse_and_symmetrize
|
||||
|
||||
subroutine get_invariants(s, inv_out)
|
||||
use dim_parameter, only: qn
|
||||
use select_monom_mod, only: v_e_monom, v_ee_monom
|
||||
real(dp), intent(in) :: s(qn)
|
||||
real(dp), intent(out) :: inv_out(:)
|
||||
! real(dp), parameter :: ck = 1.0_dp, dk = 1.0_dp/ck ! scaling for higher order invariants
|
||||
real(dp) inv(24)
|
||||
integer, parameter :: inv_order(12) = & ! the order in which the invariants are selected
|
||||
& [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
|
||||
real(dp) Rch, umb, xR, yR, xAng, yAng
|
||||
! for readability
|
||||
Rch = s(1)
|
||||
xR = s(2)
|
||||
yR = s(3)
|
||||
xAng = s(4)
|
||||
yAng = s(5)
|
||||
umb = s(6)**2
|
||||
! invarianten
|
||||
! a moden
|
||||
inv(1) = Rch
|
||||
inv(2) = umb
|
||||
! invariante e pairs
|
||||
inv(3) = v_e_monom(xR, yR, 1)
|
||||
inv(4) = v_e_monom(xAng, yAng, 1)
|
||||
! third order e pairs
|
||||
inv(5) = v_e_monom(xR, yR, 2)
|
||||
inv(6) = v_e_monom(xAng, yAng, 2)
|
||||
! invariant ee coupling
|
||||
inv(7) = v_ee_monom(xR, yR, xAng, yAng, 1)
|
||||
! mode combinations
|
||||
inv(8) = Rch*umb
|
||||
|
||||
inv(9) = Rch*v_e_monom(xR, yR, 1)
|
||||
inv(10) = umb*v_e_monom(xR, yR, 1)
|
||||
|
||||
inv(11) = Rch*v_e_monom(xAng, yAng, 1)
|
||||
inv(12) = umb*v_e_monom(xAng, yAng, 1)
|
||||
|
||||
! damp coordinates because of second order and higher invariants
|
||||
inv(3) = sign(sqrt(abs(inv(3))), inv(3))
|
||||
inv(4) = sign(sqrt(abs(inv(4))), inv(4))
|
||||
inv(5) = sign((abs(inv(5))**(1./3.)), inv(5))
|
||||
inv(6) = sign((abs(inv(6))**(1./3.)), inv(6))
|
||||
inv(7) = sign((abs(inv(7))**(1./3.)), inv(7))
|
||||
inv(8) = sign(sqrt(abs(inv(8))), inv(8))
|
||||
inv(9) = sign((abs(inv(9))**(1./3.)), inv(9))
|
||||
inv(10) = sign((abs(inv(10))**(1./3.)), inv(10))
|
||||
inv(11) = sign((abs(inv(11))**(1./3.)), inv(11))
|
||||
inv(12) = sign((abs(inv(12))**(1./3.)), inv(12))
|
||||
|
||||
inv_out(:) = inv(inv_order(1:size(inv_out, 1)))
|
||||
|
||||
end subroutine get_invariants
|
||||
|
||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
! % real part of spherical harmonics
|
||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
! Ylm shifted to 0 for theta=0
|
||||
real(dp) function ylm(theta, phi, l, m)
|
||||
implicit none
|
||||
real(dp) theta, phi
|
||||
integer(idp) l, m
|
||||
ylm = plm2(dcos(theta), l, m)*cos(m*phi) - plm2(1.0_dp, l, m)
|
||||
end function ylm
|
||||
!----------------------------------------------------------
|
||||
real(dp) function plm2(x, l, n)
|
||||
implicit none
|
||||
real(dp) x
|
||||
integer(idp) l, m, n
|
||||
|
||||
real(dp) pmm, p_mp1m, pllm
|
||||
integer(idp) ll
|
||||
|
||||
! negative m und bereich von x abfangen
|
||||
if ((l .lt. 0)&
|
||||
&.or. (abs(n) .gt. abs(l))&
|
||||
&.or. (abs(x) .gt. 1.)) then
|
||||
write (6, '(''bad arguments in legendre'')')
|
||||
stop
|
||||
end if
|
||||
|
||||
! fix sign of m to compute the positiv m
|
||||
m = abs(n)
|
||||
|
||||
pmm = (-1)**m*dsqrt(fac(2*m))*1./((2**m)*fac(m))& !compute P(m,m) not P(l,l)
|
||||
&*(dsqrt(1.-x**2))**m
|
||||
|
||||
if (l .eq. m) then
|
||||
plm2 = pmm !P(l,m)=P(m,m)
|
||||
else
|
||||
p_mp1m = x*dsqrt(dble(2*m + 1))*pmm !compute P(m+1,m)
|
||||
if (l .eq. m + 1) then
|
||||
plm2 = p_mp1m !P(l,m)=P(m+1,m)
|
||||
else
|
||||
do ll = m + 2, l
|
||||
pllm = x*(2*l - 1)/dsqrt(dble(l**2 - m**2))*p_mp1m& ! compute P(m+2,m) up to P(l,m) recursively
|
||||
&- dsqrt(dble((l - 1)**2 - m**2))&
|
||||
&/dsqrt(dble(l**2 - m**2))*pmm
|
||||
! schreibe m+2 und m+1 jeweils fuer die naechste iteration
|
||||
pmm = p_mp1m !P(m,m) = P(m+1,m)
|
||||
p_mp1m = pllm !P(m+1,m) = P(m+2,m)
|
||||
end do
|
||||
plm2 = pllm !P(l,m)=P(m+k,m), k element N
|
||||
end if
|
||||
end if
|
||||
|
||||
! sets the phase of -m term right (ignored to gurantee Ylm=(Yl-m)* for JT terms
|
||||
! if(n.lt.0) then
|
||||
! plm2 = (-1)**m * plm2 !* fac(l-m)/fac(l+m)
|
||||
! endif
|
||||
|
||||
end function
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
real(dp) function fac(i)
|
||||
integer(idp) i
|
||||
select case (i)
|
||||
case (0)
|
||||
fac = 1.0_dp
|
||||
case (1)
|
||||
fac = 1.0_dp
|
||||
case (2)
|
||||
fac = 2.0_dp
|
||||
case (3)
|
||||
fac = 6.0_dp
|
||||
case (4)
|
||||
fac = 24.0_dp
|
||||
case (5)
|
||||
fac = 120.0_dp
|
||||
case (6)
|
||||
fac = 720.0_dp
|
||||
case (7)
|
||||
fac = 5040.0_dp
|
||||
case (8)
|
||||
fac = 40320.0_dp
|
||||
case (9)
|
||||
fac = 362880.0_dp
|
||||
case (10)
|
||||
fac = 3628800.0_dp
|
||||
case (11)
|
||||
fac = 39916800.0_dp
|
||||
case (12)
|
||||
fac = 479001600.0_dp
|
||||
case default
|
||||
write (*, *) 'ERROR: no case for given faculty, Max is 12!'
|
||||
stop
|
||||
end select
|
||||
end function fac
|
||||
|
||||
! Does the simplest morse transform possible
|
||||
! one skaling factor + shift
|
||||
function morse_transform(x, p, pst) result(t)
|
||||
real(dp), intent(in) :: x
|
||||
real(dp), intent(in) :: p(11)
|
||||
integer, intent(in) :: pst(2)
|
||||
real(dp) :: t
|
||||
if (pst(2) == 11) then
|
||||
t = 1.0_dp - exp(-abs(p(2))*(x - p(1)))
|
||||
else
|
||||
error stop 'in morse_transform key required or wrong number of parameters'
|
||||
end if
|
||||
end function morse_transform
|
||||
|
||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
! % FUNCTION F(...) ! MAIK DEPRICATING OVER THE TOP MORSE FUNCTION FOR MYSELF
|
||||
! %
|
||||
! % Returns exponent of tunable Morse coordinate
|
||||
! % exponent is polynomial * gaussian (skewed)
|
||||
! % ilabel = 1 or 2 selects the parameters a and sfac to be used
|
||||
! %
|
||||
! % Background: better representation of the prefector in the
|
||||
! % exponend of the morse function.
|
||||
! % Formular: f(r) = lest no3 paper
|
||||
! %
|
||||
! % Variables:
|
||||
! % x: distance of atoms (double)
|
||||
! % p: parameter vector (double[20])
|
||||
! % ii: 1 for CCl and 2 for CCH (int)
|
||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
pure function f(x, p, ii)
|
||||
integer(idp), intent(in) :: ii !1 for CCL and 2 for CCH
|
||||
real(dp), intent(in) :: x !coordinate
|
||||
real(dp), intent(in) :: p(11) !parameter-vector
|
||||
|
||||
integer(idp) i !running index
|
||||
|
||||
real(dp) r !equilibrium distance
|
||||
real(dp) gaus !gaus part of f
|
||||
real(dp) poly !polynom part of f
|
||||
real(dp) skew !tanh part of f
|
||||
|
||||
real(dp) f !prefactor of exponent and returned value
|
||||
|
||||
integer(idp) npoly(2) !order of polynom
|
||||
|
||||
! Maximum polynom order
|
||||
npoly(1) = 5
|
||||
npoly(2) = 5
|
||||
|
||||
! p(1): position of equilibrium
|
||||
! p(2): constant of exponent
|
||||
! p(3): constant for skewing the gaussian
|
||||
! p(4): tuning for skewing the gaussian
|
||||
! p(5): Gaussian exponent
|
||||
! p(6): Shift of Gaussian maximum
|
||||
! p(7)...: polynomial coefficients
|
||||
! p(8+n)...: coefficients of Morse Power series
|
||||
|
||||
! 1-exp{[p(2)+exp{-p(5)[x-p(6)]^2}[Taylor{p(7+n)}(x-p(6))]][x-p(1)]}
|
||||
|
||||
! Tunable Morse function
|
||||
! Power series in Tunable Morse coordinates of order m
|
||||
! exponent is polynomial of order npoly * gaussian + switching function
|
||||
|
||||
! set r r-r_e
|
||||
r = x
|
||||
r = r - p(1)
|
||||
|
||||
! set up skewing function:
|
||||
skew = 0.5_dp*p(3)*(dtanh(dabs(p(4))*(r - p(6))) + 1.0_dp)
|
||||
|
||||
! set up gaussian function:
|
||||
gaus = dexp(-dabs(p(5))*(r - p(6))**2)
|
||||
|
||||
! set up power series:
|
||||
poly = 0.0_dp
|
||||
do i = 0, npoly(ii) - 1
|
||||
poly = poly + p(7 + i)*(r - p(6))**i
|
||||
end do
|
||||
! set up full exponent function:
|
||||
f = dabs(p(2)) + skew + gaus*poly
|
||||
|
||||
end function
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
pure function xproduct(a, b) result(axb)
|
||||
real(dp), intent(in) :: a(3), b(3)
|
||||
real(dp) :: axb(3) !crossproduct a x b
|
||||
axb(1) = a(2)*b(3) - a(3)*b(2)
|
||||
axb(2) = a(3)*b(1) - a(1)*b(3)
|
||||
axb(3) = a(1)*b(2) - a(2)*b(1)
|
||||
end function xproduct
|
||||
|
||||
pure function normalized(v) result(r)
|
||||
real(dp), intent(in) :: v(:)
|
||||
real(dp) :: r(size(v))
|
||||
r = v/norm(v)
|
||||
end function normalized
|
||||
|
||||
pure function norm(v) result(n)
|
||||
real(dp), intent(in) :: v(:)
|
||||
real(dp) n
|
||||
n = dsqrt(sum(v(:)**2))
|
||||
end function norm
|
||||
|
||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
! % FUNCTION Project_Point_Into_Plane(x,n,r0) result(p)
|
||||
! % return the to n orthogonal part of a vector x-r0
|
||||
! % p: projected point in plane
|
||||
! % x: point being projected
|
||||
! % n: normalvector of plane
|
||||
! % r0: Point in plane
|
||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
pure function project_point_into_plane(x, n, r0) result(p)
|
||||
real(dp), intent(in) :: x(:), n(:), r0(:)
|
||||
real(dp) :: p(size(x)), xs(size(x))
|
||||
xs = x - r0
|
||||
p = xs - plane_to_point(x, n, r0)
|
||||
end function project_point_into_plane
|
||||
|
||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
! % Function Plane_To_Point(x,n,r0) result(p)
|
||||
! % p: part of n in x
|
||||
! % x: point being projected
|
||||
! % n: normalvector of plane
|
||||
! % r0: Point in plane
|
||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
pure function plane_to_point(x, n, r0) result(p)
|
||||
real(dp), intent(in) :: x(:), n(:), r0(:)
|
||||
real(dp) p(size(x)), xs(size(x)), nn(size(n))
|
||||
nn = normalized(n)
|
||||
xs = x - r0
|
||||
p = dot_product(nn, xs)*nn
|
||||
end function plane_to_point
|
||||
|
||||
subroutine check_coordinates(q)
|
||||
! check for faulty kartesain coordinates
|
||||
real(dp), intent(in) :: q(:)
|
||||
integer(idp) :: i
|
||||
if (all(abs(q) <= epsilon(0.0_dp))) then
|
||||
stop 'Error (ctrans): all kartesian coordinates are<=1d-8'
|
||||
end if
|
||||
do i = 1, 9, 3
|
||||
if (all(abs(q(i:i + 2)) <= epsilon(0.0_dp))) then
|
||||
write (*, *) q
|
||||
stop 'Error(ctrans):kartesian coordinates zero for one atom'
|
||||
end if
|
||||
end do
|
||||
end subroutine
|
||||
|
||||
pure function rotor_a_to_z(a, z) result(r)
|
||||
real(dp), intent(in) :: a(3), z(3)
|
||||
real(dp) :: r(3, 3)
|
||||
real(dp) :: alpha
|
||||
real(dp) :: s1(3), s(3, 3), rotor(3, 3)
|
||||
s1 = xproduct(normalized(a), normalized(z))
|
||||
alpha = asin(norm(s1))
|
||||
s(:, 1) = normalized(s1)
|
||||
s(:, 2) = normalized(z)
|
||||
s(:, 3) = xproduct(s1, z)
|
||||
rotor = init_rotor(alpha, 0.0_dp, 0.0_dp)
|
||||
r = matmul(s, matmul(rotor, transpose(s)))
|
||||
end function
|
||||
|
||||
! function returning Rz(gamma) * Ry(beta) * Rx(alpha) for basis order xyz
|
||||
pure function init_rotor(alpha, beta, gamma) result(rotor)
|
||||
real(dp), intent(in) :: alpha, beta, gamma
|
||||
real(dp) :: rotor(3, 3)
|
||||
rotor = 0.0_dp
|
||||
rotor(1, 1) = dcos(beta)*dcos(gamma)
|
||||
rotor(1, 2) = dsin(alpha)*dsin(beta)*dcos(gamma)&
|
||||
&- dcos(alpha)*dsin(gamma)
|
||||
rotor(1, 3) = dcos(alpha)*dsin(beta)*dcos(gamma)&
|
||||
&+ dsin(alpha)*dsin(gamma)
|
||||
|
||||
rotor(2, 1) = dcos(beta)*dsin(gamma)
|
||||
rotor(2, 2) = dsin(alpha)*dsin(beta)*dsin(gamma)&
|
||||
&+ dcos(alpha)*dcos(gamma)
|
||||
rotor(2, 3) = dcos(alpha)*dsin(beta)*dsin(gamma)&
|
||||
&- dsin(alpha)*dcos(gamma)
|
||||
|
||||
rotor(3, 1) = -dsin(beta)
|
||||
rotor(3, 2) = dsin(alpha)*dcos(beta)
|
||||
rotor(3, 3) = dcos(alpha)*dcos(beta)
|
||||
end function init_rotor
|
||||
|
||||
pure function create_plane(a, b, c) result(n)
|
||||
real(dp), intent(in) :: a(3), b(3), c(3)
|
||||
real(dp) :: n(3)
|
||||
real(dp) :: axb(3), bxc(3), cxa(3)
|
||||
axb = xproduct(a, b)
|
||||
bxc = xproduct(b, c)
|
||||
cxa = xproduct(c, a)
|
||||
n = normalized(axb + bxc + cxa)
|
||||
end function create_plane
|
||||
|
||||
function symmetrize(q1, q2, q3, sym) result(s)
|
||||
real(dp), intent(in) :: q1, q2, q3
|
||||
character, intent(in) :: sym
|
||||
real(dp) :: s
|
||||
select case (sym)
|
||||
case ('a')
|
||||
s = (q1 + q2 + q3)*sq3
|
||||
case ('x')
|
||||
s = sq6*(2.0_dp*q1 - q2 - q3)
|
||||
case ('y')
|
||||
s = sq2*(q2 - q3)
|
||||
case default
|
||||
write (*, *) 'ERROR: no rule for symmetrize with sym=', sym
|
||||
stop
|
||||
end select
|
||||
end function symmetrize
|
||||
|
||||
subroutine construct_HBend(ex, ey, ph1, ph2, ph3, x_axis, y_axis)
|
||||
real(dp), intent(in) :: ph1(3), ph2(3), ph3(3)
|
||||
real(dp), intent(in) :: x_axis(3), y_axis(3)
|
||||
real(dp), intent(out) :: ex, ey
|
||||
real(dp) :: x1, y1, alpha1
|
||||
real(dp) :: x2, y2, alpha2
|
||||
real(dp) :: x3, y3, alpha3
|
||||
! get x and y components of projected points
|
||||
x1 = dot_product(ph1, x_axis)
|
||||
y1 = dot_product(ph1, y_axis)
|
||||
x2 = dot_product(ph2, x_axis)
|
||||
y2 = dot_product(ph2, y_axis)
|
||||
x3 = dot_product(ph3, x_axis)
|
||||
y3 = dot_product(ph3, y_axis)
|
||||
! -> calculate H deformation angles
|
||||
alpha3 = datan2(y2, x2)
|
||||
alpha2 = -datan2(y3, x3) !-120*ang2rad
|
||||
! write(*,*)' atan2'
|
||||
! write(*,*) 'alpha2:' , alpha2/ang2rad
|
||||
! write(*,*) 'alpha3:' , alpha3/ang2rad
|
||||
if (alpha2 .lt. 0) alpha2 = alpha2 + pi2
|
||||
if (alpha3 .lt. 0) alpha3 = alpha3 + pi2
|
||||
alpha1 = (pi2 - alpha2 - alpha3)
|
||||
! write(*,*)' fixed break line'
|
||||
! write(*,*) 'alpha1:' , alpha1/ang2rad
|
||||
! write(*,*) 'alpha2:' , alpha2/ang2rad
|
||||
! write(*,*) 'alpha3:' , alpha3/ang2rad
|
||||
alpha1 = alpha1 !- 120.0_dp*ang2rad
|
||||
alpha2 = alpha2 !- 120.0_dp*ang2rad
|
||||
alpha3 = alpha3 !- 120.0_dp*ang2rad
|
||||
! write(*,*)' delta alpha'
|
||||
! write(*,*) 'alpha1:' , alpha1/ang2rad
|
||||
! write(*,*) 'alpha2:' , alpha2/ang2rad
|
||||
! write(*,*) 'alpha3:' , alpha3/ang2rad
|
||||
! write(*,*)
|
||||
|
||||
! construct symmetric and antisymmetric H angles
|
||||
ex = symmetrize(alpha1, alpha2, alpha3, 'x')
|
||||
ey = symmetrize(alpha1, alpha2, alpha3, 'y')
|
||||
end subroutine construct_HBend
|
||||
|
||||
pure function construct_umbrella(nh1, nh2, nh3, n)&
|
||||
&result(umb)
|
||||
real(dp), intent(in) :: nh1(3), nh2(3), nh3(3)
|
||||
real(dp), intent(in) :: n(3)
|
||||
real(dp) :: umb
|
||||
real(dp) :: theta(3)
|
||||
! calculate projections for umberella angle
|
||||
theta(1) = dacos(dot_product(n, nh1))
|
||||
theta(2) = dacos(dot_product(n, nh2))
|
||||
theta(3) = dacos(dot_product(n, nh3))
|
||||
! construct umberella angle
|
||||
umb = sum(theta(1:3))/3.0_dp - 90.0_dp*ang2rad
|
||||
end function construct_umbrella
|
||||
|
||||
pure subroutine construct_sphericals&
|
||||
&(theta, phi, cf, xaxis, yaxis, zaxis)
|
||||
real(dp), intent(in) :: cf(3), xaxis(3), yaxis(3), zaxis(3)
|
||||
real(dp), intent(out) :: theta, phi
|
||||
real(dp) :: x, y, z, v(3)
|
||||
v = normalized(cf)
|
||||
x = dot_product(v, normalized(xaxis))
|
||||
y = dot_product(v, normalized(yaxis))
|
||||
z = dot_product(v, normalized(zaxis))
|
||||
theta = dacos(z)
|
||||
phi = -datan2(y, x)
|
||||
end subroutine construct_sphericals
|
||||
|
||||
subroutine int2kart(internal, kart)
|
||||
real(dp), intent(in) :: internal(6)
|
||||
real(dp), intent(out) :: kart(9)
|
||||
real(dp) :: h1x, h1y, h1z
|
||||
real(dp) :: h2x, h2y, h2z
|
||||
real(dp) :: h3x, h3y, h3z
|
||||
real(dp) :: dch0, dch1, dch2, dch3
|
||||
real(dp) :: a1, a2, a3, wci
|
||||
|
||||
kart = 0.0_dp
|
||||
dch1 = dchequi + sq3*internal(1) + 2*sq6*internal(2)
|
||||
dch2 = dchequi + sq3*internal(1) - sq6*internal(2) + sq2*internal(3)
|
||||
dch3 = dchequi + sq3*internal(1) - sq6*internal(2) - sq2*internal(3)
|
||||
a1 = 2*sq6*internal(4)
|
||||
a2 = -sq6*internal(4) + sq2*internal(5)
|
||||
a3 = -sq6*internal(4) - sq2*internal(5)
|
||||
wci = internal(6)
|
||||
|
||||
! Berechnung kartesische Koordinaten
|
||||
! -----------------------
|
||||
h1x = dch1*cos(wci*ang2rad)
|
||||
h1y = 0.0
|
||||
h1z = -dch1*sin(wci*ang2rad)
|
||||
|
||||
h3x = dch2*cos((a2 + 120)*ang2rad)*cos(wci*ang2rad)
|
||||
h3y = dch2*sin((a2 + 120)*ang2rad)*cos(wci*ang2rad)
|
||||
h3z = -dch2*sin(wci*ang2rad)
|
||||
|
||||
h2x = dch3*cos((-a3 - 120)*ang2rad)*cos(wci*ang2rad)
|
||||
h2y = dch3*sin((-a3 - 120)*ang2rad)*cos(wci*ang2rad)
|
||||
h2z = -dch3*sin(wci*ang2rad)
|
||||
|
||||
kart(1) = h1x
|
||||
kart(2) = h1y
|
||||
kart(3) = h1z
|
||||
kart(4) = h2x
|
||||
kart(5) = h2y
|
||||
kart(6) = h2z
|
||||
kart(7) = h3x
|
||||
kart(8) = h3y
|
||||
kart(9) = h3z
|
||||
end subroutine int2kart
|
||||
|
||||
end module ctrans_pes_mod
|
||||
|
|
@ -0,0 +1,982 @@
|
|||
module diab_pes
|
||||
use dim_parameter, only: qn, ndiab, pst
|
||||
use accuracy_constants, only: dp, idp
|
||||
implicit none
|
||||
logical :: debug = .false.
|
||||
! real(dp),parameter :: nuclear_energy_shift = 11.76027390_dp
|
||||
real(dp), parameter :: nuclear_energy_shift = 0.881380_dp
|
||||
real(dp), parameter :: ang2bohr = 1.0/0.52917721067_dp
|
||||
real(dp), parameter :: a1_asymptote = 0.205024_dp*3._dp
|
||||
!--------------------------------------------------------------------
|
||||
contains
|
||||
!--------------------------------------------------------------------
|
||||
subroutine pote(e, n, q, s, t, p, npar)
|
||||
integer(idp), intent(in) :: npar !number of parameters
|
||||
integer(idp), intent(in) :: n
|
||||
real(dp), intent(out) :: e(ndiab, ndiab)
|
||||
real(dp), intent(in) :: q(qn), s(qn), t(qn) !< transformed coordinates
|
||||
real(dp), intent(in), contiguous :: p(:)
|
||||
call model_matrix(e, s, t, p)
|
||||
end Subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! calculate core repulsion potential depending on the shortest distance r and allow it only at values smaller than xmax
|
||||
function core_core_rmin(r, p) result(v)
|
||||
real(dp), intent(in) :: r(:)
|
||||
real(dp), intent(in) :: p(:)
|
||||
real(dp) :: v
|
||||
real(dp) :: shift, width, rmin
|
||||
if(size(p,1) /= 3) error stop 'Expected 3 parameters in core_core_min()'
|
||||
rmin = minval(r)
|
||||
v = p(1)/abs(rmin)
|
||||
|
||||
shift = p(2)
|
||||
width = p(3)
|
||||
v = v*(1._dp - smootherstep(rmin, shift, width))
|
||||
end function core_core_rmin
|
||||
|
||||
! calculating the nuclear repulsion energy for a given set of pairwise distances and given nuclear charges
|
||||
function nuclear_repulsion(r, charge) result(v)
|
||||
real(dp), intent(in) :: r(:)
|
||||
real(dp), intent(in) :: charge(:)
|
||||
real(dp) :: v
|
||||
v = sum(charge(:)/abs(r(:)))
|
||||
end function nuclear_repulsion
|
||||
|
||||
pure function smootherstep(x, shift, width) result(s)
|
||||
real(dp), intent(in) :: x, shift, width
|
||||
real(dp) :: s, q
|
||||
q = (x - shift)/width
|
||||
if (x <= 0._dp) then
|
||||
s = 0._dp
|
||||
else if (x >= 1._dp) then
|
||||
s = 1._dp
|
||||
else
|
||||
s = 6._dp*q**5 - 15*q**4 + 10*q**3
|
||||
end if
|
||||
end function smootherstep
|
||||
|
||||
function pairwise_charge(charge) result(v)
|
||||
real(dp), intent(in) :: charge(:)
|
||||
real(dp), dimension(:), allocatable :: v
|
||||
integer :: n, k, count
|
||||
allocate (v(size(charge)*(size(charge) - 1)/2), source=0._dp)
|
||||
count = 0
|
||||
do n = 1, size(charge, 1)
|
||||
do k = n + 1, size(charge, 1)
|
||||
count = count + 1
|
||||
v(count) = charge(n)*charge(k)
|
||||
end do
|
||||
end do
|
||||
end function pairwise_charge
|
||||
|
||||
function nuclear_repulsion_model(r, p) result(v)
|
||||
real(dp), dimension(:), intent(in) :: r
|
||||
real(dp), dimension(:), intent(in) :: p
|
||||
real(dp) :: v
|
||||
integer :: key, start, ende
|
||||
key = 86
|
||||
if (pst(2, key) == 0) then
|
||||
v = 0._dp
|
||||
return
|
||||
end if
|
||||
start = pst(1, key)
|
||||
ende = start + pst(2, key) - 1
|
||||
v = nuclear_repulsion(r(1:6)*ang2bohr, pairwise_charge(p(start+1:ende))) - p(start)
|
||||
! v = core_core_rmin(r([1, 2, 4]), p(start:ende))
|
||||
end function nuclear_repulsion_model
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <constructing the actuall matrix element expansion with given coordinates and parameters
|
||||
! <note: parameter vector is here npar+1 long to solve problem with pst values writing over memory
|
||||
subroutine model_matrix(e, s_in, t, p, split_ref)
|
||||
! use ctrans_mod, only: morse_transform
|
||||
use ctrans_pes_mod, only: morse_and_symmetrize
|
||||
integer, optional, intent(in) :: split_ref
|
||||
real(dp), intent(out) :: e(:, :) !< diabatic model matrix
|
||||
real(dp), intent(in) :: s_in(qn), t(qn) !< transformed coordinates
|
||||
real(dp) :: s(qn)
|
||||
real(dp), intent(in), contiguous :: p(:) !< parameter vector
|
||||
real(dp) :: tmp_v, tmp_wz(2) !< dummy for expansion terms
|
||||
integer(idp) :: key
|
||||
real(dp) :: e_nuclear
|
||||
integer :: k
|
||||
|
||||
s = s_in
|
||||
!transform morse coordinate
|
||||
! s(1) = morse_transform(s_in(1), p(pst(1, 2):), pst(:, 2))
|
||||
s(1:3) = morse_and_symmetrize(s_in(1:3), p(pst(1, 2):), pst(:, 2))
|
||||
|
||||
e = 0.0_dp
|
||||
|
||||
! shift diagonal terms so that E1 is 0 at first point
|
||||
e(1, 1) = p(pst(1, 1)) - p(pst(1, 1))
|
||||
e(2, 2) = p(pst(1, 1) + 1) - p(pst(1, 1))
|
||||
e(3, 3) = p(pst(1, 1) + 2) - p(pst(1, 1))
|
||||
e(4, 4) = p(pst(1, 1) + 3) - p(pst(1, 1))
|
||||
|
||||
! !add nuclear repulsion energy
|
||||
e_nuclear = nuclear_repulsion_model(t, p)
|
||||
do k = 1, ndiab
|
||||
e(k, k) = e(k, k) + e_nuclear
|
||||
end do
|
||||
|
||||
if (present(split_ref)) then
|
||||
if (split_ref == 1) then
|
||||
e = 0._dp
|
||||
end if
|
||||
end if
|
||||
!Start of Element: EV 3
|
||||
!Start of Element: A2V 18
|
||||
!Start of Element: A1V 33
|
||||
!Start of Element: EWZ 48
|
||||
!Start of Element: A1EWZ 60
|
||||
!Start of Element: A2EQWZ 72
|
||||
!Start of Element: A2A1Q 78
|
||||
key = 18 ! A2V
|
||||
if (debug) write (*, *) 'A2V Element'
|
||||
tmp_v = v_element(p, key, s, split_ref)
|
||||
e(1, 1) = e(1, 1) + tmp_v
|
||||
|
||||
key = 3 ! EV
|
||||
if (debug) write (*, *) 'EV Element'
|
||||
tmp_v = v_element(p, key, s, split_ref)
|
||||
key = 48 ! EWZ
|
||||
if (debug) write (*, *) 'EWZ Element'
|
||||
tmp_wz = wz_element(p, key, s, t, split_ref)
|
||||
e(2, 2) = e(2, 2) + tmp_v + tmp_wz(1)
|
||||
e(3, 3) = e(3, 3) + tmp_v - tmp_wz(1)
|
||||
e(2, 3) = e(2, 3) + tmp_wz(2)
|
||||
|
||||
key = 72 ! A2EQWZ
|
||||
if (debug) write (*, *) 'A2EQWZ Element'
|
||||
tmp_wz = qwz_element(p, key, s, t, split_ref)
|
||||
e(1, 2) = e(1, 2) + tmp_wz(1)
|
||||
e(1, 3) = e(1, 3) - tmp_wz(2)
|
||||
|
||||
key = 60 ! A1EWZ
|
||||
if (debug) write (*, *) 'A1EWZ Element'
|
||||
tmp_wz = wz_element(p, key, s, t, split_ref)
|
||||
e(2, 4) = e(2, 4) + tmp_wz(1)
|
||||
e(3, 4) = e(3, 4) - tmp_wz(2)
|
||||
|
||||
key = 33 ! A1V
|
||||
if (debug) write (*, *) 'A1V Element'
|
||||
tmp_v = v_element(p, key, s, split_ref)
|
||||
e(4, 4) = e(4, 4) + tmp_v
|
||||
|
||||
key = 78 ! A2A1Q
|
||||
if (debug) write (*, *) 'A2A1Q Element'
|
||||
tmp_v = q_element(p, key, s, t, split_ref)
|
||||
e(1, 4) = e(1, 4) + tmp_v
|
||||
|
||||
call copy_2_lower_triangle(e)
|
||||
if (debug) then
|
||||
write (*, *) 'diabatic model matrix:'
|
||||
do k = 1, ndiab
|
||||
write (*, '(*(F24.8))') e(k, :)
|
||||
end do
|
||||
write (*, *) ' '
|
||||
end if
|
||||
end subroutine model_matrix
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
subroutine copy_2_lower_triangle(mat)
|
||||
real(dp), intent(inout) :: mat(:, :)
|
||||
integer :: m, n
|
||||
! write lower triangle of matrix symmetrical
|
||||
do n = 2, size(mat, 1)
|
||||
do m = 1, n - 1
|
||||
mat(n, m) = mat(m, n)
|
||||
end do
|
||||
end do
|
||||
end subroutine copy_2_lower_triangle
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_element(p, key, x, split_ref) result(v)
|
||||
integer, optional, intent(in) :: split_ref
|
||||
real(dp) :: v
|
||||
real(dp), intent(in) :: p(:), x(:)
|
||||
integer(idp), intent(in) :: key
|
||||
v = v_a(p, key, x(1))
|
||||
! v = v_a_d(p, key, x(1),nuclear_energy_shift+a1_asymptote) ! Maik test asymptot for given d
|
||||
v = v + v_a(p, key + 1, x(7), split_ref)
|
||||
|
||||
v = v + v_e(p, key + 2, x(2), x(3), split_ref)
|
||||
v = v + v_e(p, key + 3, x(4), x(5), split_ref)
|
||||
|
||||
if (present(split_ref)) then
|
||||
if (split_ref == 0) return
|
||||
end if
|
||||
|
||||
v = v + v_aa(p, key + 4, x(1), x(7))
|
||||
|
||||
v = v + v_ae(p, key + 5, x(1), x(2), x(3))
|
||||
v = v + v_ae(p, key + 6, x(1), x(4), x(5))
|
||||
|
||||
v = v + v_ae(p, key + 7, x(7), x(2), x(3))
|
||||
v = v + v_ae(p, key + 8, x(7), x(4), x(5))
|
||||
|
||||
v = v + v_ee(p, key + 9, x(2), x(3), x(4), x(5))
|
||||
|
||||
v = v + v_aae(p, key + 10, x(1), x(7), x(2), x(3))
|
||||
v = v + v_aae(p, key + 11, x(1), x(7), x(4), x(5))
|
||||
|
||||
v = v + v_aee(p, key + 12, x(1), x(2), x(3), x(4), x(5))
|
||||
v = v + v_aee(p, key + 13, x(7), x(2), x(3), x(4), x(5))
|
||||
|
||||
v = v + v_aaee(p, key + 14, x(1), x(7), x(2), x(3), x(4), x(5))
|
||||
end function v_element
|
||||
|
||||
function wz_element(p, key, s, t, split_ref) result(wz)
|
||||
integer, optional, intent(in) :: split_ref
|
||||
real(dp) :: wz(2)
|
||||
real(dp), intent(in) :: p(:), s(:), t(:)
|
||||
integer(idp), intent(in) :: key
|
||||
wz = 0.0_dp
|
||||
call wz_e(wz, p, key, s(2), s(3), split_ref)
|
||||
call wz_e(wz, p, key + 1, s(4), s(5), split_ref)
|
||||
|
||||
if (present(split_ref)) then
|
||||
if (split_ref == 0) return
|
||||
end if
|
||||
|
||||
call wz_ae(wz, p, key + 2, s(1), s(2), s(3))
|
||||
call wz_ae(wz, p, key + 3, s(1), s(4), s(5))
|
||||
|
||||
call wz_ae(wz, p, key + 4, s(7), s(2), s(3))
|
||||
call wz_ae(wz, p, key + 5, s(7), s(4), s(5))
|
||||
|
||||
call wz_aae(wz, p, key + 6, s(1), s(7), s(2), s(3))
|
||||
call wz_aae(wz, p, key + 7, s(1), s(7), s(4), s(5))
|
||||
|
||||
call wz_ee(wz, p, key + 8, s(2), s(3), s(4), s(5))
|
||||
|
||||
call wz_aee(wz, p, key + 9, s(1), s(2), s(3), s(4), s(5))
|
||||
call wz_aee(wz, p, key + 10, s(7), s(2), s(3), s(4), s(5))
|
||||
|
||||
call wz_aaee(wz, p, key + 11, s(1), s(7), s(2), s(3), s(4), s(5))
|
||||
end function wz_element
|
||||
|
||||
function q_element(p, key, s, t, split_ref) result(q)
|
||||
integer, optional, intent(in) :: split_ref
|
||||
real(dp) :: q
|
||||
real(dp), intent(in) :: p(:), s(:), t(:)
|
||||
integer(idp), intent(in) :: key
|
||||
q = 0.0_dp
|
||||
q = q + q_u(p, key, s(6), split_ref)
|
||||
|
||||
if (present(split_ref)) then
|
||||
if (split_ref == 0) return
|
||||
end if
|
||||
|
||||
q = q + q_ua(p, key + 1, s(6), s(1))
|
||||
|
||||
q = q + q_ue(p, key + 2, s(6), s(2), s(3))
|
||||
q = q + q_ue(p, key + 3, s(6), s(4), s(5))
|
||||
|
||||
q = q + q_uae(p, key + 4, s(6), s(1), s(2), s(3))
|
||||
q = q + q_uae(p, key + 5, s(6), s(1), s(4), s(5))
|
||||
|
||||
q = q + q_uee(p, key + 6, s(6), s(2), s(3), s(4), s(5))
|
||||
|
||||
q = q + q_uaee(p, key + 7, s(6), s(1), s(2), s(3), s(4), s(5))
|
||||
end function q_element
|
||||
|
||||
function qwz_element(p, key, s, t, split_ref) result(qwz)
|
||||
integer, optional, intent(in) :: split_ref
|
||||
real(dp), dimension(2) :: qwz
|
||||
real(dp), intent(in) :: p(:), s(:), t(:)
|
||||
integer(idp), intent(in) :: key
|
||||
qwz = 0.0_dp
|
||||
call qwz_ue(qwz, p, key, s(6), s(2), s(3), split_ref)
|
||||
call qwz_ue(qwz, p, key + 1, s(6), s(4), s(5), split_ref)
|
||||
|
||||
if (present(split_ref)) then
|
||||
if (split_ref == 0) return
|
||||
end if
|
||||
|
||||
call qwz_uae(qwz, p, key + 2, s(6), s(1), s(2), s(3))
|
||||
call qwz_uae(qwz, p, key + 3, s(6), s(1), s(4), s(5))
|
||||
|
||||
call qwz_uee(qwz, p, key + 4, s(6), s(2), s(3), s(4), s(5))
|
||||
call qwz_uaee(qwz, p, key + 5, s(6), s(1), s(2), s(3), s(4), s(5))
|
||||
end function qwz_element
|
||||
|
||||
subroutine index_split_ref(ii, ee, split, split_ref)
|
||||
integer(idp), intent(inout) :: ii, ee
|
||||
integer(idp), intent(in) :: split
|
||||
integer, optional, intent(in) :: split_ref
|
||||
if (present(split_ref)) then
|
||||
select case (split_ref)
|
||||
case (0)
|
||||
ee = split
|
||||
case (1)
|
||||
ii = split + 1
|
||||
end select
|
||||
end if
|
||||
end subroutine index_split_ref
|
||||
|
||||
function v_a(p, key, a, split_ref) result(v)
|
||||
integer, optional, intent(in) :: split_ref
|
||||
real(dp) v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a
|
||||
integer(idp) :: i, pstart
|
||||
integer(idp) :: ii, ee
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
ii = 1; ee = pst(2, key)
|
||||
call index_split_ref(ii, ee, 2, split_ref)
|
||||
do i = ii, ee
|
||||
v = v + a**i*p(pstart + (i - 1))
|
||||
end do
|
||||
end function v_a
|
||||
|
||||
function v_a_d(p, key, a, d) result(v)
|
||||
!variant of v_a that forces the sum of parameters add up to the given value d
|
||||
real(dp) v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, d
|
||||
integer(idp) :: i, pstart
|
||||
integer(idp) :: ii, ee
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
ii = 1; ee = pst(2, key)
|
||||
do i = ii, ee
|
||||
v = v + a**i*p(pstart + (i - 1))
|
||||
end do
|
||||
v = v + a**(ee + 1)*(d - sum(p(pstart:pstart + ee - 1)))
|
||||
end function v_a_d
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_e(p, key, x, y, split_ref) result(v)
|
||||
use select_monom_mod, only: v_e_monom
|
||||
integer, optional, intent(in) :: split_ref
|
||||
real(dp) v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), x, y !koordinates
|
||||
integer(idp) :: i, pstart
|
||||
integer(idp) :: ii, ee
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
ii = 1; ee = pst(2, key)
|
||||
call index_split_ref(ii, ee, 1, split_ref)
|
||||
|
||||
do i = ii, ee
|
||||
v = v + p(pstart + (i - 1))*v_e_monom(x, y, i)
|
||||
end do
|
||||
end function v_e
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_aa(p, key, a, b) result(v)
|
||||
use select_monom_mod, only: v_aa_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, b
|
||||
integer(idp) :: pstart, i
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
v = v + p(pstart + (i - 1))*v_aa_monom(a, b, i)
|
||||
end do
|
||||
end function v_aa
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_aaa(p, key, a, b, c) result(v)
|
||||
use select_monom_mod, only: v_aaa_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, b, c
|
||||
integer(idp) :: pstart, i
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
v = v + p(pstart + (i - 1))*v_aaa_monom(a, b, c, i)
|
||||
end do
|
||||
end function v_aaa
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_ae(p, key, a, x, y) result(v)
|
||||
use select_monom_mod, only: v_ae_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, x, y
|
||||
integer(idp) :: i, pstart
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
v = v + p(pstart + (i - 1))*v_ae_monom(a, x, y, i)
|
||||
end do
|
||||
end function v_ae
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_ee(p, key, x1, y1, x2, y2) result(v)
|
||||
use select_monom_mod, only: v_ee_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), x1, y1, x2, y2
|
||||
integer(idp) :: i, pstart
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key);
|
||||
v = v + p(pstart + (i - 1))*v_ee_monom(x1, y1, x2, y2, i)
|
||||
end do
|
||||
end function v_ee
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_aae(p, key, a, b, x, y) result(v)
|
||||
use select_monom_mod, only: v_aae_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, b, x, y
|
||||
integer(idp) :: i, pstart
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
v = v + p(pstart + (i - 1))*v_aae_monom(a, b, x, y, i)
|
||||
end do
|
||||
end function v_aae
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_aaae(p, key, a, b, c, x, y) result(v)
|
||||
use select_monom_mod, only: v_aaae_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, b, c, x, y
|
||||
integer(idp) :: i, pstart
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
v = v + p(pstart + (i - 1))*v_aaae_monom(a, b, c, x, y, i)
|
||||
end do
|
||||
end function v_aaae
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_aee(p, key, a, x1, y1, x2, y2) result(v)
|
||||
use select_monom_mod, only: v_aee_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, x1, y1, x2, y2
|
||||
integer(idp) :: i, pstart
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key);
|
||||
v = v + p(pstart + (i - 1))*v_aee_monom(a, x1, y1, x2, y2, i)
|
||||
end do
|
||||
end function v_aee
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_eee(p, key, x1, y1, x2, y2, x3, y3) result(v)
|
||||
use select_monom_mod, only: v_eee_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), x1, y1, x2, y2, x3, y3
|
||||
integer(idp) :: i, pstart
|
||||
v = 0.0_dp; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
v = v + p(pstart + (i - 1))*v_eee_monom(x1, y1, x2, y2, x3, y3, i)
|
||||
end do
|
||||
end function v_eee
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_aaee(p, key, a, b, x1, y1, x2, y2) result(v)
|
||||
use select_monom_mod, only: v_aaee_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, b, x1, y1, x2, y2
|
||||
integer(idp) :: i, pstart
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key);
|
||||
v = v + p(pstart + (i - 1))*v_aaee_monom(a, b, x1, y1, x2, y2, i)
|
||||
end do
|
||||
end function v_aaee
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_aaaee(p, key, a, b, c, x1, y1, x2, y2) result(v)
|
||||
use select_monom_mod, only: v_aaaee_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, b, c, x1, y1, x2, y2
|
||||
integer(idp) :: i, pstart
|
||||
v = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key);
|
||||
v = v&
|
||||
&+ p(pstart + (i - 1))*v_aaaee_monom(a, b, c, x1, y1, x2, y2, i)
|
||||
end do
|
||||
end function v_aaaee
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_aeee(p, key, a, x1, y1, x2, y2, x3, y3) result(v)
|
||||
use select_monom_mod, only: v_aeee_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, x1, y1, x2, y2, x3, y3
|
||||
integer(idp) :: i, pstart
|
||||
v = 0.0_dp; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
v = v + p(pstart + (i - 1))*v_aeee_monom(a, x1, y1, x2, y2, x3, y3,&
|
||||
&i)
|
||||
end do
|
||||
end function v_aeee
|
||||
!====================================================================================================
|
||||
|
||||
! function wz_e(p,key,x,y) result(wz)
|
||||
! use select_monom_mod,only : w_e_monom, z_e_monom
|
||||
! real(dp) :: wz(2)
|
||||
! integer(idp),intent(in) :: key
|
||||
! real(dp),intent(in) :: p(:), x, y
|
||||
! integer(idp) :: i, pstart
|
||||
! wz = 0.d0; pstart = pst(1,key)
|
||||
! do i =1,pst(2,key)
|
||||
! wz(1) = wz(1) + p(pstart+(i-1)) * w_e_monom(x,y,i)
|
||||
! wz(2) = wz(2) + p(pstart+(i-1)) * z_e_monom(x,y,i)
|
||||
! enddo
|
||||
! ! if(debug) write(*,*) 'wz_e=', wz(1:2)
|
||||
! end function wz_e
|
||||
|
||||
subroutine wz_e(wz, p, key, x, y, split_ref)
|
||||
use select_monom_mod, only: w_e_monom, z_e_monom
|
||||
integer, optional, intent(in) :: split_ref
|
||||
real(dp), intent(inout) :: wz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), x, y
|
||||
integer(idp) :: i, pstart
|
||||
integer(idp) :: ii, ee
|
||||
|
||||
pstart = pst(1, key)
|
||||
ii = 1; ee = pst(2, key)
|
||||
call index_split_ref(ii, ee, 1, split_ref)
|
||||
|
||||
do i = ii, ee
|
||||
wz(1) = wz(1) + p(pstart + (i - 1))*w_e_monom(x, y, i)
|
||||
wz(2) = wz(2) + p(pstart + (i - 1))*z_e_monom(x, y, i)
|
||||
end do
|
||||
end subroutine wz_e
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! function wz_ae(p,key,a,x,y) result(wz)
|
||||
! use select_monom_mod,only : w_ae_monom, z_ae_monom
|
||||
! real(dp) :: wz(2)
|
||||
! integer(idp),intent(in) :: key
|
||||
! real(dp),intent(in) :: p(:), a, x, y
|
||||
! integer(idp) :: i, pstart
|
||||
! wz = 0.d0; pstart = pst(1,key)
|
||||
! do i = 1, pst(2,key)
|
||||
! wz(1) = wz(1) + p(pstart+(i-1)) * w_ae_monom(a, x, y, i)
|
||||
! wz(2) = wz(2) + p(pstart+(i-1)) * z_ae_monom(a, x, y, i)
|
||||
! enddo
|
||||
! ! if(debug) write(*,*) 'wz_ae=', wz(1:2)
|
||||
! end function wz_ae
|
||||
subroutine wz_ae(wz, p, key, a, x, y)
|
||||
use select_monom_mod, only: w_ae_monom, z_ae_monom
|
||||
real(dp), intent(inout) :: wz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, x, y
|
||||
integer(idp) :: i, pstart
|
||||
pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
wz(1) = wz(1) + p(pstart + (i - 1))*w_ae_monom(a, x, y, i)
|
||||
wz(2) = wz(2) + p(pstart + (i - 1))*z_ae_monom(a, x, y, i)
|
||||
end do
|
||||
! if(debug) write(*,*) 'wz_ae=', wz(1:2)
|
||||
end subroutine wz_ae
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! function wz_aae(p,key,a,b,x,y) result(wz)
|
||||
! use select_monom_mod,only : w_aae_monom, z_aae_monom
|
||||
! real(dp) :: wz(2)
|
||||
! integer(idp),intent(in) :: key
|
||||
! real(dp),intent(in) :: p(:), a,b, x, y
|
||||
! integer(idp) :: i, pstart
|
||||
! wz = 0.d0; pstart = pst(1,key)
|
||||
! do i = 1, pst(2,key)
|
||||
! wz(1) = wz(1) + p(pstart+(i-1)) * w_aae_monom(a,b, x, y, i)
|
||||
! wz(2) = wz(2) + p(pstart+(i-1)) * z_aae_monom(a,b, x, y, i)
|
||||
! enddo
|
||||
! ! if(debug) write(*,*) 'wz_aae=', wz(1:2)
|
||||
! end function wz_aae
|
||||
subroutine wz_aae(wz, p, key, a, b, x, y)
|
||||
use select_monom_mod, only: w_aae_monom, z_aae_monom
|
||||
real(dp), intent(inout) :: wz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, b, x, y
|
||||
integer(idp) :: i, pstart
|
||||
pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
wz(1) = wz(1) + p(pstart + (i - 1))*w_aae_monom(a, b, x, y, i)
|
||||
wz(2) = wz(2) + p(pstart + (i - 1))*z_aae_monom(a, b, x, y, i)
|
||||
end do
|
||||
! if(debug) write(*,*) 'wz_aae=', wz(1:2)
|
||||
end subroutine wz_aae
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! function wz_ee(p,key,x1,y1,x2,y2) result(wz)
|
||||
! use select_monom_mod,only : w_ee_monom, z_ee_monom
|
||||
! real(dp) wz(2)
|
||||
! integer(idp),intent(in) :: key
|
||||
! real(dp),intent(in) :: p(:), x1, y1, x2, y2
|
||||
! integer(idp) :: i, pstart
|
||||
! wz = 0.d0; pstart = pst(1,key)
|
||||
! do i = 1, pst(2,key)
|
||||
! wz(1) = wz(1) + p(pstart+(i-1)) * w_ee_monom(x1, y1, x2, y2, i)
|
||||
! wz(2) = wz(2) + p(pstart+(i-1)) * z_ee_monom(x1, y1, x2, y2, i)
|
||||
! enddo
|
||||
! ! if(debug) write(*,*) 'wz_ee=', wz(1:2)
|
||||
! end function wz_ee
|
||||
subroutine wz_ee(wz, p, key, x1, y1, x2, y2)
|
||||
use select_monom_mod, only: w_ee_monom, z_ee_monom
|
||||
real(dp), intent(inout) :: wz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), x1, y1, x2, y2
|
||||
integer(idp) :: i, pstart
|
||||
pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
wz(1) = wz(1) + p(pstart + (i - 1))*w_ee_monom(x1, y1, x2, y2, i)
|
||||
wz(2) = wz(2) + p(pstart + (i - 1))*z_ee_monom(x1, y1, x2, y2, i)
|
||||
end do
|
||||
! if(debug) write(*,*) 'wz_ee=', wz(1:2)
|
||||
end subroutine wz_ee
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! function wz_aee(p,key,a, x1,y1,x2,y2) result(wz)
|
||||
! use select_monom_mod,only : w_aee_monom, z_aee_monom
|
||||
! real(dp) wz(2)
|
||||
! integer(idp),intent(in) :: key
|
||||
! real(dp),intent(in) :: p(:), a, x1, y1, x2, y2
|
||||
! integer(idp) :: i, pstart
|
||||
! wz = 0.d0; pstart = pst(1,key)
|
||||
! do i = 1, pst(2,key)
|
||||
! wz(1) = wz(1)
|
||||
! > + p(pstart+(i-1)) * w_aee_monom(a, x1, y1, x2, y2, i)
|
||||
! wz(2) = wz(2)
|
||||
! > + p(pstart+(i-1)) * z_aee_monom(a, x1, y1, x2, y2, i)
|
||||
! enddo
|
||||
! ! if(debug) write(*,*) 'wz_aee=', wz(1:2)
|
||||
! end function wz_aee
|
||||
subroutine wz_aee(wz, p, key, a, x1, y1, x2, y2)
|
||||
use select_monom_mod, only: w_aee_monom, z_aee_monom
|
||||
real(dp), intent(inout) :: wz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, x1, y1, x2, y2
|
||||
integer(idp) :: i, pstart
|
||||
pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
wz(1) = wz(1)&
|
||||
&+ p(pstart + (i - 1))*w_aee_monom(a, x1, y1, x2, y2, i)
|
||||
wz(2) = wz(2)&
|
||||
&+ p(pstart + (i - 1))*z_aee_monom(a, x1, y1, x2, y2, i)
|
||||
end do
|
||||
! if(debug) write(*,*) 'wz_aee=', wz(1:2)
|
||||
end subroutine wz_aee
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! function wz_aaae(p,key,a,b,c,x,y) result(wz)
|
||||
! use select_monom_mod,only : w_aaae_monom, z_aaae_monom
|
||||
! real(dp) :: wz(2)
|
||||
! integer(idp),intent(in) :: key
|
||||
! real(dp),intent(in) :: p(:), a,b,c, x, y
|
||||
! integer(idp) :: i, pstart
|
||||
! wz = 0.d0; pstart = pst(1,key)
|
||||
! do i = 1, pst(2,key)
|
||||
! wz(1) = wz(1)
|
||||
! > + p(pstart+(i-1)) * w_aaae_monom(a,b,c, x, y, i)
|
||||
! wz(2) = wz(2)
|
||||
! > + p(pstart+(i-1)) * z_aaae_monom(a,b,c, x, y, i)
|
||||
! enddo
|
||||
! ! if(debug) write(*,*) 'wz_aaae=', wz(1:2)
|
||||
! end function wz_aaae
|
||||
subroutine wz_aaae(wz, p, key, a, b, c, x, y)
|
||||
use select_monom_mod, only: w_aaae_monom, z_aaae_monom
|
||||
real(dp), intent(inout) :: wz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, b, c, x, y
|
||||
integer(idp) :: i, pstart
|
||||
pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
wz(1) = wz(1)&
|
||||
&+ p(pstart + (i - 1))*w_aaae_monom(a, b, c, x, y, i)
|
||||
wz(2) = wz(2)&
|
||||
&+ p(pstart + (i - 1))*z_aaae_monom(a, b, c, x, y, i)
|
||||
end do
|
||||
! if(debug) write(*,*) 'wz_aaae=', wz(1:2)
|
||||
end subroutine wz_aaae
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! function wz_eee(p,key,x1,y1,x2,y2,x3,y3) result(wz)
|
||||
! use select_monom_mod,only : w_eee_monom, z_eee_monom
|
||||
! real(dp) wz(2)
|
||||
! integer(idp),intent(in) :: key
|
||||
! real(dp),intent(in) :: p(:), x1, y1, x2, y2, x3, y3
|
||||
! integer(idp) :: i, pstart
|
||||
! wz = 0.d0; pstart = pst(1,key)
|
||||
! do i = 1, pst(2,key)
|
||||
! wz(1) = wz(1) + p(pstart+(i-1)) * w_eee_monom(x1, y1, x2, y2,x3
|
||||
! > ,y3, i)
|
||||
! wz(2) = wz(2) + p(pstart+(i-1)) * z_eee_monom(x1, y1, x2, y2,x3
|
||||
! > ,y3, i)
|
||||
! enddo
|
||||
! ! if(debug) write(*,*) 'wz_eee=', wz(1:2)
|
||||
! end function wz_eee
|
||||
subroutine wz_eee(wz, p, key, x1, y1, x2, y2, x3, y3)
|
||||
use select_monom_mod, only: w_eee_monom, z_eee_monom
|
||||
real(dp), intent(inout) :: wz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), x1, y1, x2, y2, x3, y3
|
||||
integer(idp) :: i, pstart
|
||||
pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
wz(1) = wz(1) + p(pstart + (i - 1))*w_eee_monom(x1, y1, x2, y2, x3&
|
||||
&, y3, i)
|
||||
wz(2) = wz(2) + p(pstart + (i - 1))*z_eee_monom(x1, y1, x2, y2, x3&
|
||||
&, y3, i)
|
||||
end do
|
||||
! if(debug) write(*,*) 'wz_eee=', wz(1:2)
|
||||
end subroutine wz_eee
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! function wz_aaee(p,key,a,b, x1,y1,x2,y2) result(wz)
|
||||
! use select_monom_mod,only : w_aaee_monom, z_aaee_monom
|
||||
! real(dp) wz(2)
|
||||
! integer(idp),intent(in) :: key
|
||||
! real(dp),intent(in) :: p(:), a,b, x1, y1, x2, y2
|
||||
! integer(idp) :: i, pstart
|
||||
! wz = 0.d0; pstart = pst(1,key)
|
||||
! do i = 1, pst(2,key)
|
||||
! wz(1) = wz(1)
|
||||
! > + p(pstart+(i-1)) * w_aaee_monom(a,b, x1, y1, x2, y2, i)
|
||||
! wz(2) = wz(2)
|
||||
! > + p(pstart+(i-1)) * z_aaee_monom(a,b, x1, y1, x2, y2, i)
|
||||
! enddo
|
||||
! ! if(debug) write(*,*) 'wz_aaee=', wz(1:2)
|
||||
! end function wz_aaee
|
||||
subroutine wz_aaee(wz, p, key, a, b, x1, y1, x2, y2)
|
||||
use select_monom_mod, only: w_aaee_monom, z_aaee_monom
|
||||
real(dp), intent(inout) :: wz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, b, x1, y1, x2, y2
|
||||
integer(idp) :: i, pstart
|
||||
pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
wz(1) = wz(1)&
|
||||
&+ p(pstart + (i - 1))*w_aaee_monom(a, b, x1, y1, x2, y2, i)
|
||||
wz(2) = wz(2)&
|
||||
&+ p(pstart + (i - 1))*z_aaee_monom(a, b, x1, y1, x2, y2, i)
|
||||
end do
|
||||
end subroutine wz_aaee
|
||||
|
||||
!====================================================================================================
|
||||
function wz_eYlm(p, key, x1, y1, theta, phi) result(wz)
|
||||
use sphericalharmonics_mod, only: Re_Y_lm, Im_Y_lm
|
||||
use select_monom_mod, only: w_ee_monom, z_ee_monom
|
||||
real(dp) wz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:)
|
||||
real(dp), intent(in) :: x1, y1, theta, phi
|
||||
real(dp) :: x2, y2
|
||||
wz = 0.d0
|
||||
x2 = Re_Y_lm(1, 1, theta, phi)
|
||||
y2 = Im_Y_lm(1, 1, theta, phi)
|
||||
call wz_ee(wz, p, key, x1, y1, x2, y2)
|
||||
! wz = wz_ee(p, key, x1, y1, x2, y2)
|
||||
end function wz_eYlm
|
||||
|
||||
function wz_ylm(p, key, theta, phi, r, umb) result(wz)
|
||||
use sphericalharmonics_mod, only: Re_Y_lm, Im_Y_lm
|
||||
real(dp) :: wz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:)
|
||||
real(dp), intent(in) :: theta, phi, umb, r
|
||||
integer(idp) :: l, m, count, k, pstart, pnum
|
||||
integer(idp), parameter :: max = 8
|
||||
real(dp) :: term(2), lp(max)
|
||||
lp = 0.d0
|
||||
pstart = pst(1, key)
|
||||
pnum = pst(2, key)
|
||||
if (pnum .gt. max) then
|
||||
error stop 'Error: more parameters then lp lenght '
|
||||
end if
|
||||
lp(1:pnum) = p(pstart:pstart + pnum - 1)
|
||||
wz = 0.d0
|
||||
count = 1
|
||||
do l = 1, max
|
||||
do k = -l, l
|
||||
m = 3*k + 1
|
||||
if (abs(m) <= abs(l)) then
|
||||
count = count + 1
|
||||
if (count .gt. pnum) goto 100
|
||||
term(1) = Re_Y_lm(l, m, theta, phi)
|
||||
term(2) = Im_Y_lm(l, m, theta, phi)
|
||||
if (mod(l - m, 2) .eq. 1) term = term*umb
|
||||
wz = wz + term*lp(count)
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
error stop 'Warning: reached max l in wz_lm'
|
||||
100 continue
|
||||
wz = wz*exp(-dabs(lp(1))*r)
|
||||
end function wz_ylm
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_ylm(p, key, theta, phi, r, umb) result(v)
|
||||
use sphericalharmonics_mod, only: Re_Y_lm
|
||||
real(dp) v
|
||||
! IN variables
|
||||
integer(idp), intent(in) :: key !number of parameters
|
||||
real(dp), intent(in) :: theta, phi, umb, r ! koordinates
|
||||
real(dp), intent(in) :: p(:) !parameter
|
||||
! internal
|
||||
integer(idp), parameter :: max = 8
|
||||
real(dp) lp(max), term
|
||||
! loop control
|
||||
integer(idp) l, m, count, pstart, pnum
|
||||
lp = 0.d0
|
||||
pstart = pst(1, key)
|
||||
pnum = pst(2, key)
|
||||
if (pnum .gt. max) then
|
||||
error stop 'ERROR: more parameters then lp lenght in v_ylm'
|
||||
end if
|
||||
lp(1:pnum) = p(pstart:pstart + pnum - 1)
|
||||
count = 1
|
||||
v = 0.d0
|
||||
do l = 1, max
|
||||
do m = 0, l, 3
|
||||
count = count + 1
|
||||
if (count .gt. pnum) goto 100
|
||||
term = Re_Y_lm(l, m, theta, phi)
|
||||
if (mod(l - m, 2) .eq. 1) term = term*umb
|
||||
v = v + term*lp(count)
|
||||
end do
|
||||
end do
|
||||
error stop 'Warning: reached max l in v_lm'
|
||||
100 continue
|
||||
v = v*exp(-dabs(lp(1))*r)
|
||||
end function v_ylm
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_eYlm(p, key, theta, phi, x2, y2) result(v)
|
||||
use sphericalharmonics_mod, only: Re_Y_lm, Im_Y_lm
|
||||
use select_monom_mod, only: v_ee_monom
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), x2, y2, theta, phi
|
||||
real(dp) :: x1, y1
|
||||
v = 0.d0
|
||||
x1 = Re_Y_lm(1, 1, theta, phi); y1 = Im_Y_lm(1, 1, theta, phi)
|
||||
v = v_ee(p, key, x1, y1, x2, y2)
|
||||
! if(debug) write(*,*) 'v_eYlm=', v
|
||||
end function v_eYlm
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function v_aYlm(p, key, a, theta, phi) result(v)
|
||||
use sphericalharmonics_mod, only: Re_Y_lm, Im_Y_lm
|
||||
real(dp) :: v
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), a, theta, phi
|
||||
real(dp) :: x1, y1
|
||||
v = 0.d0
|
||||
x1 = Re_Y_lm(1, 1, theta, phi); y1 = Im_Y_lm(1, 1, theta, phi)
|
||||
v = v_ae(p, key, a, x1, y1)
|
||||
end function v_aYlm
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function q_u(p, key, u, split_ref) result(q)
|
||||
use select_monom_mod, only: q_u_monom
|
||||
integer, optional, intent(in) :: split_ref
|
||||
real(dp) q
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), u
|
||||
integer(idp) :: i, pstart
|
||||
integer(idp) :: ii, ee
|
||||
q = 0.d0; pstart = pst(1, key)
|
||||
ii = 1; ee = pst(2, key)
|
||||
call index_split_ref(ii, ee, 2, split_ref)
|
||||
do i = ii, ee
|
||||
q = q + q_u_monom(u, i)*p(pstart + (i - 1))
|
||||
end do
|
||||
end function q_u
|
||||
|
||||
function q_ua(p, key, u, a) result(q)
|
||||
use select_monom_mod, only: q_ua_monom
|
||||
real(dp) :: q
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), u, a
|
||||
integer(idp) :: pstart, i
|
||||
q = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
q = q + p(pstart + (i - 1))*q_ua_monom(u, a, i)
|
||||
end do
|
||||
end function q_ua
|
||||
|
||||
function q_ue(p, key, u, x, y) result(q)
|
||||
use select_monom_mod, only: q_ue_monom
|
||||
real(dp) :: q
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), u, x, y
|
||||
integer(idp) :: i, pstart
|
||||
q = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
q = q + p(pstart + (i - 1))*q_ue_monom(u, x, y, i)
|
||||
end do
|
||||
end function q_ue
|
||||
|
||||
function q_uae(p, key, u, a, x, y) result(q)
|
||||
use select_monom_mod, only: q_uae_monom
|
||||
real(dp) :: q
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), u, a, x, y
|
||||
integer(idp) :: i, pstart
|
||||
q = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
q = q + p(pstart + (i - 1))*q_uae_monom(u, a, x, y, i)
|
||||
end do
|
||||
end function q_uae
|
||||
|
||||
function q_uee(p, key, u, x1, y1, x2, y2) result(q)
|
||||
use select_monom_mod, only: q_uee_monom
|
||||
real(dp) :: q
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), u, x1, y1, x2, y2
|
||||
integer(idp) :: i, pstart
|
||||
q = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
q = q + p(pstart + (i - 1))*q_uee_monom(u, x1, y1, x2, y2, i)
|
||||
end do
|
||||
end function q_uee
|
||||
|
||||
function q_uaee(p, key, u, a, x1, y1, x2, y2) result(q)
|
||||
use select_monom_mod, only: q_uaee_monom
|
||||
real(dp) :: q
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), u, a, x1, y1, x2, y2
|
||||
integer(idp) :: i, pstart
|
||||
q = 0.d0; pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
q = q + p(pstart + (i - 1))*q_uaee_monom(u, a, x1, y1, x2, y2, i)
|
||||
end do
|
||||
end function q_uaee
|
||||
|
||||
subroutine qwz_ue(qwz, p, key, u, x, y, split_ref)
|
||||
use select_monom_mod, only: qw_ue_monom, qz_ue_monom
|
||||
integer, optional, intent(in) :: split_ref
|
||||
real(dp), intent(inout) :: qwz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), u, x, y
|
||||
integer(idp) :: i, pstart
|
||||
integer(idp) :: ii, ee
|
||||
pstart = pst(1, key)
|
||||
ii = 1; ee = pst(2, key)
|
||||
call index_split_ref(ii, ee, 2, split_ref)
|
||||
do i = ii, ee
|
||||
qwz(1) = qwz(1) + qw_ue_monom(u, x, y, i)*p(pstart + (i - 1))
|
||||
qwz(2) = qwz(2) + qz_ue_monom(u, x, y, i)*p(pstart + (i - 1))
|
||||
end do
|
||||
end subroutine qwz_ue
|
||||
|
||||
subroutine qwz_uae(qwz, p, key, u, a, x, y)
|
||||
use select_monom_mod, only: qw_uae_monom, qz_uae_monom
|
||||
real(dp), intent(inout) :: qwz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), u, a, x, y
|
||||
integer(idp) :: i, pstart
|
||||
pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
qwz(1) = qwz(1) + qw_uae_monom(u, a, x, y, i)*p(pstart + (i - 1))
|
||||
qwz(2) = qwz(2) + qz_uae_monom(u, a, x, y, i)*p(pstart + (i - 1))
|
||||
end do
|
||||
end subroutine qwz_uae
|
||||
|
||||
subroutine qwz_uee(qwz, p, key, u, x1, y1, x2, y2)
|
||||
use select_monom_mod, only: qw_uee_monom, qz_uee_monom
|
||||
real(dp), intent(inout) :: qwz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), u, x1, y1, x2, y2
|
||||
integer(idp) :: i, pstart
|
||||
pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
qwz(1) = qwz(1) + qw_uee_monom(u, x1, y1, x2, y2, i)*p(pstart + (i - 1))
|
||||
qwz(2) = qwz(2) + qz_uee_monom(u, x1, y1, x2, y2, i)*p(pstart + (i - 1))
|
||||
end do
|
||||
end subroutine qwz_uee
|
||||
|
||||
subroutine qwz_uaee(qwz, p, key, u, a, x1, y1, x2, y2)
|
||||
use select_monom_mod, only: qw_uaee_monom, qz_uaee_monom
|
||||
real(dp), intent(inout) :: qwz(2)
|
||||
integer(idp), intent(in) :: key
|
||||
real(dp), intent(in) :: p(:), u, a, x1, y1, x2, y2
|
||||
integer(idp) :: i, pstart
|
||||
pstart = pst(1, key)
|
||||
do i = 1, pst(2, key)
|
||||
qwz(1) = qwz(1) + qw_uaee_monom(u, a, x1, y1, x2, y2, i)*p(pstart + (i - 1))
|
||||
qwz(2) = qwz(2) + qz_uaee_monom(u, a, x1, y1, x2, y2, i)*p(pstart + (i - 1))
|
||||
end do
|
||||
end subroutine qwz_uaee
|
||||
|
||||
end module diab_pes
|
||||
|
|
@ -0,0 +1,92 @@
|
|||
!Programm evaluating the model for a given set of coordinates
|
||||
program surface
|
||||
use accuracy_constants, only: dp
|
||||
use surface_mod
|
||||
use ctrans_mod, only: int2kart, sq2, sq3, sq6
|
||||
implicit none
|
||||
real(dp), dimension(:), allocatable :: p
|
||||
real(dp), dimension(9) :: x
|
||||
real(dp), dimension(4, 4) :: w, u
|
||||
real(dp), dimension(4) :: e
|
||||
integer :: k,l
|
||||
real(dp), parameter, dimension(6) :: scale_max = [10, 4, 4, 130, 130, 360]
|
||||
real(dp), parameter, dimension(6) :: scale_fact = [1/sq3, 1/sq6, 1/sq2, 1/sq6, 1/sq2, 1._dp]
|
||||
!initialize surface
|
||||
call init_surface(p)
|
||||
x = 0.0_dp
|
||||
!scan the surface
|
||||
do k = 1, 6
|
||||
call ak_scan()
|
||||
end do
|
||||
call H_NH2()
|
||||
|
||||
do k=1,6-1
|
||||
do l=k+1,6
|
||||
call e_2d(k, l)
|
||||
end do
|
||||
end do
|
||||
contains
|
||||
|
||||
subroutine ak_scan()
|
||||
integer, parameter :: n = 1000
|
||||
integer :: i
|
||||
real(dp) :: sym(6)
|
||||
integer :: file_id
|
||||
character(len=100) :: file_name
|
||||
write (file_name, '(A,i0,A)') 'surface_a', k, '.dat'
|
||||
open (newunit=file_id, file=trim(adjustl(file_name)))
|
||||
sym = 0.0_dp
|
||||
do i = -n, n
|
||||
sym(k) = 0.0_dp + scale_max(k)/real(n)*i
|
||||
call int2kart(sym*scale_fact, x)
|
||||
call eval_surface(e, w, u, x, p)
|
||||
write (file_id, '(*(F20.14))') sym, x, e
|
||||
end do
|
||||
close (file_id)
|
||||
end subroutine ak_scan
|
||||
|
||||
!subroutine to scan single H dissociation
|
||||
subroutine H_NH2()
|
||||
integer, parameter :: n = 1000
|
||||
integer :: i
|
||||
real(dp) :: sym(6)
|
||||
integer :: file_id
|
||||
character(len=100) :: file_name
|
||||
file_name = 'H+NH2+.dat'
|
||||
open (newunit=file_id, file=trim(adjustl(file_name)))
|
||||
sym = 0.0_dp
|
||||
do i = -n, n
|
||||
sym(1) = 0.0_dp + scale_max(2)/real(n)*i
|
||||
sym(2) = 0.0_dp + scale_max(2)/real(n)*i
|
||||
call int2kart(sym*scale_fact, x)
|
||||
call eval_surface(e, w, u, x, p)
|
||||
write (file_id, '(*(F20.14))') sym, x, e
|
||||
end do
|
||||
close (file_id)
|
||||
end subroutine H_NH2
|
||||
|
||||
subroutine e_2d(d1, d2)
|
||||
integer, parameter :: n = 200
|
||||
integer, intent(in) :: d1, d2
|
||||
integer :: i, j
|
||||
real(dp) :: sym(6)
|
||||
integer :: file_id
|
||||
character(len=100) :: file_name
|
||||
write (file_name, '(A,i0,A,i0,A)') 'surface_2d_', d1, '_', d2, '.dat'
|
||||
open (newunit=file_id, file=trim(adjustl(file_name)))
|
||||
sym = 0.0_dp
|
||||
do i = -n, n
|
||||
do j = -n, n
|
||||
sym(d1) = 0.0_dp + scale_max(d1)/real(n)*i
|
||||
sym(d2) = 0.0_dp + scale_max(d2)/real(n)*j
|
||||
call int2kart(sym*scale_fact, x)
|
||||
call eval_surface(e, w, u, x, p)
|
||||
write (file_id, '(*(F20.14))') sym, x, e
|
||||
end do
|
||||
write (file_id, '(A)') ''
|
||||
end do
|
||||
close (file_id)
|
||||
end subroutine e_2d
|
||||
|
||||
end program surface
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,575 @@
|
|||
! Module contains the spherical harmonics up to l=5 m=-l,..,0,..,l listed on https://en.wikipedia.org/wiki/Table_of_spherical_harmonics from 19.07.2022
|
||||
! the functions are implementde by calling switch case function for given m or l value and return the corresdpondig value for given theta and phi
|
||||
! the functions are split for diffrent l values and are named by P_lm.
|
||||
! example for l=1 and m=-1 the realpart of the spherical harmonic for given theta and phi
|
||||
! is returned by calling Re_Y_lm(1,-1,theta,phi) which itself calls the corresponding function P_1m(m,theta) and multilpies it by cos(m*phi) to account for the real part of exp(m*phi*i)
|
||||
! Attention the legendre polynoms are shifted to account for the missing zero order term in spherical harmonic expansions
|
||||
module sphericalharmonics_mod
|
||||
use accuracy_constants, only: dp, idp
|
||||
implicit none
|
||||
real(kind=dp), parameter :: PI = 4.0_dp * atan( 1.0_dp )
|
||||
contains
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function Y_lm( l , m , theta , phi ) result( y )
|
||||
integer(kind=idp), intent( in ) :: l , m
|
||||
real(kind=dp), intent( in ) :: theta , phi
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case ( l )
|
||||
case (1)
|
||||
y = Y_1m( m , theta , phi )
|
||||
case (2)
|
||||
y = Y_2m( m , theta , phi )
|
||||
case (3)
|
||||
y = Y_3m( m , theta , phi )
|
||||
case (4)
|
||||
y = Y_4m( m , theta , phi )
|
||||
case (5)
|
||||
y = Y_5m( m , theta , phi )
|
||||
case default
|
||||
write(errmesg,'(A,i0)')&
|
||||
&'order of spherical harmonics not implemented', l
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
end select
|
||||
end function Y_lm
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function Re_Y_lm( l , m , theta , phi ) result( y )
|
||||
integer(kind=idp), intent( in ) :: l , m
|
||||
real(kind=dp), intent( in ) :: theta , phi
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case ( l )
|
||||
case (1)
|
||||
y = P_1m( m , theta ) * cos(m*phi)
|
||||
case (2)
|
||||
y = P_2m( m , theta ) * cos(m*phi)
|
||||
case (3)
|
||||
y = P_3m( m , theta ) * cos(m*phi)
|
||||
case (4)
|
||||
y = P_4m( m , theta ) * cos(m*phi)
|
||||
case (5)
|
||||
y = P_5m( m , theta ) * cos(m*phi)
|
||||
case (6)
|
||||
y = P_6m( m , theta ) * cos(m*phi)
|
||||
case default
|
||||
write(errmesg,'(A,i0)')&
|
||||
&'order of spherical harmonics not implemented', l
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
end select
|
||||
end function Re_Y_lm
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function Im_Y_lm( l , m , theta , phi ) result( y )
|
||||
integer(kind=idp), intent( in ) :: l , m
|
||||
real(kind=dp), intent( in ) :: theta , phi
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case ( l )
|
||||
case (1)
|
||||
y = P_1m( m , theta ) * sin(m*phi)
|
||||
case (2)
|
||||
y = P_2m( m , theta ) * sin(m*phi)
|
||||
case (3)
|
||||
y = P_3m( m , theta ) * sin(m*phi)
|
||||
case (4)
|
||||
y = P_4m( m , theta ) * sin(m*phi)
|
||||
case (5)
|
||||
y = P_5m( m , theta ) * sin(m*phi)
|
||||
case (6)
|
||||
y = P_6m( m , theta ) * sin(m*phi)
|
||||
case default
|
||||
write(errmesg,'(a,i0)')&
|
||||
&'order of spherical harmonics not implemented',l
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
end select
|
||||
end function Im_Y_lm
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function Y_1m( m , theta , phi ) result( y )
|
||||
integer(kind=idp),intent( in ):: m
|
||||
real(kind=dp),intent( in ):: theta , phi
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case ( m )
|
||||
case (-1)
|
||||
y = 0.5_dp*sqrt(3.0_dp/(PI*2.0_dp))*sin(theta)*cos(phi)
|
||||
|
||||
case (0)
|
||||
y = 0.5_dp*sqrt(3.0_dp/PI)*cos(theta)
|
||||
|
||||
case (1)
|
||||
y = -0.5_dp*sqrt(3.0_dp/(PI*2.0_dp))*sin(theta)*cos(phi)
|
||||
|
||||
case default
|
||||
write(errmesg,'(a,i0)') 'in y_1m given m not logic, ', m
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
end select
|
||||
end function Y_1m
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function Y_2m(m,theta,phi) result(y)
|
||||
integer(kind=idp),intent(in):: m
|
||||
real(kind=dp),intent(in):: theta,phi
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case (m)
|
||||
case (-2)
|
||||
y=0.25_dp*sqrt(15.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*cos(2.0_dp*phi)
|
||||
|
||||
case (-1)
|
||||
y=0.5_dp*sqrt(15.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)*cos(theta)*cos(phi)
|
||||
|
||||
case (0)
|
||||
y=0.25_dp*sqrt(5.0_dp/PI)&
|
||||
&*(3.0_dp*cos(theta)**2-1.0_dp)
|
||||
|
||||
case (1)
|
||||
y=-0.5_dp*sqrt(15.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)*cos(theta)*cos(phi)
|
||||
|
||||
case (2)
|
||||
y=0.25_dp*sqrt(15.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*cos(2.0_dp*phi)
|
||||
|
||||
case default
|
||||
write(errmesg,'(A,i0)')'in y_2m given m not logic, ', m
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
|
||||
end select
|
||||
end function Y_2m
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function Y_3m(m,theta,phi) result(y)
|
||||
integer(kind=idp), intent(in) :: m
|
||||
real(kind=dp), intent(in) :: theta,phi
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case (m)
|
||||
case (-3)
|
||||
y=0.125_dp*sqrt(35.0_dp/PI)&
|
||||
&*sin(theta)**3*cos(3.0_dp*phi)
|
||||
|
||||
case (-2)
|
||||
y=0.25_dp*sqrt(105.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*cos(theta)*cos(2.0_dp*phi)
|
||||
|
||||
case (-1)
|
||||
y=0.125_dp*sqrt(21.0_dp/(PI))&
|
||||
&*sin(theta)*(5.0_dp*cos(theta)**2-1.0_dp)*cos(phi)
|
||||
|
||||
case (0)
|
||||
y=0.25_dp*sqrt(7.0_dp/PI)&
|
||||
&*(5.0_dp*cos(theta)**3-3.0_dp*cos(theta))
|
||||
|
||||
case (1)
|
||||
y=-0.125_dp*sqrt(21.0_dp/(PI))&
|
||||
&*sin(theta)*(5.0_dp*cos(theta)**2-1.0_dp)*cos(phi)
|
||||
|
||||
case (2)
|
||||
y=0.25_dp*sqrt(105.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*cos(theta)*cos(2.0_dp*phi)
|
||||
|
||||
case (3)
|
||||
y=-0.125_dp*sqrt(35.0_dp/PI)&
|
||||
&*sin(theta)**3*cos(3.0_dp*phi)
|
||||
|
||||
case default
|
||||
write(errmesg,'(A,i0)')'in y_3m given m not logic, ', m
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
|
||||
end select
|
||||
end function Y_3m
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function Y_4m(m,theta,phi) result(y)
|
||||
integer(kind=idp), intent(in) :: m
|
||||
real(kind=dp), intent(in) :: theta,phi
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case (m)
|
||||
case (-4)
|
||||
y=(3.0_dp/16.0_dp)*sqrt(35.0_dp/2.0_dp*PI)&
|
||||
&*sin(theta)**4*cos(4.0_dp*phi)
|
||||
|
||||
case (-3)
|
||||
y=0.375_dp*sqrt(35.0_dp/PI)&
|
||||
&*sin(theta)**3*cos(theta)*cos(3.0_dp*phi)
|
||||
|
||||
case (-2)
|
||||
y=0.375_dp*sqrt(5.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2&
|
||||
&*(7.0_dp*cos(theta)**2-1)*cos(2.0_dp*phi)
|
||||
|
||||
case (-1)
|
||||
y=0.375_dp*sqrt(5.0_dp/(PI))&
|
||||
&*sin(theta)*(7.0_dp*cos(theta)**3&
|
||||
&-3.0_dp*cos(theta))*cos(phi)
|
||||
|
||||
case (0)
|
||||
y=(3.0_dp/16.0_dp)/sqrt(PI)&
|
||||
&*(35.0_dp*cos(theta)**4&
|
||||
&-30.0_dp*cos(theta)**2+3.0_dp)
|
||||
|
||||
case (1)
|
||||
y=-0.375_dp*sqrt(5.0_dp/(PI))&
|
||||
&*sin(theta)*(7.0_dp*cos(theta)**3&
|
||||
&-3.0_dp*cos(theta))*cos(phi)
|
||||
|
||||
case (2)
|
||||
y=0.375_dp*sqrt(5.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*(7.0_dp*cos(theta)**2-1.0_dp)&
|
||||
&*cos(2*phi)
|
||||
|
||||
case (3)
|
||||
y=-0.375_dp*sqrt(35.0_dp/PI)&
|
||||
&*sin(theta)**3*cos(theta)*cos(3.0_dp*phi)
|
||||
|
||||
case (4)
|
||||
y=(3.0_dp/16.0_dp)*sqrt(35.0_dp/2.0_dp*PI)&
|
||||
&*sin(theta)**4*cos(4.0_dp*phi)
|
||||
|
||||
case default
|
||||
write(errmesg,'(a,i0)')'in y_4m given m not logic, ', m
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
|
||||
end select
|
||||
end function Y_4m
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function Y_5m(m,theta,phi) result(y)
|
||||
integer(kind=idp), intent(in) :: m
|
||||
real(kind=dp), intent(in) :: theta,phi
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case (m)
|
||||
case (-5)
|
||||
y=(3.0_dp/32.0_dp)*sqrt(77.0_dp/PI)&
|
||||
&*sin(theta)**5*cos(5*phi)
|
||||
|
||||
case (-4)
|
||||
y=(3.0_dp/16.0_dp)*sqrt(385.0_dp/2.0_dp*PI)&
|
||||
&*sin(theta)**4*cos(theta)*cos(4*phi)
|
||||
|
||||
case (-3)
|
||||
y=(1.0_dp/32.0_dp)*sqrt(385.0_dp/PI)&
|
||||
&*sin(theta)**3*(9*cos(theta)**2-1.0_dp)*cos(3*phi)
|
||||
|
||||
case (-2)
|
||||
y=0.125*sqrt(1155.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*(3*cos(theta)**3-cos(theta))*cos(2*phi)
|
||||
|
||||
case (-1)
|
||||
y=(1.0_dp/16.0_dp)*sqrt(165.0_dp/(2.0_dp*PI))&
|
||||
&*sin(theta)*(21.0_dp*cos(theta)**4&
|
||||
&-14.0_dp*cos(theta)**2+1.0_dp)*cos(phi)
|
||||
|
||||
case (0)
|
||||
y=(1.0_dp/16.0_dp)/sqrt(11.0_dp/PI)&
|
||||
&*(63.0_dp*cos(theta)**5-70.0_dp*cos(theta)**3&
|
||||
&+15.0_dp*cos(theta))
|
||||
|
||||
case (1)
|
||||
y=(-1.0_dp/16.0_dp)*sqrt(165.0_dp/(2.0_dp*PI))&
|
||||
&*sin(theta)*(21.0_dp*cos(theta)**4&
|
||||
&-14.0_dp*cos(theta)**2+1.0_dp)*cos(phi)
|
||||
|
||||
case (2)
|
||||
y=0.125*sqrt(1155.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*(3*cos(theta)**3-cos(theta))*cos(2*phi)
|
||||
|
||||
case (3)
|
||||
y=(-1.0_dp/32.0_dp)*sqrt(385.0_dp/PI)&
|
||||
&*sin(theta)**3*(9.0_dp*cos(theta)**2-1.0_dp)&
|
||||
&*cos(3.0_dp*phi)
|
||||
|
||||
case (4)
|
||||
y=(3.0_dp/16.0_dp)*sqrt(385.0_dp/2.0_dp*PI)&
|
||||
&*sin(theta)**4*cos(theta)*cos(4.0_dp*phi)
|
||||
|
||||
case (5)
|
||||
y=(-3.0_dp/32.0_dp)*sqrt(77.0_dp/PI)&
|
||||
&*sin(theta)**5*cos(5.0_dp*phi)
|
||||
|
||||
case default
|
||||
write(errmesg,'(A,i0)')'in y_5m given m not logic, ', m
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
|
||||
end select
|
||||
end function Y_5m
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function P_1m( m , theta ) result( y )
|
||||
! >Function returns the value of the corresponding normalized Associated legendre polynom for l=1 and given m and theta
|
||||
integer(kind=idp),intent( in ):: m
|
||||
real(kind=dp),intent( in ):: theta
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case ( m )
|
||||
case (-1)
|
||||
y = 0.5_dp*sqrt(3.0_dp/(PI*2.0_dp))*sin(theta)
|
||||
|
||||
case (0)
|
||||
y = 0.5_dp*sqrt(3.0_dp/PI)*(cos(theta)-1.0_dp) ! -1 is subtracted to shift so that for theta=0 y=0
|
||||
|
||||
case (1)
|
||||
y = -0.5_dp*sqrt(3.0_dp/(PI*2.0_dp))*sin(theta)
|
||||
|
||||
case default
|
||||
write(errmesg,'(A,i0)')'in p_1m given m not logic, ', m
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
|
||||
end select
|
||||
end function P_1m
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function P_2m( m , theta ) result( y )
|
||||
! >Function returns the value of the corresponding normalized Associated legendre polynom for l=2 and given m and theta
|
||||
integer(kind=idp),intent(in):: m
|
||||
real(kind=dp),intent(in):: theta
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case ( m )
|
||||
case (-2)
|
||||
y=0.25_dp*sqrt(15.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2
|
||||
|
||||
case (-1)
|
||||
y=0.5_dp*sqrt(15.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)*cos(theta)
|
||||
|
||||
case (0)
|
||||
y = (3.0_dp*cos(theta)**2-1.0_dp)
|
||||
y = y - 2.0_dp !2.0 is subtracted to shift so that for theta=0 y=0
|
||||
y = y * 0.25_dp*sqrt(5.0_dp/PI) ! normalize
|
||||
|
||||
case (1)
|
||||
y = -0.5_dp*sqrt(15.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)*cos(theta)
|
||||
|
||||
case (2)
|
||||
y = 0.25_dp*sqrt(15.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2
|
||||
|
||||
case default
|
||||
write(errmesg,'(A,i0)')'in p_2m given m not logic, ', m
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
|
||||
end select
|
||||
end function P_2m
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function P_3m( m , theta ) result( y )
|
||||
! >Function returns the value of the corresponding normalized Associated legendre polynom for l=3 and given m and theta
|
||||
integer(kind=idp), intent(in) :: m
|
||||
real(kind=dp), intent(in) :: theta
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case ( m )
|
||||
case (-3)
|
||||
y=0.125_dp*sqrt(35.0_dp/PI)&
|
||||
&*sin(theta)**3
|
||||
|
||||
case (-2)
|
||||
y=0.25_dp*sqrt(105.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*cos(theta)
|
||||
|
||||
case (-1)
|
||||
y=0.125_dp*sqrt(21.0_dp/(PI))&
|
||||
&*sin(theta)*(5*cos(theta)**2-1.0_dp)
|
||||
|
||||
case (0)
|
||||
y=(5.0_dp*cos(theta)**3-3*cos(theta))
|
||||
y=y-2.0_dp ! 2.0 is subtracted to shift so that for theta=0 y=0
|
||||
y=y*0.25_dp*sqrt(7.0_dp/PI) ! normalize
|
||||
|
||||
case (1)
|
||||
y=-0.125_dp*sqrt(21.0_dp/(PI))&
|
||||
&*sin(theta)*(5.0_dp*cos(theta)**2-1.0_dp)
|
||||
|
||||
case (2)
|
||||
y=0.25*sqrt(105.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*cos(theta)
|
||||
|
||||
case (3)
|
||||
y=-0.125*sqrt(35.0_dp/PI)&
|
||||
&*sin(theta)**3
|
||||
|
||||
case default
|
||||
write(errmesg,'(A,i0)')'in p_3m given m not logic, ', m
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
|
||||
end select
|
||||
end function P_3m
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function P_4m(m,theta) result(y)
|
||||
! >Function returns the value of the corresponding normalized Associated legendre polynom for l=4 and given m and theta
|
||||
integer(kind=idp), intent(in) :: m
|
||||
real(kind=dp), intent(in) :: theta
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case ( m )
|
||||
case (-4)
|
||||
y=(3.0_dp/16.0_dp)*sqrt(35.0_dp/2.0_dp*PI)&
|
||||
&*sin(theta)**4
|
||||
|
||||
case (-3)
|
||||
y=0.375*sqrt(35.0_dp/PI)&
|
||||
&*sin(theta)**3*cos(theta)
|
||||
|
||||
case (-2)
|
||||
y=0.375*sqrt(5.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*(7*cos(theta)**2-1)
|
||||
|
||||
case (-1)
|
||||
y=0.375*sqrt(5.0_dp/(PI))&
|
||||
&*sin(theta)*(7*cos(theta)**3-3*cos(theta))
|
||||
|
||||
|
||||
case (0)
|
||||
y=(35*cos(theta)**4-30*cos(theta)**2+3)
|
||||
y = y - 8.0_dp !8.0 is subtracted to shift so that for theta=0 y=0
|
||||
y = y * (3.0_dp/16.0_dp)/sqrt(PI)
|
||||
|
||||
case (1)
|
||||
y=-0.375*sqrt(5.0_dp/(PI))&
|
||||
&*sin(theta)*(7*cos(theta)**3-3*cos(theta))
|
||||
|
||||
case (2)
|
||||
y=0.375*sqrt(5.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*(7*cos(theta)**2-1)
|
||||
|
||||
case (3)
|
||||
y=-0.375*sqrt(35.0_dp/PI)&
|
||||
&*sin(theta)**3*cos(theta)
|
||||
|
||||
case (4)
|
||||
y=(3.0_dp/16.0_dp)*sqrt(35.0_dp/2.0_dp*PI)&
|
||||
&*sin(theta)**4
|
||||
|
||||
case default
|
||||
write(errmesg,'(A,i0)')'in p_4m given m not logic, ', m
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
|
||||
end select
|
||||
end function P_4m
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function P_5m(m,theta) result(y)
|
||||
! >Function returns the value of the corresponding normalized Associated legendre polynom for l=5 and given m and theta
|
||||
integer(kind=idp), intent(in) :: m
|
||||
real(kind=dp), intent(in) :: theta
|
||||
real(kind=dp) y
|
||||
character(len=70) :: errmesg
|
||||
select case ( m )
|
||||
case (-5)
|
||||
y=(3.0_dp/32.0_dp)*sqrt(77.0_dp/PI)&
|
||||
&*sin(theta)**5
|
||||
|
||||
case (-4)
|
||||
y=(3.0_dp/16.0_dp)*sqrt(385.0_dp/2.0_dp*PI)&
|
||||
&*sin(theta)**4*cos(theta)
|
||||
|
||||
case (-3)
|
||||
y=(1.0_dp/32.0_dp)*sqrt(385.0_dp/PI)&
|
||||
&*sin(theta)**3*(9*cos(theta)**2-1.0_dp)
|
||||
|
||||
case (-2)
|
||||
y=0.125*sqrt(1155.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*(3*cos(theta)**3-cos(theta))
|
||||
|
||||
case (-1)
|
||||
y=(1.0_dp/16.0_dp)*sqrt(165.0_dp/(2.0_dp*PI))&
|
||||
&*sin(theta)*(21*cos(theta)**4-14*cos(theta)**2+1)
|
||||
|
||||
|
||||
case (0)
|
||||
y = (63*cos(theta)**5-70*cos(theta)**3+15*cos(theta))
|
||||
y = y - 8.0_dp !8.0 is subtracted to shift so that for theta=0 y=0
|
||||
y = y * (1.0_dp/16.0_dp)/sqrt(11.0_dp/PI)
|
||||
|
||||
case (1)
|
||||
y=(-1.0_dp/16.0_dp)*sqrt(165.0_dp/(2.0_dp*PI))&
|
||||
&*sin(theta)*(21*cos(theta)**4-14*cos(theta)**2+1)
|
||||
|
||||
case (2)
|
||||
y=0.125*sqrt(1155.0_dp/(PI*2.0_dp))&
|
||||
&*sin(theta)**2*(3*cos(theta)**3-cos(theta))
|
||||
|
||||
case (3)
|
||||
y=(-1.0_dp/32.0_dp)*sqrt(385.0_dp/PI)&
|
||||
&*sin(theta)**3*(9*cos(theta)**2-1.0_dp)
|
||||
|
||||
case (4)
|
||||
y=(3.0_dp/16.0_dp)*sqrt(385.0_dp/2.0_dp*PI)&
|
||||
&*sin(theta)**4*cos(theta)
|
||||
|
||||
case (5)
|
||||
y=(-3.0_dp/32.0_dp)*sqrt(77.0_dp/PI)&
|
||||
&*sin(theta)**5
|
||||
|
||||
case default
|
||||
write(errmesg,'(A,i0)')'in p_5m given m not logic, ', m
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
|
||||
end select
|
||||
end function P_5m
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
function P_6m(m,theta) result(y)
|
||||
! >Function returns the value of the corresponding normalized Associated legendre polynom for l=6 and given m and theta
|
||||
integer(kind=idp), intent(in) :: m
|
||||
real(kind=dp), intent(in) :: theta
|
||||
real(kind=dp):: y
|
||||
character(len=70) :: errmesg
|
||||
select case ( m )
|
||||
case (-6)
|
||||
y = (1.0_dp/64.0_dp)*sqrt(3003.0_dp/PI)&
|
||||
&* sin(theta)**6
|
||||
case (-5)
|
||||
y = (3.0_dp/32.0_dp)*sqrt(1001.0_dp/PI)&
|
||||
&* sin(theta)**5&
|
||||
&* cos(theta)
|
||||
case (-4)
|
||||
y= (3.0_dp/32.0_dp)*sqrt(91.0_dp/(2.0_dp*PI))&
|
||||
&* sin(theta)**4&
|
||||
&* (11*cos(theta)**2 - 1 )
|
||||
case (-3)
|
||||
y= (1.0_dp/32.0_dp)*sqrt(1365.0_dp/PI)&
|
||||
&* sin(theta)**3&
|
||||
&* (11*cos(theta)**3 - 3*cos(theta) )
|
||||
case (-2)
|
||||
y= (1.0_dp/64.0_dp)*sqrt(1365.0_dp/PI)&
|
||||
&* sin(theta)**2&
|
||||
&* (33*cos(theta)**4 - 18*cos(theta)**2 + 1 )
|
||||
case (-1)
|
||||
y= (1.0_dp/16.0_dp)*sqrt(273.0_dp/(2.0_dp*PI))&
|
||||
&* sin(theta)&
|
||||
&* (33*cos(theta)**5 - 30*cos(theta)**3 + 5*cos(theta) )
|
||||
case (0)
|
||||
y = 231*cos(theta)**6 - 315*cos(theta)**4 + 105*cos(theta)**2-5
|
||||
y = y - 16.0_dp !16.0 is subtracted to shift so that for theta=0 y=0
|
||||
y = y * (1.0_dp/32.0_dp)*sqrt(13.0_dp/PI)
|
||||
case (1)
|
||||
y= -(1.0_dp/16.0_dp)*sqrt(273.0_dp/(2.0_dp*PI))&
|
||||
&* sin(theta)&
|
||||
&* (33*cos(theta)**5 - 30*cos(theta)**3 + 5*cos(theta) )
|
||||
case (2)
|
||||
y= (1.0_dp/64.0_dp)*sqrt(1365.0_dp/PI)&
|
||||
&* sin(theta)**2&
|
||||
&* (33*cos(theta)**4 - 18*cos(theta)**2 + 1 )
|
||||
case (3)
|
||||
y= -(1.0_dp/32.0_dp)*sqrt(1365.0_dp/PI)&
|
||||
&* sin(theta)**3&
|
||||
&* (11*cos(theta)**3 - 3*cos(theta) )
|
||||
case (4)
|
||||
y= (3.0_dp/32.0_dp)*sqrt(91.0_dp/(2.0_dp*PI))&
|
||||
&* sin(theta)**4&
|
||||
&* (11*cos(theta)**2 - 1 )
|
||||
case (5)
|
||||
y= -(3.0_dp/32.0_dp)*sqrt(1001.0_dp/PI)&
|
||||
&* sin(theta)**5 * cos(theta)
|
||||
case (6)
|
||||
y = (1.0_dp/64.0_dp)*sqrt(3003.0_dp/PI)&
|
||||
&* sin(theta)**6
|
||||
case default
|
||||
write(errmesg,'(A,i0)')'in p_6m given m not logic, ', m
|
||||
error stop 'error in spherical harmonics' !error stop errmesg
|
||||
|
||||
end select
|
||||
end function P_6m
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
|
||||
end module
|
||||
|
|
@ -0,0 +1,71 @@
|
|||
module surface_mod
|
||||
use accuracy_constants, only: dp
|
||||
implicit none
|
||||
private
|
||||
public eval_surface
|
||||
contains
|
||||
subroutine eval_surface(e, w, u, x1, p)
|
||||
use ctrans_pes_mod, only: ctrans_pes
|
||||
use diab_pes, only: pote
|
||||
use accuracy_constants, only: dp, idp
|
||||
use dim_parameter, only: ndiab
|
||||
implicit none
|
||||
real(dp), dimension(:, :), intent(out) :: w, u
|
||||
real(dp), dimension(:), intent(out) :: e
|
||||
real(dp), dimension(:), intent(in) :: x1, p
|
||||
real(dp), dimension(size(x1, 1)) :: s, t
|
||||
real(dp), allocatable, dimension(:, :) :: Mat
|
||||
|
||||
!coordinate transformation if needed
|
||||
call ctrans_pes(x1, s, t)
|
||||
write(11,'(*(f18.8))') s
|
||||
block
|
||||
! lapack variables
|
||||
integer(kind=idp), parameter :: lwork = 1000
|
||||
real(kind=dp) work(lwork)
|
||||
integer(kind=idp) info
|
||||
!evaluate model
|
||||
call pote(w, 1, x1, s, t, p, size(p, 1))
|
||||
allocate (Mat, source=w)
|
||||
call dsyev('V', 'U', ndiab, Mat, ndiab, e, work, lwork, info)
|
||||
u(:, :) = Mat(:, :)
|
||||
deallocate (Mat)
|
||||
end block
|
||||
|
||||
end subroutine eval_surface
|
||||
|
||||
! !subroutine init_surface(p)
|
||||
! use dim_parameter, only: ndiab, nstat, ntot, nci ,qn
|
||||
! use parameterkeys, only: parameterkey_read
|
||||
! use fileread_mod, only: get_datfile, internalize_datfile
|
||||
! use io_parameters, only: llen
|
||||
! use accuracy_constants, only: dp
|
||||
! implicit none
|
||||
! real(dp), dimension(:), allocatable, intent(out) :: p
|
||||
! character(len=llen), allocatable, dimension(:) :: infile
|
||||
!
|
||||
! qn = 9
|
||||
! ndiab = 4
|
||||
! nstat = 4
|
||||
! nci = 4
|
||||
! ntot = ndiab + nstat + nci
|
||||
!
|
||||
! block
|
||||
! character(len=:),allocatable :: datnam
|
||||
! integer :: linenum
|
||||
! !get parameter file
|
||||
! call get_datfile(datnam)
|
||||
! !internalize datfile
|
||||
! call internalize_datfile(datnam, infile, linenum, llen)
|
||||
! end block
|
||||
!
|
||||
! !read parameters from file
|
||||
! block
|
||||
! real(dp), dimension(:), allocatable :: p_spread
|
||||
! integer,dimension(:),allocatable :: p_act
|
||||
! integer :: npar
|
||||
! real(dp), parameter :: facspread = 1.0_dp, gspread = 1.0_dp
|
||||
! call parameterkey_read(infile, size(infile, 1), p, p_act, p_spread, npar, gspread, facspread)
|
||||
! end block
|
||||
! end subroutine init_surface
|
||||
end module surface_mod
|
||||
|
|
@ -0,0 +1,82 @@
|
|||
module xy_stretch_lib
|
||||
use accuracy_constants, only: dp,idp
|
||||
implicit none
|
||||
private
|
||||
public eval_surface, init_surface,eval_matrix
|
||||
real(dp), dimension(:), allocatable :: p
|
||||
contains
|
||||
subroutine eval_surface(e, w, u, x1)
|
||||
use ctrans_mod, only: ctrans
|
||||
use diabmodel, only: diab
|
||||
use dim_parameter, only: ndiab
|
||||
implicit none
|
||||
real(dp), dimension(:, :), intent(out) :: w, u
|
||||
real(dp), dimension(:), intent(out) :: e
|
||||
real(dp), dimension(:), intent(in) :: x1
|
||||
real(dp), dimension(size(x1, 1)) :: s, t
|
||||
real(dp), allocatable, dimension(:, :) :: Mat
|
||||
|
||||
!coordinate transformation if needed
|
||||
call ctrans(x1, s, t)
|
||||
|
||||
block
|
||||
! lapack variables
|
||||
integer(kind=idp), parameter :: lwork = 1000
|
||||
real(kind=dp) work(lwork)
|
||||
integer(kind=idp) info
|
||||
!evaluate model
|
||||
call diab(w, 1, x1, s, t, p, size(p, 1))
|
||||
allocate (Mat, source=w)
|
||||
call dsyev('V', 'U', ndiab, Mat, ndiab, e, work, lwork, info)
|
||||
u(:, :) = Mat(:, :)
|
||||
deallocate (Mat)
|
||||
end block
|
||||
|
||||
end subroutine eval_surface
|
||||
|
||||
subroutine eval_matrix(w,x1)
|
||||
use ctrans_mod, only: ctrans
|
||||
use diabmodel, only: diab
|
||||
implicit none
|
||||
real(dp), dimension(:, :), intent(out) :: w
|
||||
real(dp), dimension(:), intent(in) :: x1
|
||||
real(dp), dimension(size(x1, 1)) :: s, t
|
||||
|
||||
!coordinate transformation if needed
|
||||
call ctrans(x1, s, t)
|
||||
call diab(w, 1, x1, s, t, p, size(p, 1))
|
||||
end subroutine eval_matrix
|
||||
|
||||
subroutine init_surface()
|
||||
use dim_parameter, only: ndiab, nstat, ntot, nci ,qn
|
||||
use parameterkeys, only: parameterkey_read
|
||||
use fileread_mod, only: get_datfile, internalize_datfile
|
||||
use io_parameters, only: llen
|
||||
use accuracy_constants, only: dp
|
||||
implicit none
|
||||
character(len=llen), allocatable, dimension(:) :: infile
|
||||
|
||||
qn = 9
|
||||
ndiab = 4
|
||||
nstat = 4
|
||||
nci = 4
|
||||
ntot = ndiab + nstat + nci
|
||||
|
||||
block
|
||||
character(len=:),allocatable :: datnam
|
||||
integer :: linenum
|
||||
datnam = 'xy_stretch.par.save'
|
||||
! datnam = 'umbstr.par.save'
|
||||
call internalize_datfile(datnam, infile, linenum, llen)
|
||||
end block
|
||||
|
||||
!read parameters from file
|
||||
block
|
||||
real(dp), dimension(:), allocatable :: p_spread
|
||||
integer,dimension(:),allocatable :: p_act
|
||||
integer :: npar
|
||||
real(dp), parameter :: facspread = 1.0_dp, gspread = 1.0_dp
|
||||
call parameterkey_read(infile, size(infile, 1), p, p_act, p_spread, npar, gspread, facspread)
|
||||
end block
|
||||
end subroutine init_surface
|
||||
end module xy_stretch_lib
|
||||
|
|
@ -0,0 +1,82 @@
|
|||
module xy_stretch_lib
|
||||
use accuracy_constants, only: dp,idp
|
||||
implicit none
|
||||
private
|
||||
public eval_surface, init_surface,eval_matrix
|
||||
real(dp), dimension(:), allocatable, intent(out) :: p
|
||||
contains
|
||||
subroutine eval_surface(e, w, u, x1, p)
|
||||
use ctrans_mod, only: ctrans
|
||||
use diabmodel, only: diab
|
||||
use dim_parameter, only: ndiab
|
||||
implicit none
|
||||
real(dp), dimension(:, :), intent(out) :: w, u
|
||||
real(dp), dimension(:), intent(out) :: e
|
||||
real(dp), dimension(:), intent(in) :: x1
|
||||
real(dp), dimension(size(x1, 1)) :: s, t
|
||||
real(dp), allocatable, dimension(:, :) :: Mat
|
||||
|
||||
!coordinate transformation if needed
|
||||
call ctrans(x1, s, t)
|
||||
|
||||
block
|
||||
! lapack variables
|
||||
integer(kind=idp), parameter :: lwork = 1000
|
||||
real(kind=dp) work(lwork)
|
||||
integer(kind=idp) info
|
||||
!evaluate model
|
||||
call diab(w, 1, x1, s, t, p, size(p, 1))
|
||||
allocate (Mat, source=w)
|
||||
call dsyev('V', 'U', ndiab, Mat, ndiab, e, work, lwork, info)
|
||||
u(:, :) = Mat(:, :)
|
||||
deallocate (Mat)
|
||||
end block
|
||||
|
||||
end subroutine eval_surface
|
||||
|
||||
subroutine eval_matrix(w,x1, p)
|
||||
use ctrans_mod, only: ctrans
|
||||
use diabmodel, only: diab
|
||||
implicit none
|
||||
real(dp), dimension(:, :), intent(out) :: w
|
||||
real(dp), dimension(:), intent(in) :: x1
|
||||
real(dp), dimension(size(x1, 1)) :: s, t
|
||||
|
||||
!coordinate transformation if needed
|
||||
call ctrans(x1, s, t)
|
||||
call diab(w, 1, x1, s, t, p, size(p, 1))
|
||||
end subroutine eval_matrix
|
||||
|
||||
subroutine init_surface(p)
|
||||
use dim_parameter, only: ndiab, nstat, ntot, nci ,qn
|
||||
use parameterkeys, only: parameterkey_read
|
||||
use fileread_mod, only: get_datfile, internalize_datfile
|
||||
use io_parameters, only: llen
|
||||
use accuracy_constants, only: dp
|
||||
implicit none
|
||||
character(len=llen), allocatable, dimension(:) :: infile
|
||||
|
||||
qn = 9
|
||||
ndiab = 4
|
||||
nstat = 4
|
||||
nci = 4
|
||||
ntot = ndiab + nstat + nci
|
||||
|
||||
block
|
||||
character(len=:),allocatable :: datnam
|
||||
integer :: linenum
|
||||
datnam = 'xy_stretch.par.save'
|
||||
! datnam = 'umbstr.par.save'
|
||||
call internalize_datfile(datnam, infile, linenum, llen)
|
||||
end block
|
||||
|
||||
!read parameters from file
|
||||
block
|
||||
real(dp), dimension(:), allocatable :: p_spread
|
||||
integer,dimension(:),allocatable :: p_act
|
||||
integer :: npar
|
||||
real(dp), parameter :: facspread = 1.0_dp, gspread = 1.0_dp
|
||||
call parameterkey_read(infile, size(infile, 1), p, p_act, p_spread, npar, gspread, facspread)
|
||||
end block
|
||||
end subroutine init_surface
|
||||
end module xy_stretch_lib
|
||||
|
|
@ -0,0 +1,83 @@
|
|||
|
||||
module xyumb_stretch_lib
|
||||
use accuracy_constants, only: dp,idp
|
||||
implicit none
|
||||
private
|
||||
public eval_surface, init_surface,eval_matrix
|
||||
real(dp), dimension(:), allocatable :: p
|
||||
contains
|
||||
subroutine eval_surface(e, w, u, x1)
|
||||
use ctrans_mod, only: ctrans
|
||||
use diabmodel, only: diab
|
||||
use dim_parameter, only: ndiab
|
||||
implicit none
|
||||
real(dp), dimension(:, :), intent(out) :: w, u
|
||||
real(dp), dimension(:), intent(out) :: e
|
||||
real(dp), dimension(:), intent(in) :: x1
|
||||
real(dp), dimension(size(x1, 1)) :: s, t
|
||||
real(dp), allocatable, dimension(:, :) :: Mat
|
||||
|
||||
!coordinate transformation if needed
|
||||
call ctrans(x1, s, t)
|
||||
|
||||
block
|
||||
! lapack variables
|
||||
integer(kind=idp), parameter :: lwork = 1000
|
||||
real(kind=dp) work(lwork)
|
||||
integer(kind=idp) info
|
||||
!evaluate model
|
||||
call diab(w, 1, x1, s, t, p, size(p, 1))
|
||||
allocate (Mat, source=w)
|
||||
call dsyev('V', 'U', ndiab, Mat, ndiab, e, work, lwork, info)
|
||||
u(:, :) = Mat(:, :)
|
||||
deallocate (Mat)
|
||||
end block
|
||||
|
||||
end subroutine eval_surface
|
||||
|
||||
subroutine eval_matrix(w,x1)
|
||||
use ctrans_mod, only: ctrans
|
||||
use diabmodel, only: diab
|
||||
implicit none
|
||||
real(dp), dimension(:, :), intent(out) :: w
|
||||
real(dp), dimension(:), intent(in) :: x1
|
||||
real(dp), dimension(size(x1, 1)) :: s, t
|
||||
|
||||
!coordinate transformation if needed
|
||||
call ctrans(x1, s, t)
|
||||
call diab(w, 1, x1, s, t, p, size(p, 1))
|
||||
end subroutine eval_matrix
|
||||
|
||||
subroutine init_surface()
|
||||
use dim_parameter, only: ndiab, nstat, ntot, nci ,qn
|
||||
use parameterkeys, only: parameterkey_read
|
||||
use fileread_mod, only: get_datfile, internalize_datfile
|
||||
use io_parameters, only: llen
|
||||
use accuracy_constants, only: dp
|
||||
implicit none
|
||||
character(len=llen), allocatable, dimension(:) :: infile
|
||||
|
||||
qn = 9
|
||||
ndiab = 4
|
||||
nstat = 4
|
||||
nci = 4
|
||||
ntot = ndiab + nstat + nci
|
||||
|
||||
block
|
||||
character(len=:),allocatable :: datnam
|
||||
integer :: linenum
|
||||
!datnam = 'xy_stretch.par.save'
|
||||
datnam = 'umbstr.par.save'
|
||||
call internalize_datfile(datnam, infile, linenum, llen)
|
||||
end block
|
||||
|
||||
!read parameters from file
|
||||
block
|
||||
real(dp), dimension(:), allocatable :: p_spread
|
||||
integer,dimension(:),allocatable :: p_act
|
||||
integer :: npar
|
||||
real(dp), parameter :: facspread = 1.0_dp, gspread = 1.0_dp
|
||||
call parameterkey_read(infile, size(infile, 1), p, p_act, p_spread, npar, gspread, facspread)
|
||||
end block
|
||||
end subroutine init_surface
|
||||
end module xyumb_stretch_lib
|
||||
|
|
@ -0,0 +1,43 @@
|
|||
!**** Declarations
|
||||
|
||||
real*8 pi
|
||||
real*8 hart2eV, eV2hart
|
||||
real*8 hart2icm, icm2hart
|
||||
real*8 eV2icm, icm2eV
|
||||
real*8 deg2rad, rad2deg
|
||||
integer maxnin,maxnout
|
||||
|
||||
!**********************************************************
|
||||
!**** Parameters
|
||||
!*** maxnin: max. number of neurons in input layer
|
||||
!*** maxnout: max. number of neurons in output layer
|
||||
|
||||
parameter (maxnin=14,maxnout=15)
|
||||
|
||||
!**********************************************************
|
||||
!**** Numerical Parameters
|
||||
!*** infty: largest possible double precision real value.
|
||||
!*** iinfty: largest possible integer value.
|
||||
|
||||
! 3.14159265358979323846264338327950...
|
||||
parameter (pi=3.1415926536D0)
|
||||
|
||||
!**********************************************************
|
||||
!**** Unit Conversion Parameters
|
||||
!*** X2Y: convert from X to Y.
|
||||
!***
|
||||
!*** hart: hartree
|
||||
!*** eV: electron volt
|
||||
!*** icm: inverse centimeters (h*c/cm)
|
||||
!****
|
||||
!*** deg: degree
|
||||
!*** rad: radians
|
||||
|
||||
parameter (hart2icm=219474.69d0)
|
||||
parameter (hart2eV=27.211385d0)
|
||||
parameter (eV2icm=hart2icm/hart2eV)
|
||||
parameter (icm2hart=1.0d0/hart2icm)
|
||||
parameter (eV2hart=1.0d0/hart2eV)
|
||||
parameter (icm2eV=1.0d0/eV2icm)
|
||||
parameter (deg2rad=pi/180.0d0)
|
||||
parameter (rad2deg=1.0d0/deg2rad)
|
||||
|
|
@ -0,0 +1,104 @@
|
|||
module keys_mod
|
||||
implicit none
|
||||
contains
|
||||
subroutine init_keys
|
||||
use io_parameters, only: key
|
||||
character(len=1) prefix(4)
|
||||
parameter (prefix=['N','P','A','S'])
|
||||
!character (len=20) key(4,56)
|
||||
|
||||
character(len=16) parname(56)
|
||||
integer i,j
|
||||
|
||||
! the electronic states are ordered as: A2" E' and A1'
|
||||
! the name convention here is : A2 E1 A1
|
||||
|
||||
! Naming
|
||||
!--------------------
|
||||
! V: V-TERM OR diagonal term
|
||||
! J: Jahn teller coupling term in E
|
||||
! P: pseudo jahn teller between As and E
|
||||
|
||||
! S: it involves the symmetric term of x**2+y**2
|
||||
! N: It does not involve symmetric term
|
||||
|
||||
|
||||
! diagonal term for 4 states
|
||||
!parname( 1)='VA2N0' ! order 0
|
||||
!parname( 2)='VA2S0' ! order 0 with S
|
||||
!parname( 3)='VE1N0' ! order 0 witH N
|
||||
!parname( 4)='VE1S0' ! order 0 with S
|
||||
!parname( 5)='VA1N0' ! order 0 with N
|
||||
!parname( 6)='VA1S0' ! order 0 with S
|
||||
parname( 7)='VA2N1' ! order 1
|
||||
parname( 8)='VA2S1' ! order 1 with S
|
||||
parname( 9)='VE1N1' ! order 1 witH N
|
||||
parname(10)='VE1S1' ! order 1 with S
|
||||
parname(11)='VA1N1' ! order 1 with N
|
||||
parname(12)='VA1S1' ! order 1 with S
|
||||
parname(13)='VA2N2' ! order 2
|
||||
parname(14)='VA2S2' ! order 2 with S ! only 2 term
|
||||
parname(15)='VE1N2' ! order 2 witH N
|
||||
parname(16)='VE1S2' ! order 2 with S
|
||||
parname(17)='VA1N2' ! order 2 with N
|
||||
parname(18)='VA1S2' ! order 2 with S
|
||||
!parname(19)='VA2N3' ! order 3
|
||||
!parname(20)='VA2S3' ! order 3 with S
|
||||
!parname(21)='VE1N3' ! order 3 witH N
|
||||
!parname(22)='VE1S3' ! order 3 with S
|
||||
!parname(23)='VA1N3' ! order 3 with N
|
||||
!parname(24)='VA1S3' ! order 3 with S
|
||||
|
||||
! Jahn teller within E
|
||||
|
||||
parname(25)='JE1N0' ! order 0 with N
|
||||
parname(26)='JE1S0' ! order 0 with S
|
||||
parname(27)='JE1N1' ! order 1 with N
|
||||
parname(28)='JE1S1' ! order 1 with S
|
||||
parname(29)='JE1N2' ! order 2
|
||||
parname(30)='JE1S2' ! order 2
|
||||
parname(31)='JE1N3' ! order 3 ! this has 8 terms
|
||||
!parname(32)='JE1S3' ! order 3 ! i do not have this term
|
||||
|
||||
! PSeudo Jahn teller couplings
|
||||
|
||||
! coupling of A2 with other
|
||||
!parname(33)='PA2E1N0' ! order 0 ! is not there
|
||||
! parname(34)='PA2E1S0' ! order 0 ! is not there
|
||||
! parname(35)='PA2A1N0' ! ORDER 0
|
||||
! parname(36)='PA2A1S0' ! order 0
|
||||
!parname(37)='PA2E1N1' ! order 1
|
||||
!parname(38)='PA2E1S1' ! order 1
|
||||
parname(39)='PA2A1N1' ! order 1
|
||||
parname(40)='PA2A1S1' ! order 1
|
||||
!parname(41)='PA2E1N2' ! order 2
|
||||
!parname(42)='PA2E1S2' ! order 2
|
||||
parname(43)='PA2A1N2'
|
||||
parname(44)='PA2A1S2'
|
||||
parname(45)='PA2E1N3' ! order 3
|
||||
!parname(46)='PA2E1S3' ! order 3
|
||||
parname(47)='PA2A1N3'
|
||||
!parname(48)='PA2A1S3'
|
||||
|
||||
|
||||
|
||||
! coupling of A1 with other
|
||||
! A2 with A1 is already included above
|
||||
|
||||
parname(49)='PE1A1N0' ! order 1
|
||||
parname(50)='PE1A1S0'
|
||||
!parname(51)='PE1A1N1'
|
||||
!parname(52)='PE1A1S1'
|
||||
!parname(53)='PE1A1N2'
|
||||
!parname(54)='PE1A1S2'
|
||||
parname(55)='PE1A1N3'
|
||||
!parname(56)='PE1A1S3'
|
||||
|
||||
do i=1,56
|
||||
do j=1,4
|
||||
key(i, j)=prefix(j)//trim(parname(i))//':'
|
||||
enddo
|
||||
enddo
|
||||
end subroutine
|
||||
|
||||
end module keys_mod
|
||||
|
|
@ -0,0 +1,357 @@
|
|||
module diabmodel
|
||||
use dim_parameter,only:qn,ndiab,pst
|
||||
use accuracy_constants, only:dp,idp
|
||||
implicit none
|
||||
logical :: debug=.false.
|
||||
contains
|
||||
|
||||
subroutine diab(ex,ey,n,x1,x2,p)
|
||||
use ctrans_mod, only:ctrans
|
||||
integer,intent(in),optional :: n ! number of parameter & nmbr of points \
|
||||
integer id
|
||||
integer key,i,j
|
||||
double precision, intent(in)::x1(qn),x2(qn)
|
||||
double precision, contiguous,intent(in):: p(:)! array containing parameters
|
||||
double precision, intent(out)::ex(ndiab,ndiab),ey(ndiab,ndiab)
|
||||
key =87
|
||||
call diab_x(ex,x1,x2,key,p)
|
||||
!ey=0.0d0
|
||||
call diab_y(ey,x1,x2,key,p)
|
||||
end subroutine
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
subroutine diab_x(e,q,t,key,p)
|
||||
|
||||
|
||||
real(dp),intent(in)::q(qn),t(qn)
|
||||
real(dp),intent(out)::e(:,:)
|
||||
integer(idp),intent(in)::key
|
||||
real(dp),intent(in),contiguous::p(:)
|
||||
integer(idp) id,i,j
|
||||
real(dp) tmp_v,xs,xb,ys,yb,a,b,ss,sb,v3_vec(8)
|
||||
xs=q(2)
|
||||
ys=q(3)
|
||||
xb=q(4)
|
||||
yb=q(5)
|
||||
a=q(1)
|
||||
b=q(6)
|
||||
|
||||
ss=xs**2+ys**2 ! totaly symmetric term
|
||||
sb=xb**2+yb**2
|
||||
|
||||
v3_vec( 1) = xs*(xs**2-3*ys**2)
|
||||
v3_vec( 2) = xb*(xb**2-3*yb**2)
|
||||
v3_vec( 3) = xb*(xs**2-ys**2) - 2*yb*xs*ys
|
||||
v3_vec( 4) = xs*(xb**2-yb**2) - 2*ys*xb*yb
|
||||
v3_vec( 5) = ys*(3*xs**2-ys**2)
|
||||
v3_vec( 6) = yb*(3*xb**2-yb**2)
|
||||
v3_vec( 7) = yb*(xs**2-ys**2)+2*xb*xs*ys
|
||||
v3_vec( 8) = ys*(xb**2-yb**2)+2*xs*xb*yb
|
||||
|
||||
|
||||
|
||||
e=0.0d0
|
||||
|
||||
|
||||
|
||||
id=key !1
|
||||
! V-term
|
||||
! order 1
|
||||
e(1,1)=e(1,1)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
id=id+1 !2
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
id=id+1 !3
|
||||
e(4,4)=e(4,4)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
! order 2
|
||||
id=id+1 !4
|
||||
e(1,1)=e(1,1)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)
|
||||
id=id+1 !5
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) +&
|
||||
p(pst(1,id)+2)*(xs*xb-ys*yb)
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) +&
|
||||
p(pst(1,id)+2)*(xs*xb-ys*yb)
|
||||
id=id+1 !6
|
||||
e(4,4)=e(4,4)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) + &
|
||||
p(pst(1,id)+2)*(xs*xb-ys*yb)
|
||||
! order 3
|
||||
id=id+1 !7
|
||||
e(1,1)=e(1,1)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb + b**2* &
|
||||
(p(pst(1,id)+2)*xs +p(pst(1,id)+3)*xb)
|
||||
id=id+1 !8
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb+ b**2* &
|
||||
(p(pst(1,id)+2)*xs +p(pst(1,id)+3)*xb)
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb+ b**2* &
|
||||
(p(pst(1,id)+2)*xs +p(pst(1,id)+3)*xb)
|
||||
id=id+1 !9
|
||||
e(4,4)=e(4,4)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb + b**2* &
|
||||
(p(pst(1,id)+2)*xs +p(pst(1,id)+3)*xb)
|
||||
|
||||
! JAHN TELLER COUPLING W AND Z
|
||||
! order 0
|
||||
id=id+1 !10
|
||||
e(2,2)=e(2,2)+p(pst(1,id))
|
||||
e(3,3)=e(3,3)-p(pst(1,id))
|
||||
! order 1
|
||||
id=id+1 !11
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
e(3,3)=e(3,3)-p(pst(1,id))*xs-p(pst(1,id)+1)*xb
|
||||
e(2,3)=e(2,3)-p(pst(1,id))*ys-p(pst(1,id)+1)*yb
|
||||
! order 2
|
||||
id=id+1 !12
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)+p(pst(1,id)+3)*ss+p(pst(1,id)+4)*sb + &
|
||||
b**2*(p(pst(1,id)+5) +b**4*(p(pst(1,id)+6)) + b**6*(p(pst(1,id)+7)) + &
|
||||
b**8*(p(pst(1,id)+8)))
|
||||
e(3,3)=e(3,3)-(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)+p(pst(1,id)+3)*ss+p(pst(1,id)+4)*sb) -&
|
||||
b**8*(p(pst(1,id)+5))
|
||||
e(2,3)=e(2,3)+p(pst(1,id))*2*xs*ys+p(pst(1,id)+1)*2*xb*yb+ &
|
||||
p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
! order 3
|
||||
|
||||
id=id+1 !13
|
||||
do i=1,4
|
||||
j=i-1
|
||||
e(2,2)=e(2,2)+(p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i)
|
||||
e(3,3)=e(3,3)-(p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i)
|
||||
e(2,3)=e(2,3)+(-p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i+4)
|
||||
enddo
|
||||
|
||||
e(2,2)=e(2,2)+p(pst(1,id)+8)*xs*ss+p(pst(1,id)+9)*xb*sb
|
||||
e(3,3)=e(3,3)-(p(pst(1,id)+8)*xs*ss+p(pst(1,id)+9)*xb*sb)
|
||||
e(2,3)=e(2,3)-p(pst(1,id)+8)*ys*ss-p(pst(1,id)+9)*yb*sb
|
||||
! PSEUDO JAHN TELLER
|
||||
|
||||
! A2 ground state coupled with E
|
||||
! ###################################################
|
||||
! ###################################################
|
||||
|
||||
! order 0
|
||||
id=id+1 !14
|
||||
e(1,2)=e(1,2)+b*p(pst(1,id))
|
||||
|
||||
! order 1
|
||||
id=id+1 !15
|
||||
e(1,2)=e(1,2)+b*(p(pst(1,id))*xs+p(pst(1,id)+1)*xb)
|
||||
e(1,3)=e(1,3)+b*(p(pst(1,id))*ys+p(pst(1,id)+1)*yb)
|
||||
! order 2
|
||||
id=id+1 !16
|
||||
e(1,2)=e(1,2)+b*(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb))
|
||||
e(1,3)=e(1,3)-b*(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)&
|
||||
+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
||||
|
||||
!! THE COUPLING OF A2 WITH A1
|
||||
!####################################################
|
||||
!####################################################
|
||||
! order 1
|
||||
id=id+1 !17
|
||||
e(1,4)=e(1,4)+b*(p(pst(1,id))*xs+p(pst(1,id)+1)*xb)
|
||||
id=id+1 !18
|
||||
e(1,4)=e(1,4)+b*(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb))
|
||||
|
||||
|
||||
!!! THE COUPLING OF A1 WITH E
|
||||
!!####################################################
|
||||
!####################################################
|
||||
! order 0
|
||||
id=id+1 !19
|
||||
e(2,4)=e(2,4)+p(pst(1,id))
|
||||
|
||||
! order 1
|
||||
id=id+1 !20
|
||||
e(2,4)=e(2,4)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
e(3,4)=e(3,4)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
|
||||
! order 2
|
||||
id=id+1 !21
|
||||
e(2,4)=e(2,4)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)
|
||||
e(3,4)=e(3,4)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
|
||||
-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
|
||||
!! End of the model
|
||||
|
||||
e(2,1)=e(1,2)
|
||||
e(3,1)=e(1,3)
|
||||
e(3,2)=e(2,3)
|
||||
e(4,1)=e(1,4)
|
||||
e(4,2)=e(2,4)
|
||||
e(4,3)=e(3,4)
|
||||
end subroutine diab_x
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
! THE Y COMPONENT OF DIPOLE
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
subroutine diab_y(e,q,t,key,p)
|
||||
!integer(idp), intent(in)::npar
|
||||
real(dp),intent(in)::q(qn),t(qn)
|
||||
real(dp),intent(out)::e(:,:)
|
||||
integer(idp),intent(in):: key
|
||||
real(dp),intent(in),contiguous::p(:)
|
||||
integer(idp) id,i,j
|
||||
real(dp) tmp_v,ys,xb,a,b,xs,yb,ss,sb,v3_vec(8)
|
||||
xs=q(2)
|
||||
ys=q(3)
|
||||
xb=q(4)
|
||||
yb=q(5)
|
||||
a=q(1)
|
||||
b=q(6)
|
||||
|
||||
ss=xs**2+ys**2 ! totaly symmetric term
|
||||
sb=xb**2+yb**2
|
||||
|
||||
v3_vec( 1) = xs*(xs**2-3*ys**2)
|
||||
v3_vec( 2) = xb*(xb**2-3*yb**2)
|
||||
v3_vec( 3) = xb*(xs**2-ys**2) - 2*yb*xs*ys
|
||||
v3_vec( 4) = xs*(xb**2-yb**2) - 2*ys*xb*yb
|
||||
v3_vec( 5) = ys*(3*xs**2-ys**2)
|
||||
v3_vec( 6) = yb*(3*xb**2-yb**2)
|
||||
v3_vec( 7) = yb*(xs**2-ys**2)+2*xb*xs*ys
|
||||
v3_vec( 8) = ys*(xb**2-yb**2)+2*xs*xb*yb
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
e=0.0d0
|
||||
! V-term
|
||||
id=key !1
|
||||
e(1,1)=e(1,1)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
|
||||
id=id+1 !2
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
id=id+1 !3
|
||||
e(4,4)=e(4,4)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
! order 2
|
||||
id=id+1 !4
|
||||
e(1,1)=e(1,1)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
|
||||
-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
id=id+1 !5
|
||||
e(2,2)=e(2,2)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
|
||||
-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
|
||||
|
||||
e(3,3)=e(3,3)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
|
||||
-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
id=id+1 !6
|
||||
e(4,4)=e(4,4)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
|
||||
-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
! order 3
|
||||
id=id+1 !7
|
||||
e(1,1)=e(1,1)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb +b**2* &
|
||||
(p(pst(1,id)+2)*ys +p(pst(1,id)+3)*yb)
|
||||
id=id+1 !8
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb+b**2* &
|
||||
(p(pst(1,id)+2)*ys +p(pst(1,id)+3)*yb)
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb +b**2* &
|
||||
(p(pst(1,id)+2)*ys +p(pst(1,id)+3)*yb)
|
||||
id=id+1 !9
|
||||
e(4,4)=e(4,4)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb +b**2* &
|
||||
(p(pst(1,id)+2)*ys +p(pst(1,id)+3)*yb)
|
||||
|
||||
! V- term + totally symmetric coord a
|
||||
|
||||
! JAHN TELLER COUPLING TERM
|
||||
! order 0
|
||||
id=id+1 !10
|
||||
e(2,3)=e(2,3)+p(pst(1,id))
|
||||
! order 1
|
||||
|
||||
id=id+1 !11
|
||||
e(2,2)=e(2,2)-p(pst(1,id))*ys-p(pst(1,id)+1)*yb
|
||||
e(3,3)=e(3,3)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
|
||||
e(2,3)=e(2,3)-p(pst(1,id))*xs-p(pst(1,id)+1)*xb
|
||||
!id=id+1 !12
|
||||
! order 2
|
||||
id=id+1 !12
|
||||
e(2,2)=e(2,2)+p(pst(1,id))*2*xs*ys+p(pst(1,id)+1)*2*xb*yb+p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
e(3,3)=e(3,3)-p(pst(1,id))*2*xs*ys-p(pst(1,id)+1)*2*xb*yb-p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
e(2,3)=e(2,3)-(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)) &
|
||||
-p(pst(1,id)+2)*(xs*xb-ys*yb)+p(pst(1,id)+3)*ss+p(pst(1,id)+4)*sb +&
|
||||
b**8*(p(pst(1,id)+5))
|
||||
! order 3
|
||||
id=id+1 !13
|
||||
do i=1,4
|
||||
j=i-1
|
||||
e(2,2)=e(2,2)+(p(pst(1,id)+j)-p(pst(1,id)+j+4))*v3_vec(i+4)
|
||||
e(3,3)=e(3,3)-(p(pst(1,id)+j)-p(pst(1,id)+j+4))*v3_vec(i+4)
|
||||
e(2,3)=e(2,3)+(p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i)
|
||||
enddo
|
||||
e(2,2)=e(2,2)-p(pst(1,id)+8)*ys*ss-p(pst(1,id)+9)*yb*sb
|
||||
e(3,3)=e(3,3)+p(pst(1,id)+8)*ys*ss+p(pst(1,id)+9)*yb*sb
|
||||
e(2,3)=e(2,3)-p(pst(1,id)+8)*xs*ss-p(pst(1,id)+1)*xb*sb
|
||||
! PSEUDO JAHN TELLER
|
||||
! ORDER 0
|
||||
! THE COUPLING OF A2 GROUND STATE WITH E
|
||||
! ###################################################
|
||||
! ###################################################
|
||||
! order 0
|
||||
id=id+1 !14
|
||||
e(1,3)=e(1,3)-b*(p(pst(1,id)))
|
||||
! order 1
|
||||
id=id+1 !15
|
||||
e(1,2)=e(1,2)-b*(p(pst(1,id))*ys+p(pst(1,id)+1)*yb)
|
||||
e(1,3)=e(1,3)+b*(p(pst(1,id))*xs+p(pst(1,id)+1)*xb)
|
||||
|
||||
! order 2
|
||||
id=id+1 !16
|
||||
e(1,2)=e(1,2)+b*(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)&
|
||||
+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
||||
e(1,3)=e(1,3)+b*(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb))
|
||||
! THE COUPLING OF A2 WITH A1
|
||||
!####################################################
|
||||
!####################################################
|
||||
! order 1
|
||||
id=id+1 !17
|
||||
e(1,4)=e(1,4)+b*(p(pst(1,id))*ys+p(pst(1,id)+1)*yb)
|
||||
! order 2
|
||||
id=id+1 !18
|
||||
e(1,4)=e(1,4)-b*(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)&
|
||||
+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
||||
|
||||
|
||||
! THE COUPLING OF A1 WITH E
|
||||
!####################################################
|
||||
!####################################################
|
||||
! order 0
|
||||
id=id+1 !19
|
||||
e(3,4)=e(3,4)-p(pst(1,id))
|
||||
! order 1
|
||||
id=id+1 !20
|
||||
e(2,4)=e(2,4)-p(pst(1,id))*ys-p(pst(1,id)+1)*yb
|
||||
e(3,4)=e(3,4)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
||||
! order 2
|
||||
id=id+1 !21
|
||||
e(2,4)=e(2,4)+p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb) &
|
||||
+p(pst(1,id)+2)*(xs*yb+xb*ys)
|
||||
e(3,4)=e(3,4)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)
|
||||
! end of the model
|
||||
e(2,1)=e(1,2)
|
||||
e(3,1)=e(1,3)
|
||||
e(3,2)=e(2,3)
|
||||
e(4,1)=e(1,4)
|
||||
e(4,2)=e(2,4)
|
||||
e(4,3)=e(3,4)
|
||||
end subroutine diab_y
|
||||
subroutine copy_2_lower_triangle(mat)
|
||||
real(dp), intent(inout) :: mat(:, :)
|
||||
integer :: m, n
|
||||
! write lower triangle of matrix symmetrical
|
||||
do n = 2, size(mat, 1)
|
||||
do m = 1, n - 1
|
||||
mat(n, m) = mat(m, n)
|
||||
end do
|
||||
end do
|
||||
end subroutine copy_2_lower_triangle
|
||||
|
||||
end module diabmodel
|
||||
|
|
@ -0,0 +1,110 @@
|
|||
NVA2N1:
|
||||
PVA2N1:
|
||||
AVA2N1:
|
||||
SVA2N1:
|
||||
|
||||
NVE1N1:
|
||||
PVE1N1:
|
||||
AVE1N1:
|
||||
SVE1N1:
|
||||
|
||||
NVA1N1:
|
||||
PVA1N1:
|
||||
AVA1N1:
|
||||
SVA1N1:
|
||||
|
||||
NVA2N2:
|
||||
PVA2N2:
|
||||
AVA2N2:
|
||||
SVA2N2:
|
||||
|
||||
NVE1N2:
|
||||
PVE1N2:
|
||||
AVE1N2:
|
||||
SVE1N2:
|
||||
|
||||
NVA1N2:
|
||||
PVA1N2:
|
||||
AVA1N2:
|
||||
SVA1N2:
|
||||
|
||||
NVA2N3:
|
||||
PVA2N3:
|
||||
AVA2N3:
|
||||
SVA2N3:
|
||||
|
||||
NVE1N3:
|
||||
PVE1N3:
|
||||
AVE1N3:
|
||||
SVE1N3:
|
||||
|
||||
NVA1N3:
|
||||
PVA1N3:
|
||||
AVA1N3:
|
||||
SVA1N3:
|
||||
|
||||
NJE1N0:
|
||||
PJE1N0:
|
||||
AJE1N0:
|
||||
SJE1N0:
|
||||
|
||||
NJE1N1:
|
||||
PJE1N1:
|
||||
AJE1N1:
|
||||
SJE1N1:
|
||||
|
||||
NJE1N2:
|
||||
PJE1N2:
|
||||
AJE1N2:
|
||||
SJE1N2:
|
||||
|
||||
NJE1N3:
|
||||
PJE1N3:
|
||||
AJE1N3:
|
||||
SJE1N3:
|
||||
|
||||
NPA2E1N0:
|
||||
PPA2E1N0:
|
||||
APA2E1N0:
|
||||
SPA2E1N0:
|
||||
|
||||
NPA2E1N1:
|
||||
PPA2E1N1:
|
||||
APA2E1N1:
|
||||
SPA2E1N1:
|
||||
|
||||
NPA2E1N2:
|
||||
PPA2E1N2:
|
||||
APA2E1N2:
|
||||
SPA2E1N2:
|
||||
|
||||
NPA2A1N1:
|
||||
PPA2A1N1:
|
||||
APA2A1N1:
|
||||
SPA2A1N1:
|
||||
|
||||
NPA2A1N2:
|
||||
PPA2A1N2:
|
||||
APA2A1N2:
|
||||
SPA2A1N2:
|
||||
|
||||
NPE1A1N0:
|
||||
PPE1A1N0:
|
||||
APE1A1N0:
|
||||
SPE1A1N0:
|
||||
|
||||
NPE1A1N1:
|
||||
PPE1A1N1:
|
||||
APE1A1N1:
|
||||
SPE1A1N1:
|
||||
|
||||
NPE1A1N2:
|
||||
PPE1A1N2:
|
||||
APE1A1N2:
|
||||
SPE1A1N2:
|
||||
|
||||
NTYPE_CAL:
|
||||
PTYPE_CAL:
|
||||
ATYPE_CAL:
|
||||
STYPE_CAL:
|
||||
|
||||
|
|
@ -0,0 +1,540 @@
|
|||
NEXITEN:
|
||||
PEXITEN:
|
||||
AEXITEN:
|
||||
SEXITEN:
|
||||
|
||||
NTMC_CH:
|
||||
PTMC_CH:
|
||||
ATMC_CH:
|
||||
STMC_CH:
|
||||
|
||||
NEVA1:
|
||||
PEVA1:
|
||||
AEVA1:
|
||||
SEVA1:
|
||||
|
||||
NEVU:
|
||||
PEVU:
|
||||
AEVU:
|
||||
SEVU:
|
||||
|
||||
NEVE1:
|
||||
PEVE1:
|
||||
AEVE1:
|
||||
SEVE1:
|
||||
|
||||
NEVE2:
|
||||
PEVE2:
|
||||
AEVE2:
|
||||
SEVE2:
|
||||
|
||||
NEVA1U:
|
||||
PEVA1U:
|
||||
AEVA1U:
|
||||
SEVA1U:
|
||||
|
||||
NEVA1E1:
|
||||
PEVA1E1:
|
||||
AEVA1E1:
|
||||
SEVA1E1:
|
||||
|
||||
NEVA1E2:
|
||||
PEVA1E2:
|
||||
AEVA1E2:
|
||||
SEVA1E2:
|
||||
|
||||
NEVUE1:
|
||||
PEVUE1:
|
||||
AEVUE1:
|
||||
SEVUE1:
|
||||
|
||||
NEVUE2:
|
||||
PEVUE2:
|
||||
AEVUE2:
|
||||
SEVUE2:
|
||||
|
||||
NEVE1E2:
|
||||
PEVE1E2:
|
||||
AEVE1E2:
|
||||
SEVE1E2:
|
||||
|
||||
NEVA1UE1:
|
||||
PEVA1UE1:
|
||||
AEVA1UE1:
|
||||
SEVA1UE1:
|
||||
|
||||
NEVA1UE2:
|
||||
PEVA1UE2:
|
||||
AEVA1UE2:
|
||||
SEVA1UE2:
|
||||
|
||||
NEVA1E1E2:
|
||||
PEVA1E1E2:
|
||||
AEVA1E1E2:
|
||||
SEVA1E1E2:
|
||||
|
||||
NEVUE1E2:
|
||||
PEVUE1E2:
|
||||
AEVUE1E2:
|
||||
SEVUE1E2:
|
||||
|
||||
NEVA1UE1E2:
|
||||
PEVA1UE1E2:
|
||||
AEVA1UE1E2:
|
||||
SEVA1UE1E2:
|
||||
|
||||
NA2VA1:
|
||||
PA2VA1:
|
||||
AA2VA1:
|
||||
SA2VA1:
|
||||
|
||||
NA2VU:
|
||||
PA2VU:
|
||||
AA2VU:
|
||||
SA2VU:
|
||||
|
||||
NA2VE1:
|
||||
PA2VE1:
|
||||
AA2VE1:
|
||||
SA2VE1:
|
||||
|
||||
NA2VE2:
|
||||
PA2VE2:
|
||||
AA2VE2:
|
||||
SA2VE2:
|
||||
|
||||
NA2VA1U:
|
||||
PA2VA1U:
|
||||
AA2VA1U:
|
||||
SA2VA1U:
|
||||
|
||||
NA2VA1E1:
|
||||
PA2VA1E1:
|
||||
AA2VA1E1:
|
||||
SA2VA1E1:
|
||||
|
||||
NA2VA1E2:
|
||||
PA2VA1E2:
|
||||
AA2VA1E2:
|
||||
SA2VA1E2:
|
||||
|
||||
NA2VUE1:
|
||||
PA2VUE1:
|
||||
AA2VUE1:
|
||||
SA2VUE1:
|
||||
|
||||
NA2VUE2:
|
||||
PA2VUE2:
|
||||
AA2VUE2:
|
||||
SA2VUE2:
|
||||
|
||||
NA2VE1E2:
|
||||
PA2VE1E2:
|
||||
AA2VE1E2:
|
||||
SA2VE1E2:
|
||||
|
||||
NA2VA1UE1:
|
||||
PA2VA1UE1:
|
||||
AA2VA1UE1:
|
||||
SA2VA1UE1:
|
||||
|
||||
NA2VA1UE2:
|
||||
PA2VA1UE2:
|
||||
AA2VA1UE2:
|
||||
SA2VA1UE2:
|
||||
|
||||
NA2VA1E1E2:
|
||||
PA2VA1E1E2:
|
||||
AA2VA1E1E2:
|
||||
SA2VA1E1E2:
|
||||
|
||||
NA2VUE1E2:
|
||||
PA2VUE1E2:
|
||||
AA2VUE1E2:
|
||||
SA2VUE1E2:
|
||||
|
||||
NA2VA1UE1E2:
|
||||
PA2VA1UE1E2:
|
||||
AA2VA1UE1E2:
|
||||
SA2VA1UE1E2:
|
||||
|
||||
NA1VA1:
|
||||
PA1VA1:
|
||||
AA1VA1:
|
||||
SA1VA1:
|
||||
|
||||
NA1VU:
|
||||
PA1VU:
|
||||
AA1VU:
|
||||
SA1VU:
|
||||
|
||||
NA1VE1:
|
||||
PA1VE1:
|
||||
AA1VE1:
|
||||
SA1VE1:
|
||||
|
||||
NA1VE2:
|
||||
PA1VE2:
|
||||
AA1VE2:
|
||||
SA1VE2:
|
||||
|
||||
NA1VA1U:
|
||||
PA1VA1U:
|
||||
AA1VA1U:
|
||||
SA1VA1U:
|
||||
|
||||
NA1VA1E1:
|
||||
PA1VA1E1:
|
||||
AA1VA1E1:
|
||||
SA1VA1E1:
|
||||
|
||||
NA1VA1E2:
|
||||
PA1VA1E2:
|
||||
AA1VA1E2:
|
||||
SA1VA1E2:
|
||||
|
||||
NA1VUE1:
|
||||
PA1VUE1:
|
||||
AA1VUE1:
|
||||
SA1VUE1:
|
||||
|
||||
NA1VUE2:
|
||||
PA1VUE2:
|
||||
AA1VUE2:
|
||||
SA1VUE2:
|
||||
|
||||
NA1VE1E2:
|
||||
PA1VE1E2:
|
||||
AA1VE1E2:
|
||||
SA1VE1E2:
|
||||
|
||||
NA1VA1UE1:
|
||||
PA1VA1UE1:
|
||||
AA1VA1UE1:
|
||||
SA1VA1UE1:
|
||||
|
||||
NA1VA1UE2:
|
||||
PA1VA1UE2:
|
||||
AA1VA1UE2:
|
||||
SA1VA1UE2:
|
||||
|
||||
NA1VA1E1E2:
|
||||
PA1VA1E1E2:
|
||||
AA1VA1E1E2:
|
||||
SA1VA1E1E2:
|
||||
|
||||
NA1VUE1E2:
|
||||
PA1VUE1E2:
|
||||
AA1VUE1E2:
|
||||
SA1VUE1E2:
|
||||
|
||||
NA1VA1UE1E2:
|
||||
PA1VA1UE1E2:
|
||||
AA1VA1UE1E2:
|
||||
SA1VA1UE1E2:
|
||||
|
||||
NEWZE1:
|
||||
PEWZE1:
|
||||
AEWZE1:
|
||||
SEWZE1:
|
||||
|
||||
NEWZE2:
|
||||
PEWZE2:
|
||||
AEWZE2:
|
||||
SEWZE2:
|
||||
|
||||
NEWZE1A1:
|
||||
PEWZE1A1:
|
||||
AEWZE1A1:
|
||||
SEWZE1A1:
|
||||
|
||||
NEWZE2A1:
|
||||
PEWZE2A1:
|
||||
AEWZE2A1:
|
||||
SEWZE2A1:
|
||||
|
||||
NEWZE1U:
|
||||
PEWZE1U:
|
||||
AEWZE1U:
|
||||
SEWZE1U:
|
||||
|
||||
NEWZE2U:
|
||||
PEWZE2U:
|
||||
AEWZE2U:
|
||||
SEWZE2U:
|
||||
|
||||
NEWZE1A1U:
|
||||
PEWZE1A1U:
|
||||
AEWZE1A1U:
|
||||
SEWZE1A1U:
|
||||
|
||||
NEWZE2A1U:
|
||||
PEWZE2A1U:
|
||||
AEWZE2A1U:
|
||||
SEWZE2A1U:
|
||||
|
||||
NEWZE1E2:
|
||||
PEWZE1E2:
|
||||
AEWZE1E2:
|
||||
SEWZE1E2:
|
||||
|
||||
NEWZE1E2A1:
|
||||
PEWZE1E2A1:
|
||||
AEWZE1E2A1:
|
||||
SEWZE1E2A1:
|
||||
|
||||
NEWZE1E2U:
|
||||
PEWZE1E2U:
|
||||
AEWZE1E2U:
|
||||
SEWZE1E2U:
|
||||
|
||||
NEWZE1E2A1U:
|
||||
PEWZE1E2A1U:
|
||||
AEWZE1E2A1U:
|
||||
SEWZE1E2A1U:
|
||||
|
||||
NA1EWZE1:
|
||||
PA1EWZE1:
|
||||
AA1EWZE1:
|
||||
SA1EWZE1:
|
||||
|
||||
NA1EWZE2:
|
||||
PA1EWZE2:
|
||||
AA1EWZE2:
|
||||
SA1EWZE2:
|
||||
|
||||
NA1EWZE1A1:
|
||||
PA1EWZE1A1:
|
||||
AA1EWZE1A1:
|
||||
SA1EWZE1A1:
|
||||
|
||||
NA1EWZE2A1:
|
||||
PA1EWZE2A1:
|
||||
AA1EWZE2A1:
|
||||
SA1EWZE2A1:
|
||||
|
||||
NA1EWZE1U:
|
||||
PA1EWZE1U:
|
||||
AA1EWZE1U:
|
||||
SA1EWZE1U:
|
||||
|
||||
NA1EWZE2U:
|
||||
PA1EWZE2U:
|
||||
AA1EWZE2U:
|
||||
SA1EWZE2U:
|
||||
|
||||
NA1EWZE1A1U:
|
||||
PA1EWZE1A1U:
|
||||
AA1EWZE1A1U:
|
||||
SA1EWZE1A1U:
|
||||
|
||||
NA1EWZE2A1U:
|
||||
PA1EWZE2A1U:
|
||||
AA1EWZE2A1U:
|
||||
SA1EWZE2A1U:
|
||||
|
||||
NA1EWZE1E2:
|
||||
PA1EWZE1E2:
|
||||
AA1EWZE1E2:
|
||||
SA1EWZE1E2:
|
||||
|
||||
NA1EWZE1E2A1:
|
||||
PA1EWZE1E2A1:
|
||||
AA1EWZE1E2A1:
|
||||
SA1EWZE1E2A1:
|
||||
|
||||
NA1EWZE1E2U:
|
||||
PA1EWZE1E2U:
|
||||
AA1EWZE1E2U:
|
||||
SA1EWZE1E2U:
|
||||
|
||||
NA1EWZE1E2A1U:
|
||||
PA1EWZE1E2A1U:
|
||||
AA1EWZE1E2A1U:
|
||||
SA1EWZE1E2A1U:
|
||||
|
||||
NA2EQWZE1U:
|
||||
PA2EQWZE1U:
|
||||
AA2EQWZE1U:
|
||||
SA2EQWZE1U:
|
||||
|
||||
NA2EQWZE2U:
|
||||
PA2EQWZE2U:
|
||||
AA2EQWZE2U:
|
||||
SA2EQWZE2U:
|
||||
|
||||
NA2EQWZE1UA1:
|
||||
PA2EQWZE1UA1:
|
||||
AA2EQWZE1UA1:
|
||||
SA2EQWZE1UA1:
|
||||
|
||||
NA2EQWZE2UA1:
|
||||
PA2EQWZE2UA1:
|
||||
AA2EQWZE2UA1:
|
||||
SA2EQWZE2UA1:
|
||||
|
||||
NA2EQWZE1E2U:
|
||||
PA2EQWZE1E2U:
|
||||
AA2EQWZE1E2U:
|
||||
SA2EQWZE1E2U:
|
||||
|
||||
NA2EQWZE1E2UA1:
|
||||
PA2EQWZE1E2UA1:
|
||||
AA2EQWZE1E2UA1:
|
||||
SA2EQWZE1E2UA1:
|
||||
|
||||
NA2A1QU:
|
||||
PA2A1QU:
|
||||
AA2A1QU:
|
||||
SA2A1QU:
|
||||
|
||||
NA2A1QUA1:
|
||||
PA2A1QUA1:
|
||||
AA2A1QUA1:
|
||||
SA2A1QUA1:
|
||||
|
||||
NA2A1QUE1:
|
||||
PA2A1QUE1:
|
||||
AA2A1QUE1:
|
||||
SA2A1QUE1:
|
||||
|
||||
NA2A1QUE2:
|
||||
PA2A1QUE2:
|
||||
AA2A1QUE2:
|
||||
SA2A1QUE2:
|
||||
|
||||
NA2A1QUA1E1:
|
||||
PA2A1QUA1E1:
|
||||
AA2A1QUA1E1:
|
||||
SA2A1QUA1E1:
|
||||
|
||||
NA2A1QUA1E2:
|
||||
PA2A1QUA1E2:
|
||||
AA2A1QUA1E2:
|
||||
SA2A1QUA1E2:
|
||||
|
||||
NA2A1QUE1E2:
|
||||
PA2A1QUE1E2:
|
||||
AA2A1QUE1E2:
|
||||
SA2A1QUE1E2:
|
||||
|
||||
NA2A1QUA1E1E2:
|
||||
PA2A1QUA1E1E2:
|
||||
AA2A1QUA1E1E2:
|
||||
SA2A1QUA1E1E2:
|
||||
|
||||
NCORECORE:
|
||||
PCORECORE:
|
||||
ACORECORE:
|
||||
SCORECORE:
|
||||
|
||||
NVA2N1:
|
||||
PVA2N1:
|
||||
AVA2N1:
|
||||
SVA2N1:
|
||||
|
||||
NVE1N1:
|
||||
PVE1N1:
|
||||
AVE1N1:
|
||||
SVE1N1:
|
||||
|
||||
NVA1N1:
|
||||
PVA1N1:
|
||||
AVA1N1:
|
||||
SVA1N1:
|
||||
|
||||
NVA2N2:
|
||||
PVA2N2:
|
||||
AVA2N2:
|
||||
SVA2N2:
|
||||
|
||||
NVE1N2:
|
||||
PVE1N2:
|
||||
AVE1N2:
|
||||
SVE1N2:
|
||||
|
||||
NVA1N2:
|
||||
PVA1N2:
|
||||
AVA1N2:
|
||||
SVA1N2:
|
||||
|
||||
NVA2N3:
|
||||
PVA2N3:
|
||||
AVA2N3:
|
||||
SVA2N3:
|
||||
|
||||
NVE1N3:
|
||||
PVE1N3:
|
||||
AVE1N3:
|
||||
SVE1N3:
|
||||
|
||||
NVA1N3:
|
||||
PVA1N3:
|
||||
AVA1N3:
|
||||
SVA1N3:
|
||||
|
||||
NJE1N0:
|
||||
PJE1N0:
|
||||
AJE1N0:
|
||||
SJE1N0:
|
||||
|
||||
NJE1N1:
|
||||
PJE1N1:
|
||||
AJE1N1:
|
||||
SJE1N1:
|
||||
|
||||
NJE1N2:
|
||||
PJE1N2:
|
||||
AJE1N2:
|
||||
SJE1N2:
|
||||
|
||||
NJE1N3:
|
||||
PJE1N3:
|
||||
AJE1N3:
|
||||
SJE1N3:
|
||||
|
||||
NPA2E1N0:
|
||||
PPA2E1N0:
|
||||
APA2E1N0:
|
||||
SPA2E1N0:
|
||||
|
||||
NPA2A1N1:
|
||||
PPA2A1N1:
|
||||
APA2A1N1:
|
||||
SPA2A1N1:
|
||||
|
||||
NPA2E1N2:
|
||||
PPA2E1N2:
|
||||
APA2E1N2:
|
||||
SPA2E1N2:
|
||||
|
||||
NPA2A1N2:
|
||||
PPA2A1N2:
|
||||
APA2A1N2:
|
||||
SPA2A1N2:
|
||||
|
||||
NPA2E1N3:
|
||||
PPA2E1N3:
|
||||
APA2E1N3:
|
||||
SPA2E1N3:
|
||||
|
||||
NPA2A1N3:
|
||||
PPA2A1N3:
|
||||
APA2A1N3:
|
||||
SPA2A1N3:
|
||||
|
||||
NPE1A1N0:
|
||||
PPE1A1N0:
|
||||
APE1A1N0:
|
||||
SPE1A1N0:
|
||||
|
||||
NPE1A1N2:
|
||||
PPE1A1N2:
|
||||
APE1A1N2:
|
||||
SPE1A1N2:
|
||||
|
||||
NPE1A1N3:
|
||||
PPE1A1N3:
|
||||
APE1A1N3:
|
||||
SPE1A1N3:
|
||||
|
||||
|
|
@ -0,0 +1,50 @@
|
|||
! <Subroutine weight(wt,y,ntot,numdatpt)
|
||||
subroutine weight(wt,y)
|
||||
use dim_parameter, only: nstat,ndiab,nci,ntot,numdatpt,
|
||||
> hybrid,wt_en2ci,wt_en,wt_ci
|
||||
implicit none
|
||||
! data arrays and their dimensions
|
||||
double precision wt(ntot,numdatpt),y(ntot,numdatpt)
|
||||
! loop index
|
||||
integer i,j,k,n
|
||||
|
||||
do i=1,numdatpt
|
||||
wt(1,i)=1.d0
|
||||
enddo
|
||||
|
||||
call norm_weight(wt,ntot,numdatpt)
|
||||
|
||||
end
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <Subroutine norm_weight(wt,ntot,numdatpt)
|
||||
subroutine norm_weight(wt,ntot,numdatpt)
|
||||
implicit none
|
||||
integer ntot,numdatpt
|
||||
double precision norm,wt(ntot,numdatpt)
|
||||
integer i,j,count
|
||||
|
||||
write(6,*) 'Normalizing Weights...'
|
||||
norm=0.d0
|
||||
count = 0
|
||||
do i=1,numdatpt
|
||||
do j=1,ntot
|
||||
norm = norm + wt(j,i)*wt(j,i)
|
||||
if (wt(j,i).gt.0.d0) count=count+1
|
||||
enddo
|
||||
enddo
|
||||
|
||||
norm = dsqrt(norm)
|
||||
if(norm.gt.0.d0) then
|
||||
do i=1,numdatpt
|
||||
do j=1,ntot
|
||||
wt(j,i) = wt(j,i)/norm
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
write(6,*) 'Warning: Norm of Weights is Zero'
|
||||
endif
|
||||
|
||||
Write(6,'(''No. of weigthed data points:'',i0)') count
|
||||
|
||||
end subroutine
|
||||
|
|
@ -0,0 +1,757 @@
|
|||
module write_mod
|
||||
implicit none
|
||||
! unit conversion
|
||||
double precision ,parameter :: h2icm = 219474.69d0
|
||||
character(len=250), parameter :: sep_line = '(250("-"))'
|
||||
character(len=250), parameter :: block_line = '(250("="))'
|
||||
|
||||
contains
|
||||
|
||||
! <Subroutine for writing the Output
|
||||
subroutine write_output
|
||||
> (q,x1,x2,y,wt,par,p_act,p_spread,nset,npar,
|
||||
> flag,lauf)
|
||||
use adia_mod, only: adia
|
||||
use dim_parameter,only: qn,ntot,numdatpt,ndiab
|
||||
use ctrans_mod,only: ctrans
|
||||
implicit none
|
||||
! IN: variables
|
||||
integer lauf
|
||||
integer flag !< 0= initial output 1=fit not converged 2= Fit Converged, 3= max iteration reached
|
||||
integer npar,nset
|
||||
double precision par(npar,nset),p_spread(npar)
|
||||
integer p_act(npar)
|
||||
double precision q(qn,numdatpt),x1(qn,numdatpt),x2(qn,numdatpt)
|
||||
double precision y(ntot,numdatpt),wt(ntot,numdatpt)
|
||||
|
||||
! INTERNAL: Variables
|
||||
integer,parameter :: id_out = 20 , std_out = 6
|
||||
integer pt
|
||||
integer i, id_print
|
||||
double precision, allocatable :: ymod(:,:)
|
||||
double precision, allocatable :: ew(:,:)
|
||||
double precision, allocatable :: ev(:,:,:)
|
||||
|
||||
logical skip
|
||||
|
||||
allocate(ymod(ntot,numdatpt))
|
||||
allocate(ew(ndiab,numdatpt))
|
||||
allocate(ev(ndiab,ndiab,numdatpt))
|
||||
|
||||
skip=.false.
|
||||
|
||||
! get Model Outputs for all geometries for current best parameter set par(:,1)
|
||||
do pt=1,numdatpt
|
||||
call adia(pt,par(1:npar,1),npar,ymod(1:ntot,pt),
|
||||
> ew(1:ndiab,pt),ev(1:ndiab,1:ndiab,pt),skip)
|
||||
call ctrans(q(:,pt),x1(:,pt),x2(:,pt))
|
||||
enddo
|
||||
|
||||
! Initial write print everything you want to see before the fit and return
|
||||
if(flag.eq.0) then
|
||||
call print_parameterstate(std_out,par(:,1),p_act,npar)
|
||||
call print_ErrorSummary(std_out,y,ymod,wt)
|
||||
! print Data into the plotfiles
|
||||
return
|
||||
endif
|
||||
! open output files for individual makro iterations
|
||||
call open_outfile(id_out,lauf)
|
||||
! print Data into the plotfiles
|
||||
call print_plotfiles(x1,y,wt,ymod)
|
||||
|
||||
! print Genetic output into files
|
||||
do i=1, 2
|
||||
if (i.eq.1) then
|
||||
id_print= std_out
|
||||
else
|
||||
id_print= id_out
|
||||
endif
|
||||
write(id_print,'("Writing Iteration: ",i4)') lauf
|
||||
write(id_print,block_line)
|
||||
! write data information only in outfile
|
||||
if(i.eq.2) then
|
||||
call print_data(id_print,x1,y,ymod,wt)
|
||||
call print_Set_Errors(id_print,y,ymod,wt)
|
||||
endif
|
||||
call print_parameterblock
|
||||
> (id_print,par(:,1),p_act,p_spread,npar)
|
||||
call print_ErrorSummary(id_print,y,ymod,wt)
|
||||
|
||||
enddo
|
||||
|
||||
call print_fortranfile(par(:,1),npar)
|
||||
|
||||
! write the type of calc at the end of the output
|
||||
|
||||
|
||||
close (id_out)
|
||||
deallocate(ymod,ev,ew)
|
||||
end subroutine
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <subroutine for scan seperated Error analysis>
|
||||
subroutine print_Set_Errors(id_out,y, ymod, wt)
|
||||
use io_parameters,only: llen
|
||||
use dim_parameter,only: ndata,nstat,ntot,numdatpt,sets
|
||||
integer , intent(in) :: id_out
|
||||
double precision, intent(in) :: y(ntot,numdatpt),
|
||||
> ymod(ntot,numdatpt), wt(ntot,numdatpt)
|
||||
integer :: set, setpoint, pt
|
||||
double precision :: Set_rms(sets,ntot), Set_num(sets,ntot)
|
||||
double precision :: Total_rms, Total_Energy_rms,Energy_rms(nstat)
|
||||
character(len=llen) fmt
|
||||
write(id_out,'(A)') 'Errors in icm for individual Sets' //
|
||||
> '(specified by sets: and npoints:)'
|
||||
write(id_out,'(A5,3A16)')'Set','Total',
|
||||
> 'Total_Energy', 'Energy[nstat]'
|
||||
write(id_out,sep_line)
|
||||
write(fmt,'("(I5,2f16.1,",I2,"f16.1)")') nstat
|
||||
Set_rms = 0.d0
|
||||
pt = 0
|
||||
do set=1, sets
|
||||
do setpoint=1, ndata(set)
|
||||
pt = pt + 1
|
||||
where(wt(:,pt) > 0.d0)
|
||||
Set_rms(set,:) = Set_rms(set,:)+(ymod(:,pt)-y(:,pt))**2
|
||||
Set_num(set,:) = Set_num(set,:) + 1
|
||||
end where
|
||||
enddo
|
||||
Total_rms
|
||||
> = dsqrt(sum(Set_rms(set,:))
|
||||
> / (sum(Set_num(set,:))))
|
||||
Total_Energy_rms
|
||||
> = dsqrt(sum(Set_rms(set,1:nstat))
|
||||
> / (sum(Set_num(set,1:nstat))))
|
||||
Energy_rms(1:nstat)
|
||||
> = dsqrt(Set_rms(set,1:nstat)
|
||||
> / (Set_num(set,1:nstat)))
|
||||
write(id_out,fmt) set, Total_rms*h2icm, Total_Energy_rms*h2icm,
|
||||
> Energy_rms(1:nstat)*h2icm
|
||||
enddo
|
||||
write(id_out,block_line)
|
||||
write(id_out,*) ''
|
||||
end subroutine print_Set_Errors
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <subroutine for printing the parameter and the pst vector in fortran readable style for including the fitted parameters in other programs
|
||||
subroutine print_fortranfile(p,npar)
|
||||
use io_parameters,only: maxpar_keys
|
||||
use dim_parameter,only: pst
|
||||
implicit none
|
||||
! IN: variables
|
||||
integer npar
|
||||
double precision p(npar)
|
||||
! INTERNAL: variables
|
||||
integer i
|
||||
integer, parameter :: id_out = 49
|
||||
character(len=32), parameter :: fname ='20pt_pyram_param.f90'
|
||||
|
||||
open(id_out,file=fname)
|
||||
|
||||
30 format(6x,A2,i3,A2,d18.9)
|
||||
31 format(6x,A6,i3,A2,i3)
|
||||
|
||||
write(id_out,'(2X,A)') "Module dip_param"
|
||||
write(id_out,'(5X,A)') "IMPLICIT NONE"
|
||||
write(id_out,'(5X,A,I0)') "Integer,parameter :: np=",npar
|
||||
write(id_out,'(5X,A,I0,A)') "Double precision :: p(",npar,")"
|
||||
write(id_out,'(5X,A,I0,A)') "integer :: pst(2,",maxpar_keys,")"
|
||||
write(id_out,'(5X,A)') "contains"
|
||||
write(id_out,*)''
|
||||
|
||||
write (id_out,'(5x,a)') "SUBROUTINE init_dip_planar_data()"
|
||||
write (id_out,'(8X,A)') "implicit none"
|
||||
do i=1,npar
|
||||
write(id_out,30) 'p(',i,')=',p(i)
|
||||
enddo
|
||||
do i=1,maxpar_keys
|
||||
write(id_out,31) 'pst(1,',i,')=',pst(1,i)
|
||||
write(id_out,31) 'pst(2,',i,')=',pst(2,i)
|
||||
enddo
|
||||
|
||||
|
||||
write(id_out,"(A)") "End SUBROUTINE init_dip_planar_data"
|
||||
write(id_out,"(A)") "End Module dip_param"
|
||||
|
||||
close(id_out)
|
||||
end subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <subroutine print_ErrorSummary: calculates the rms errros and prints them in the corresponding file
|
||||
subroutine print_ErrorSummary(id_out,y,ymod,wt)
|
||||
use dim_parameter,only: nstat,rms_thr,ntot,numdatpt
|
||||
use io_parameters,only: llen
|
||||
implicit none
|
||||
! IN: variables
|
||||
integer id_out
|
||||
double precision y(ntot,numdatpt),ymod(ntot,numdatpt)
|
||||
double precision wt(ntot,numdatpt)
|
||||
! INTERNAL: variables
|
||||
! Counter and RMS variables
|
||||
double precision Cut_thr(nstat)
|
||||
double precision Output_rms(ntot),Cut_rms(nstat),Weighted_rms
|
||||
integer Output_num(ntot),Cut_num(nstat)
|
||||
double precision Weighted_wt
|
||||
double precision Total_rms,Total_Weighted_rms
|
||||
double precision Total_Energie_rms,Total_State_rms(nstat)
|
||||
double precision Cut_Energie_rms, Cut_State_rms(nstat)
|
||||
! loop control
|
||||
integer j,pt
|
||||
|
||||
! Fabian
|
||||
character(len=llen) fmt
|
||||
! initialize RMS variables
|
||||
Output_rms(1:ntot) = 0.d0
|
||||
Output_num(1:ntot) = 0
|
||||
Weighted_rms = 0.d0
|
||||
Weighted_wt = 0.d0
|
||||
Cut_rms(1:nstat)= 0.d0
|
||||
Cut_num(1:nstat)= 0
|
||||
|
||||
! Define Threshold for Cut_* RMS Values
|
||||
Cut_thr(1:nstat) = rms_thr(1:nstat)
|
||||
! SUMM!
|
||||
! Loop over all Datapoints
|
||||
do pt=1,numdatpt
|
||||
! get unweighted rms for each output value and count their number
|
||||
do j=1,ntot
|
||||
if(wt(j,pt).gt.0.d0) then
|
||||
Output_rms(j) = Output_rms(j) +
|
||||
> (ymod(j,pt)-y(j,pt))**2
|
||||
Output_num(j)=Output_num(j) + 1
|
||||
endif
|
||||
enddo
|
||||
! get the unweighted rms under the given threshold and count their number
|
||||
do j=1,nstat
|
||||
if(wt(j,pt).gt.0.d0) then
|
||||
if(y(j,pt).le.Cut_thr(j)) then
|
||||
Cut_rms(j) = Cut_rms(j) +
|
||||
> (ymod(j,pt)-y(j,pt))**2
|
||||
Cut_num(j) = Cut_num(j) + 1
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
! get the weighted rms over all output values
|
||||
Weighted_rms = Weighted_rms +
|
||||
> sum(((ymod(1:ntot,pt)-y(1:ntot,pt))**2)
|
||||
> *(wt(1:ntot,pt)**2))
|
||||
Weighted_wt = Weighted_wt + sum(wt(1:ntot,pt)**2)
|
||||
enddo
|
||||
|
||||
! NORM!
|
||||
! TOTAL RMS:
|
||||
! unweighted
|
||||
Total_rms =
|
||||
> dsqrt(sum(Output_rms(1:ntot)) /(sum(Output_num(1:ntot))))
|
||||
|
||||
! Weighted
|
||||
Total_Weighted_rms = dsqrt(Weighted_rms/Weighted_wt)
|
||||
|
||||
! unweighted, considering only first nstat values
|
||||
Total_Energie_rms =
|
||||
> dsqrt(sum(Output_rms(1:nstat)) /(sum(Output_num(1:nstat))))
|
||||
|
||||
! unweighted,for each of the first nstat values separatly
|
||||
Total_State_rms(1:nstat) =
|
||||
> dsqrt(Output_rms(1:nstat) / Output_num(1:nstat))
|
||||
|
||||
! unweighted,first nstat values only counting points under given threshold
|
||||
Cut_Energie_rms =
|
||||
> dsqrt(sum(Cut_rms(1:nstat)) /(sum(Cut_num(1:nstat))))
|
||||
|
||||
! unweighted,each nstat values seperatly only counting points under threshold
|
||||
Cut_State_rms(1:nstat) =
|
||||
> dsqrt(Cut_rms(1:nstat)/Cut_num(1:nstat))
|
||||
|
||||
! WRITE!
|
||||
! make the actual writing into the file
|
||||
write(id_out,39)
|
||||
write(id_out,40)
|
||||
write(id_out,41) Total_rms, Total_rms*h2icm
|
||||
write(id_out,42) sum(Output_num(1:ntot))
|
||||
write(id_out,43) Total_Weighted_rms, Total_Weighted_rms*h2icm
|
||||
write(id_out,44) Weighted_wt
|
||||
write(id_out,45) Total_Energie_rms, Total_Energie_rms*h2icm
|
||||
write(id_out,42) sum(Output_num(1:nstat))
|
||||
write(fmt,'("(A,10x,A,",I2,"f8.1)")') nstat
|
||||
write(id_out,fmt) '#','State resolved RMS(icm): ',
|
||||
$ Total_State_rms(1:nstat)*h2icm
|
||||
write(fmt,'("(A,10x,A,",I2,"i8)")') nstat
|
||||
write(id_out,fmt) '#','No. of Points per State: ',
|
||||
$ Output_num(1:nstat)
|
||||
write(id_out,51)
|
||||
|
||||
! write the errors under a given threshold if there were any points
|
||||
if(any(Cut_num(1:nstat).gt.0)) then
|
||||
write(id_out,48) Cut_Energie_rms, Cut_Energie_rms*h2icm
|
||||
write(id_out,42) sum(Cut_num(1:nstat))
|
||||
|
||||
write(fmt,'("(A,10x,A,",I2,"f8.1,A)")') nstat
|
||||
write(id_out,fmt) '#','Red. State resolved RMS: ',
|
||||
$ Cut_State_rms(1:nstat)*h2icm,' icm'
|
||||
write(fmt,'("(A,10x,A,",I2,"i8)")') nstat
|
||||
write(id_out,fmt) '#','No. of Points per State: ',
|
||||
$ Cut_num(1:nstat)
|
||||
write(fmt,'("(A,10x,A,",I2,"f8.1,A)")') nstat
|
||||
write(id_out,fmt) '#','Threshold per State: ',
|
||||
$ Cut_thr(1:nstat)*h2icm,' icm above Reference Point.'
|
||||
|
||||
endif
|
||||
write(id_out,39)
|
||||
|
||||
! FORMAT! specifications for the writing
|
||||
39 format(250('#'))
|
||||
40 format('#',10x,'ERROR SUMMARY: ')
|
||||
41 format('#',10x,'Total RMS: ',g16.8, '(',f8.1,' icm)')
|
||||
42 format('#',10x,'No. of Points: ',i10)
|
||||
43 format('#',10x,'Total weighted RMS: ',g16.8, '(',f8.1,' icm)')
|
||||
44 format('#',10x,'Sum of point weights: ',f16.8)
|
||||
45 format('#',10x,'Total Energie RMS: ',g16.8, '(',f8.1,' icm)')
|
||||
|
||||
48 format('#',10x,'Red. Energie RMS: ',g16.8,'(',f8.1,' icm)')
|
||||
51 format('#')
|
||||
|
||||
end subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
subroutine print_plotfiles(x,y,wt,ymod)
|
||||
use dim_parameter,only: ndata,sets,qn,ntot,numdatpt,plot_coord
|
||||
implicit none
|
||||
! IN: variables
|
||||
double precision x(qn,numdatpt),y(ntot,numdatpt)
|
||||
double precision wt(ntot,numdatpt), ymod(ntot,numdatpt)
|
||||
! INTERNAL: variables
|
||||
integer sstart,ssend,set,id_plot
|
||||
|
||||
! Initialize position pointer
|
||||
ssend=0
|
||||
! loop over datasets and print the plotfiles
|
||||
do set=1 ,sets
|
||||
if(ndata(set).eq.0) cycle
|
||||
id_plot=50+set
|
||||
call open_plotfile(id_plot,set)
|
||||
write(id_plot,'(A)') '# -*- truncate-lines: t -*-'
|
||||
! get start and end point of each set
|
||||
sstart=ssend+1
|
||||
ssend=ssend+ndata(set)
|
||||
if (plot_coord(set).eq.0) then
|
||||
call print_plotwalk(x(:,sstart:ssend),y(:,sstart:ssend),
|
||||
> wt(:,sstart:ssend),ymod(:,sstart:ssend),
|
||||
> ndata(set),id_plot,set)
|
||||
else
|
||||
call print_plotcoord(plot_coord(set),
|
||||
> x(:,sstart:ssend),y(:,sstart:ssend),
|
||||
> wt(:,sstart:ssend),ymod(:,sstart:ssend),
|
||||
> ndata(set),id_plot,set)
|
||||
endif
|
||||
close(id_plot)
|
||||
enddo
|
||||
|
||||
end subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
subroutine print_plotwalk(x,y,wt,ymod,npt,id_plot,set)
|
||||
use dim_parameter,only: qn,ntot
|
||||
use io_parameters,only: llen
|
||||
implicit none
|
||||
! IN: variables
|
||||
integer id_plot,npt,set
|
||||
double precision x(qn,npt),y(ntot,npt),ymod(ntot,npt),wt(ntot,npt)
|
||||
! INTERNAL: variables
|
||||
double precision xdiff(qn),walktime
|
||||
double precision walknorm
|
||||
! loop control
|
||||
integer i,j
|
||||
|
||||
character(len=llen) fmt
|
||||
j=ntot-1
|
||||
|
||||
call print_plotheader(id_plot,0,npt,set)
|
||||
|
||||
call getwalknorm(x,walknorm,npt)
|
||||
walktime = 0.d0
|
||||
do i=1,npt
|
||||
if(i.gt.1) then
|
||||
xdiff(1:qn) = x(1:qn,i) - x(1:qn,i-1)
|
||||
walktime = walktime + dsqrt(sum(xdiff(1:qn)**2))/walknorm
|
||||
endif
|
||||
write(id_plot,"(ES16.8,*(3(ES16.8),:))")
|
||||
> walktime ,ymod(:,i),y(:,i),(wt(:,i))
|
||||
enddo
|
||||
|
||||
end subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
subroutine print_plotcoord(coord,x,y,wt,ymod,npt,id_plot,set)
|
||||
use dim_parameter,only: qn,ntot
|
||||
use io_parameters,only: llen
|
||||
implicit none
|
||||
! IN: variables
|
||||
integer, intent(in) :: id_plot,npt,set,coord
|
||||
double precision, intent(in) :: x(qn,npt),y(ntot,npt)
|
||||
double precision, intent(in) :: ymod(ntot,npt),wt(ntot,npt)
|
||||
! loop control
|
||||
integer i
|
||||
|
||||
call print_plotheader(id_plot,coord,npt,set)
|
||||
do i=1,npt
|
||||
write(id_plot,"(ES16.8,*(3(ES16.8),:))")
|
||||
> x(coord,i), ymod(:,i),y(:,i),(wt(:,i))
|
||||
! write(id_plot,"(2ES16.8,*(3(ES16.8),:))")
|
||||
! > x(coord,i), x(coord+1,i),y(:,i)
|
||||
enddo
|
||||
|
||||
end subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
subroutine print_plotheader(id_plot,coord,npt,set)
|
||||
use dim_parameter,only: qn,ntot
|
||||
use io_parameters,only: llen
|
||||
implicit none
|
||||
integer, intent(in) :: id_plot,npt,set,coord
|
||||
|
||||
character(len=llen) fmt
|
||||
|
||||
write(id_plot,'("#SET: ",i5)') set
|
||||
write(id_plot,'("#OUTPUT VALUES",i4)') ntot
|
||||
write(id_plot,'("#DATA POINTS: ",i4)') npt
|
||||
if (coord.le.0) then
|
||||
write(id_plot,'("#t(x) = WALK")')
|
||||
else
|
||||
write(id_plot,'("#t(x) = x(",I0,")")') coord
|
||||
endif
|
||||
write(id_plot,'("#UNIT: hartree")')
|
||||
write(id_plot,'()')
|
||||
write(id_plot,'("#",A15)',advance='no') "t(x)"
|
||||
write(fmt,'("(3(7X,A9,",I3,"(16x)))")') ntot-1
|
||||
write(id_plot,fmt) 'ymod(p,x)','y(x) ','wt(x) '
|
||||
|
||||
|
||||
end subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <subroutine walknorm calulates the distance in coordinate space for each set
|
||||
subroutine getwalknorm(x,walknorm,npt)
|
||||
use dim_parameter,only: qn
|
||||
implicit none
|
||||
! IN: variables
|
||||
integer npt
|
||||
double precision x(qn,npt)
|
||||
double precision walknorm
|
||||
! INTERNAL: variables
|
||||
double precision xdiff(qn)
|
||||
integer i
|
||||
|
||||
walknorm =0.d0
|
||||
do i=2,npt
|
||||
xdiff(1:qn) = x(1:qn,i) - x(1:qn,i-1)
|
||||
walknorm = walknorm + dsqrt(sum(xdiff(1:qn)**2))
|
||||
enddo
|
||||
|
||||
end subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <Subroutine for generating output filenames and openeing the correspondign files
|
||||
subroutine open_plotfile(id_plot,set)
|
||||
implicit none
|
||||
! IN: Variables
|
||||
integer id_plot,set
|
||||
! INTERNAL: Variables
|
||||
character(len=30) name !name of output file
|
||||
|
||||
! define name sheme for plot files
|
||||
if (set .lt. 10 ) then
|
||||
write(name,203) set
|
||||
else
|
||||
write(name,202) set
|
||||
endif
|
||||
|
||||
202 format('scan',I2,'.dat')
|
||||
203 format('scan0',I1,'.dat')
|
||||
!write (name,202) set
|
||||
|
||||
c open plotfile
|
||||
open(id_plot,file=name)
|
||||
|
||||
end subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <Subroutine for generating output filenames and openeing the correspondign files
|
||||
subroutine open_outfile(id_out,it_makro)
|
||||
implicit none
|
||||
integer id_out,it_makro
|
||||
character(len=30) outname !name of output file
|
||||
|
||||
543 format('mnlfit-',i1,'.out')
|
||||
544 format('mnlfit-',i2,'.out')
|
||||
545 format('mnlfit-',i3,'.out')
|
||||
|
||||
if(it_makro.lt.10) then
|
||||
write(outname,543) it_makro
|
||||
else if (it_makro.lt.100) then
|
||||
write(outname,544) it_makro
|
||||
else if (it_makro.lt.1000) then
|
||||
write(outname,545) it_makro
|
||||
else
|
||||
write(6,*)
|
||||
> 'ERROR: No rule for Outputfile naming for MAXIT >= 1000'
|
||||
stop
|
||||
endif
|
||||
|
||||
open (id_out,file=outname)
|
||||
|
||||
end subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <Subroutine for printing the Parameterkeys for use in Input File
|
||||
! < prints the keystring given in keys.incl and the corresponding parameters when there was atleast one parameter given in the input for the spcific key
|
||||
! < how many parameters and spreads per line are printed can be specified with the hardcoded parameters np and nsp but they must be atleast >=2
|
||||
! <@param id_out specifies the file in which the Parameters are Printed
|
||||
! <@param p vector containing one set of parameter values
|
||||
! <@param p_act vector containing the active state 0 (inactive) or 1 (active) for each parameter
|
||||
! <@param p_spread vector containing the spreads for each parameter
|
||||
! <@param npar lenght of the parmeter vectors (p,p_act,p_spread)
|
||||
! <@TODO extract subroutine for printing the multiline values, would make this more readable
|
||||
subroutine print_parameterblock(id_out,p,p_act,p_spread,npar)
|
||||
use dim_parameter,only: pst, facspread
|
||||
use io_parameters,only: key, parkeynum,parkeylen,llen
|
||||
implicit none
|
||||
! IN: Variables
|
||||
integer id_out,npar,p_act(npar)
|
||||
double precision p(npar),p_spread(npar)
|
||||
|
||||
! INTERNAL: variables
|
||||
! loop index
|
||||
integer i,k,l,t,n !< internal variables for loops and positions in parameter vectors
|
||||
|
||||
! number of values per line, values must be atleast 2 set this to personal preference
|
||||
integer, parameter :: np=5,nsp=5
|
||||
|
||||
character(len=llen) fmt
|
||||
|
||||
|
||||
! Write header for Parameter block
|
||||
1 format('!',200('='))
|
||||
write(id_out,1)
|
||||
write(id_out,'(A2,5x,A11,i3)') '! ','PARAMETER: ',npar
|
||||
write(id_out,1)
|
||||
|
||||
! loop over all Parameter Keys
|
||||
do i = 1, parkeynum
|
||||
! save start and end of parameter block for specific key
|
||||
k = pst(1,i)
|
||||
l = pst(1,i)+pst(2,i)-1
|
||||
! print only used keys with atleast one parameter
|
||||
if(pst(2,i).gt.0) then
|
||||
write(fmt,'("(a",I3,"'' ''i3)")') parkeylen
|
||||
write(id_out,fmt) adjustl(key(1,i)), pst(2,i)
|
||||
|
||||
! write the actual parameters -> subroutine print_parameterlines()?
|
||||
if(l-k.le.(np-1)) then
|
||||
write(fmt,'("(a",I3,"'' ''",I3,"g24.15)")') parkeylen,np
|
||||
write(id_out,fmt) key(2,i),(p(n), n=k,l)
|
||||
|
||||
else
|
||||
! start of multi line parameter print, number of values per line specified by np
|
||||
write(fmt,'("(a",I3,"'' ''",I3,"g24.15'' &'')")')
|
||||
$ parkeylen,np
|
||||
write(id_out,fmt) key(2,i),(p(n), n=k,k+(np-1))
|
||||
|
||||
t=k+np
|
||||
! write continuation lines till left parameters fit on last line
|
||||
do while(t.le.l)
|
||||
if(l-t.le.(np-1)) then
|
||||
write(fmt,'("(",I3,"x'' ''",I3,"g24.15)")')
|
||||
$ parkeylen,np
|
||||
write(id_out,fmt) (p(n), n=t, l)
|
||||
|
||||
else
|
||||
write(fmt,'("(",I3,"x'' ''",I3,"g24.15'' &'')")')
|
||||
$ parkeylen,np
|
||||
write(id_out,fmt) (p(n), n=t, t+(np-1))
|
||||
|
||||
endif
|
||||
t=t+np
|
||||
enddo
|
||||
|
||||
endif !-> end subroutine print_parameterlines
|
||||
|
||||
! write parameter active state in one line
|
||||
write(fmt,'("(a",I3,"'' ''","50i3)")') parkeylen
|
||||
write(id_out,fmt) key(3,i),(p_act(n),n=k,l)
|
||||
|
||||
! write the spreads for each parameter
|
||||
if(l-k.le.(np-1)) then
|
||||
write(fmt,'("(a",I3,"'' ''",I3,"g24.8)")') parkeylen,nsp
|
||||
write(id_out,fmt) key(4,i),(p_spread(n)/facspread, n=k,l)
|
||||
|
||||
else
|
||||
! start of multiline spread values
|
||||
write(fmt,'("(a",I3,"'' ''",I3,"g24.8'' &'')")')
|
||||
$ parkeylen,nsp
|
||||
write(id_out,fmt) key(4,i),(p_spread(n)/facspread, n=k,k
|
||||
> +(np-1))
|
||||
|
||||
t=k+nsp
|
||||
! write continuation lines till left spreads fit on last line
|
||||
do while(t.le.l)
|
||||
if(l-t.le.(np-1)) then
|
||||
write(fmt,'("(",I3,"x'' ''",I3,"g24.8)")')
|
||||
$ parkeylen,nsp
|
||||
write(id_out,fmt) (p_spread(n)/facspread, n=t, l)
|
||||
else
|
||||
write(fmt,'("(",I3,"x'' ''",I3,"g24.8'' &'')")')
|
||||
$ parkeylen,nsp
|
||||
write(id_out,fmt) (p_spread(n)/facspread, n=t, t
|
||||
> +(np-1))
|
||||
|
||||
endif
|
||||
t=t+np
|
||||
enddo
|
||||
|
||||
endif
|
||||
! print empty line between diffrent parameter blocks for better readability
|
||||
write(id_out,'(" ")')
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <Subroutine for printing the current Parameters and their active state
|
||||
! < prints only the numeric values of the parameters and does not specify the corresponding key
|
||||
! <@param npar number of parameter
|
||||
! <@param id_out specifies the output file
|
||||
! <@param p,p_act parameter vectors containing the values and the activity state of parameters
|
||||
subroutine print_parameterstate(id_out,p,p_act,npar)
|
||||
implicit none
|
||||
|
||||
! IN: Variables
|
||||
integer npar,id_out
|
||||
double precision p(npar)
|
||||
integer p_act(npar)
|
||||
|
||||
! INTERNAL: Variables
|
||||
integer i !< loop control
|
||||
integer nopt !< number of counted active parameters
|
||||
character(len=16) opt(npar) !< string for optimisation state
|
||||
|
||||
! initialize number of opt parameters and the string vector opt
|
||||
nopt=0
|
||||
opt = ' not opt. '
|
||||
! loop over all parameters and check their active state count if active and set string to opt
|
||||
do i=1,npar
|
||||
! Nicole: change due to value 2 of p_act
|
||||
! if(p_act(i).eq.1) then
|
||||
if(p_act(i).ge.1) then
|
||||
opt(i) = ' opt. '
|
||||
nopt=nopt+1
|
||||
endif
|
||||
enddo
|
||||
! print the Parameters and their active state within separating lines
|
||||
write(id_out,*)''
|
||||
write(id_out,block_line)
|
||||
write(id_out,*) 'Parameters:'
|
||||
write(id_out,sep_line)
|
||||
write(id_out,'(5g14.6)') (p(i),i=1,npar)
|
||||
write(id_out,'(5a14)') (opt(i),i=1,npar)
|
||||
write(id_out,sep_line)
|
||||
write(id_out,'("No. of optimized parameters: ",i6)') nopt
|
||||
write(id_out,block_line)
|
||||
write(id_out,*)''
|
||||
end subroutine
|
||||
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <Subroutine for printing coordinates,refdata,modeldata,diffrence between them and the weights
|
||||
! <@param id_out identiefies the output file
|
||||
! <@param x vector of input pattern for each datapoint
|
||||
! <@param y vector of expected output patterns for each datapoint
|
||||
! <@param ymod vector of output patterns generated by the model depending on paramerters
|
||||
! <@param wt vector of weights for each datapoint
|
||||
! <@param qn number of input patterns
|
||||
! <@param ntot total number of output patterns for each datapoint
|
||||
! <@param numdatpt number of totatl datapoints
|
||||
! <@param sets number of sets the datapoints are divided into
|
||||
! <@param ndata vector containing the number of included datapoints for each set
|
||||
! <@param i,j,point internal variables for loop controll and datapoint counting
|
||||
subroutine print_data(id_out,x,y,ymod,wt)
|
||||
use dim_parameter,only: sets,ndata,qn,ntot,numdatpt,qn_read
|
||||
implicit none
|
||||
! IN: Variables
|
||||
integer id_out
|
||||
double precision x(qn,numdatpt)
|
||||
double precision y(ntot,numdatpt),ymod(ntot,numdatpt)
|
||||
double precision wt(ntot,numdatpt)
|
||||
|
||||
! INTERNAL: Variables
|
||||
integer i,j,point
|
||||
|
||||
18 format(A8,i6)
|
||||
19 format (3(A15,3x), 2x, A18 , 4x, A12)
|
||||
|
||||
! print seperating line and header for Data output
|
||||
write(id_out,*) 'Printing Data Sets:'
|
||||
|
||||
write(id_out,19) adjustl('y(x)'),adjustl('ymod(x)'),
|
||||
> adjustl('y(x)-ymod(x)'),adjustl('weight'),
|
||||
> adjustl('x(1:qn_read) ')
|
||||
write(id_out,sep_line)
|
||||
! loop over all datapoints for each set and count the actual datapointnumber with point
|
||||
point=0
|
||||
do i=1,sets
|
||||
write(id_out,18) 'Set: ', i
|
||||
do j=1,ndata(i)
|
||||
write(id_out,18) 'Point: ', j
|
||||
point=point+1
|
||||
! print all data for one datapoint
|
||||
call print_datapoint(id_out,x(:,point),y(:,point),
|
||||
> ymod(:,point),wt(:,point))
|
||||
write(id_out,sep_line)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
! write end of data statement and two seperating lines
|
||||
write(id_out,block_line)
|
||||
write(id_out,*) ''
|
||||
end subroutine
|
||||
!----------------------------------------------------------------------------------------------------
|
||||
! <Subroutine prints a single Datapoint splits Data in nstat nci(ndiab) blocks for readability
|
||||
! <@param id_out identiefies the output file
|
||||
! <@param x vector of input pattern for each datapoint
|
||||
! <@param y vector of expected output patterns for each datapoint
|
||||
! <@param ymod vector of output patterns generated by the model depending on paramerters
|
||||
! <@param wt vector of weights for each datapoint
|
||||
! <@param qn number of input patterns
|
||||
! <@param ntot total number of output patterns for each datapoint
|
||||
! <@param i,j,k internal variables for loop controll and counting
|
||||
subroutine print_datapoint(id_out,x,y,ymod,wt)
|
||||
use dim_parameter,only: nstat,ndiab,nci,qn,ntot,qn_read
|
||||
use io_parameters,only: llen
|
||||
implicit none
|
||||
integer id_out
|
||||
double precision x(qn),y(ntot),ymod(ntot),wt(ntot)
|
||||
|
||||
integer i,j,k
|
||||
|
||||
18 format(A10,i3)
|
||||
19 format(3F18.8, 2X, F18.6, 4X,*(F12.6))
|
||||
|
||||
! print the nstat output patterns
|
||||
do i=1,nstat
|
||||
write(id_out,19)y(i),ymod(i),ymod(i)-y(i), wt(i), x(1:qn)
|
||||
enddo
|
||||
! loop over number (nci) of metadata with lenght (ndiab)
|
||||
do i=1,nci
|
||||
write(id_out,18) 'nci: ',i
|
||||
do j=1,ndiab
|
||||
k=nstat + (i-1)*ndiab + j
|
||||
write(id_out,19) y(k),ymod(k),(ymod(k)-y(k)),
|
||||
> wt(k), x(1:qn_read)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
|
||||
end module write_mod
|
||||
Loading…
Reference in New Issue