removed model from the main branch
This commit is contained in:
parent
9fe71e3666
commit
210f507f58
|
@ -1,38 +0,0 @@
|
||||||
!*** Relevant parameters for the analytic model
|
|
||||||
!*** offsets:
|
|
||||||
!*** offsets(1): morse equilibrium (N-H, Angström)
|
|
||||||
!*** offsets(2): reference angle (H-N-H)
|
|
||||||
!*** offsets(3): --
|
|
||||||
!*** pat_index: vector giving the position of the
|
|
||||||
!*** various coordinates (see below)
|
|
||||||
!*** ppars: polynomial parameters for tmcs
|
|
||||||
!*** vcfs: coefficients for V expressions.
|
|
||||||
!*** wzcfs: coefficients for W & Z expressions.
|
|
||||||
!*** ifc: inverse factorials.
|
|
||||||
|
|
||||||
integer matdim
|
|
||||||
parameter (matdim=5) ! matrix is (matdim)x(matdim)
|
|
||||||
|
|
||||||
real*8 offsets(2)
|
|
||||||
integer pat_index(maxnin)
|
|
||||||
|
|
||||||
! NH3 params
|
|
||||||
parameter (offsets=[2.344419d0,120.d0])
|
|
||||||
|
|
||||||
!##########################################################################
|
|
||||||
! coordinate order; the first #I number of coords are given to the
|
|
||||||
! ANN, where #I is the number of input neurons. The position i in
|
|
||||||
! pat_index corresponds to a coordinate, the value of pat_index(i)
|
|
||||||
! signifies its position.
|
|
||||||
!
|
|
||||||
! The vector is ordered as follows:
|
|
||||||
! a,xs,ys,xb,yb,b,rs**2,rb**2,b**2,
|
|
||||||
! es*eb, es**3, eb**3,es**2*eb, es*eb**2
|
|
||||||
! ri**2 := xi**2+yi**2 = ei**2; ei := (xi,yi), i = s,b
|
|
||||||
!
|
|
||||||
! parts not supposed to be read by ANN are marked by ';' for your
|
|
||||||
! convenience.
|
|
||||||
!##########################################################################
|
|
||||||
! a,rs**2,rb**2,es*eb,es**3,eb**3,es**2*eb,es*eb**2,b**2 #I=9 (6D)
|
|
||||||
parameter (pat_index=[1,2,3,4,5,6,7,8,9,10,11,12,13,14])
|
|
||||||
!**************************************************************************
|
|
|
@ -1,120 +0,0 @@
|
||||||
module adia_mod
|
|
||||||
implicit none
|
|
||||||
contains
|
|
||||||
|
|
||||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
! % SUBROUTINE ADIA(N,P,NPAR,ymod,v,u,SKIP)
|
|
||||||
! %
|
|
||||||
! % determines the adiabatic energies by diagonalizing diabatic matrix.
|
|
||||||
! % The Eingenvalues are sorted according to the best fitting ordering
|
|
||||||
! % of the CI vectors.
|
|
||||||
! %
|
|
||||||
! % ATTENTION: The interface has changed. To sort by the ci's,
|
|
||||||
! % the datavalue of the current points are given
|
|
||||||
! %
|
|
||||||
! % input variables:
|
|
||||||
! % n: number of point (int)
|
|
||||||
! % p: parameter evector(double[npar])
|
|
||||||
! % npar: number of parameters (int)
|
|
||||||
! % skip: .false. if everything should be done
|
|
||||||
! %
|
|
||||||
! % output variables:
|
|
||||||
! % ymod: firtst nstat energies and than nci*ndiab ci's (double[ntot])
|
|
||||||
! % v: eigenvalues (double[ndiab])
|
|
||||||
! % u: eigenvectors (double[ndiab,ndiab])
|
|
||||||
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
subroutine adia(n,p,npar,ymod,vx,u,skip)
|
|
||||||
use dim_parameter,only: ndiab,nstat,ntot,nci,pst
|
|
||||||
use data_module,only: q_m,x1_m,x2_m,y_m
|
|
||||||
use diab_mod, only:diab
|
|
||||||
use data_matrix
|
|
||||||
!use dipole, only: diab
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
integer i,j !running indices
|
|
||||||
|
|
||||||
integer iref !getting correction or refference
|
|
||||||
|
|
||||||
double precision e(ndiab,ndiab) !full diabatic matrix
|
|
||||||
double precision mx(ndiab,ndiab)
|
|
||||||
double precision my(ndiab,ndiab)
|
|
||||||
double precision vxs,vys,vxb,vyb
|
|
||||||
|
|
||||||
integer n !current point
|
|
||||||
integer npar !number of parameters
|
|
||||||
double precision p(npar) !parameters
|
|
||||||
|
|
||||||
double precision u(ndiab,ndiab),ut(ndiab,ndiab) !ci-vectors
|
|
||||||
double precision ymod(ntot) !fitted data
|
|
||||||
double precision vx(ndiab),vy(nstat) !eigen values
|
|
||||||
double precision,allocatable,dimension(:,:):: mat
|
|
||||||
logical skip,dbg
|
|
||||||
parameter (dbg=.false.)
|
|
||||||
double precision,dimension(2,2):: T,TT,TX,TY
|
|
||||||
! lapack variables
|
|
||||||
integer,parameter :: lwork = 1000
|
|
||||||
double precision work(lwork)
|
|
||||||
integer info
|
|
||||||
integer TYPES, BLK ! TYPE OF THE CALCULATION
|
|
||||||
! variabke for dgemm
|
|
||||||
|
|
||||||
double precision,dimension(ndiab,ndiab):: ex,ey,ez
|
|
||||||
double precision:: alpha
|
|
||||||
integer:: lda,ldb,beta,ldc
|
|
||||||
double precision,dimension(ndiab,ndiab):: temp1,temp2
|
|
||||||
call diab(ex,ey,ez,n,x1_m(:,n),x2_m(:,n),p)
|
|
||||||
|
|
||||||
|
|
||||||
! init eigenvector matrix
|
|
||||||
TYPES = int(p(pst(1,33)))
|
|
||||||
|
|
||||||
BLK = int(p(pst(1,33)+1)) ! BLOCK IF TYPE IS 3
|
|
||||||
u = 0.d0
|
|
||||||
vx=0.0d0
|
|
||||||
skip=.false.
|
|
||||||
ymod=0.0d0
|
|
||||||
if (TYPES .eq.1 ) then
|
|
||||||
! Trace of the potential
|
|
||||||
call trace_mat(ex,ey,ymod)
|
|
||||||
else if (TYPES .eq.2) then
|
|
||||||
! Eigenvalue decomposition of the potential
|
|
||||||
call Eigen(ex,ey,ymod)
|
|
||||||
|
|
||||||
else if (TYPES .eq.3) then
|
|
||||||
CALL BLOCK_DIAB(ex,ey,ymod,BLK)
|
|
||||||
else if (TYPES .EQ.4) then
|
|
||||||
call Full_diab_upper(ex,ey,ymod)
|
|
||||||
else if (TYPES .eq.5) then
|
|
||||||
call Transformation_mat(ex,vx,ymod)
|
|
||||||
ymod=0.0d0
|
|
||||||
else if (TYPES .eq.6) then
|
|
||||||
! transform the lz
|
|
||||||
call one_dia_upper(ez,ymod)
|
|
||||||
else
|
|
||||||
write(*,*) "Error in TYPE of calculation here",TYPES
|
|
||||||
|
|
||||||
stop
|
|
||||||
end if
|
|
||||||
if (dbg) then
|
|
||||||
do i=1,ndiab
|
|
||||||
write(*,'(5f14.6)') (ex(i,j),j=1,ndiab)
|
|
||||||
enddo
|
|
||||||
write(*,*)""
|
|
||||||
endif
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
subroutine matrix_mult(C,A,B,N)
|
|
||||||
implicit none
|
|
||||||
integer:: n,i,j,k
|
|
||||||
double precision,dimension(n,n):: A,B,C
|
|
||||||
do i = 1, n ! Rows of C
|
|
||||||
do j = 1, n ! Columns of C
|
|
||||||
C(i,j) = 0.0 ! Initialize element
|
|
||||||
do k = 1, n ! Dot product
|
|
||||||
C(i,j) = C(i,j) + A(i,k) * B(k,j)
|
|
||||||
end do
|
|
||||||
end do
|
|
||||||
end do
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
end module adia_mod
|
|
|
@ -1,386 +0,0 @@
|
||||||
module ctrans_mod
|
|
||||||
use dim_parameter, only: qn
|
|
||||||
contains
|
|
||||||
!! subroutine ctrans
|
|
||||||
|
|
||||||
subroutine ctrans(q,x1,x2)
|
|
||||||
implicit none
|
|
||||||
include 'nnparams.incl'
|
|
||||||
include 'JTmod.incl'
|
|
||||||
double precision,intent(in):: q(qn)
|
|
||||||
double precision,intent(out):: x1(qn),x2(qn)
|
|
||||||
double precision:: cart(3,4),qint(maxnin)
|
|
||||||
integer i
|
|
||||||
!cart(:,1)=0.0d0
|
|
||||||
|
|
||||||
!cart(1:3,2:4) = reshape([ q(4:12) ], shape(cart(1:3,2:4)))
|
|
||||||
cart(1,1)=q(1)
|
|
||||||
cart(2,1)=q(2)
|
|
||||||
cart(3,1)=q(3)
|
|
||||||
cart(1,2)=q(4)
|
|
||||||
cart(2,2)=q(5)
|
|
||||||
cart(3,2)=q(6)
|
|
||||||
cart(1,3)=q(7)
|
|
||||||
cart(2,3)=q(8)
|
|
||||||
cart(3,3)=q(9)
|
|
||||||
cart(1,4)=q(10)
|
|
||||||
cart(2,4)=q(11)
|
|
||||||
cart(3,4)=q(12)
|
|
||||||
call cart2int(cart,qint)
|
|
||||||
do i=1,qn
|
|
||||||
if (abs(qint(i)) .lt. 1.0d-5) qint(i) =0.0d0
|
|
||||||
enddo
|
|
||||||
x1(1:qn)=qint(1:qn)
|
|
||||||
!x1(2)=0.0d0
|
|
||||||
x1(5)=-x1(5)
|
|
||||||
x1(3)=-x1(3)
|
|
||||||
!x1(6)=0.0d0
|
|
||||||
x2(1:qn)=0.0d0 !qint(1:qn)
|
|
||||||
end subroutine ctrans
|
|
||||||
|
|
||||||
|
|
||||||
subroutine cart2int(cart,qint)
|
|
||||||
implicit none
|
|
||||||
! This version merges both coordinate transformation routines into
|
|
||||||
! one. JTmod's sscales(2:3) are ignored.
|
|
||||||
! This is the first version to be compatible with one of my proper 6D fits
|
|
||||||
! Time-stamp: <2024-10-22 13:52:59 dwilliams>
|
|
||||||
|
|
||||||
! Input (cartesian, in Angström)
|
|
||||||
! cart(:,1): N
|
|
||||||
! cart(:,1+i): Hi
|
|
||||||
! Output
|
|
||||||
! qint(i): order defined in JTmod.
|
|
||||||
! Internal Variables
|
|
||||||
! no(1:3): NO distances 1-3
|
|
||||||
! pat_in: temporary coordinates
|
|
||||||
! axis: main axis of NO3
|
|
||||||
include 'nnparams.incl'
|
|
||||||
include 'JTmod.incl'
|
|
||||||
|
|
||||||
|
|
||||||
real*8 cart(3,4),qint(maxnin)
|
|
||||||
|
|
||||||
real*8 no(3), r1, r2, r3
|
|
||||||
real*8 v1(3), v2(3), v3(3)
|
|
||||||
real*8 n1(3), n2(3), n3(3), tr(3)
|
|
||||||
real*8 ortho(3)
|
|
||||||
real*8 pat_in(maxnin)
|
|
||||||
logical ignore_umbrella,dbg_umbrella
|
|
||||||
logical dbg_distances
|
|
||||||
|
|
||||||
!.. Debugging parameters
|
|
||||||
!.. set umbrella to 0
|
|
||||||
parameter (ignore_umbrella=.false.)
|
|
||||||
! parameter (ignore_umbrella=.true.)
|
|
||||||
|
|
||||||
!.. break if umbrella is not 0
|
|
||||||
parameter (dbg_umbrella=.false.)
|
|
||||||
! parameter (dbg_umbrella=.true.)
|
|
||||||
|
|
||||||
!.. break for tiny distances
|
|
||||||
parameter (dbg_distances=.false.)
|
|
||||||
! parameter (dbg_distances=.true.)
|
|
||||||
|
|
||||||
integer k
|
|
||||||
|
|
||||||
!.. get N-O vectors and distances:
|
|
||||||
do k=1,3
|
|
||||||
v1(k)=cart(k,2)-cart(k,1)
|
|
||||||
v2(k)=cart(k,3)-cart(k,1)
|
|
||||||
v3(k)=cart(k,4)-cart(k,1)
|
|
||||||
enddo
|
|
||||||
no(1)=norm(v1,3)
|
|
||||||
no(2)=norm(v2,3)
|
|
||||||
no(3)=norm(v3,3)
|
|
||||||
|
|
||||||
!.. temporarily store displacements
|
|
||||||
do k=1,3
|
|
||||||
pat_in(k)=no(k)-offsets(1)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
do k=1,3
|
|
||||||
v1(k)=v1(k)/no(1)
|
|
||||||
v2(k)=v2(k)/no(2)
|
|
||||||
v3(k)=v3(k)/no(3)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
!.. compute three normal vectors for the ONO planes:
|
|
||||||
call xprod(n1,v1,v2)
|
|
||||||
call xprod(n2,v2,v3)
|
|
||||||
call xprod(n3,v3,v1)
|
|
||||||
|
|
||||||
do k=1,3
|
|
||||||
tr(k)=(n1(k)+n2(k)+n3(k))/3.d0
|
|
||||||
enddo
|
|
||||||
r1=norm(tr,3)
|
|
||||||
do k=1,3
|
|
||||||
tr(k)=tr(k)/r1
|
|
||||||
enddo
|
|
||||||
|
|
||||||
! rotate trisector
|
|
||||||
call rot_trisec(tr,v1,v2,v3)
|
|
||||||
|
|
||||||
!.. determine trisector angle:
|
|
||||||
if (ignore_umbrella) then
|
|
||||||
pat_in(7)=0.0d0
|
|
||||||
else
|
|
||||||
pat_in(7)=pi/2.0d0 - acos(scalar(v1,tr,3))
|
|
||||||
pat_in(7)=sign(pat_in(7),cart(1,2))
|
|
||||||
endif
|
|
||||||
|
|
||||||
!.. molecule now lies in yz plane, compute projected ONO angles:
|
|
||||||
v1(1)=0.d0
|
|
||||||
v2(1)=0.d0
|
|
||||||
v3(1)=0.d0
|
|
||||||
r1=norm(v1,3)
|
|
||||||
r2=norm(v2,3)
|
|
||||||
r3=norm(v3,3)
|
|
||||||
do k=2,3
|
|
||||||
v1(k)=v1(k)/r1
|
|
||||||
v2(k)=v2(k)/r2
|
|
||||||
v3(k)=v3(k)/r3
|
|
||||||
enddo
|
|
||||||
|
|
||||||
! make orthogonal vector to v3
|
|
||||||
ortho(1)=0.0d0
|
|
||||||
ortho(2)=v3(3)
|
|
||||||
ortho(3)=-v3(2)
|
|
||||||
|
|
||||||
!.. projected ONO angles in radians
|
|
||||||
pat_in(4)=get_ang(v2,v3,ortho)
|
|
||||||
pat_in(5)=get_ang(v1,v3,ortho)
|
|
||||||
|
|
||||||
pat_in(6)=dabs(pat_in(5)-pat_in(4))
|
|
||||||
|
|
||||||
!.. account for rotational order of atoms
|
|
||||||
if (pat_in(4).le.pat_in(5)) then
|
|
||||||
pat_in(5)=2*pi-pat_in(4)-pat_in(6)
|
|
||||||
else
|
|
||||||
pat_in(4)=2*pi-pat_in(5)-pat_in(6)
|
|
||||||
endif
|
|
||||||
|
|
||||||
pat_in(4)=rad2deg*pat_in(4)-offsets(2)
|
|
||||||
pat_in(5)=rad2deg*pat_in(5)-offsets(2)
|
|
||||||
pat_in(6)=rad2deg*pat_in(6)-offsets(2)
|
|
||||||
pat_in(7)=rad2deg*pat_in(7)
|
|
||||||
|
|
||||||
call genANN_ctrans(pat_in)
|
|
||||||
|
|
||||||
qint(:)=pat_in(:)
|
|
||||||
|
|
||||||
contains
|
|
||||||
|
|
||||||
!-------------------------------------------------------------------
|
|
||||||
! compute vector product n1 of vectors v1 x v2
|
|
||||||
subroutine xprod(n1,v1,v2)
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
real*8 n1(3), v1(3), v2(3)
|
|
||||||
|
|
||||||
n1(1) = v1(2)*v2(3) - v1(3)*v2(2)
|
|
||||||
n1(2) = v1(3)*v2(1) - v1(1)*v2(3)
|
|
||||||
n1(3) = v1(1)*v2(2) - v1(2)*v2(1)
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
|
|
||||||
!-------------------------------------------------------------------
|
|
||||||
! compute scalar product of vectors v1 and v2:
|
|
||||||
real*8 function scalar(v1,v2,n)
|
|
||||||
implicit none
|
|
||||||
integer i, n
|
|
||||||
real*8 v1(*), v2(*)
|
|
||||||
|
|
||||||
scalar=0.d0
|
|
||||||
do i=1,n
|
|
||||||
scalar=scalar+v1(i)*v2(i)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end function
|
|
||||||
|
|
||||||
!-------------------------------------------------------------------
|
|
||||||
! compute norm of vector:
|
|
||||||
real*8 function norm(x,n)
|
|
||||||
implicit none
|
|
||||||
integer i, n
|
|
||||||
real*8 x(*)
|
|
||||||
|
|
||||||
norm=0.d0
|
|
||||||
do i=1,n
|
|
||||||
norm=norm+x(i)**2
|
|
||||||
enddo
|
|
||||||
norm=sqrt(norm)
|
|
||||||
|
|
||||||
end function
|
|
||||||
|
|
||||||
!-------------------------------------------------------------------
|
|
||||||
|
|
||||||
subroutine rot_trisec(tr,v1,v2,v3)
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
real*8 tr(3),v1(3),v2(3),v3(3)
|
|
||||||
|
|
||||||
real*8 vrot(3)
|
|
||||||
real*8 rot_ax(3)
|
|
||||||
real*8 cos_phi,sin_phi
|
|
||||||
|
|
||||||
! evaluate cos(-phi) and sin(-phi), where phi is the angle between
|
|
||||||
! tr and (1,0,0)
|
|
||||||
cos_phi=tr(1)
|
|
||||||
sin_phi=dsqrt(tr(2)**2+tr(3)**2)
|
|
||||||
|
|
||||||
if (sin_phi.lt.1.0d-12) then
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
|
|
||||||
! determine rotational axis
|
|
||||||
rot_ax(1) = 0.0d0
|
|
||||||
rot_ax(2) = tr(3)
|
|
||||||
rot_ax(3) = -tr(2)
|
|
||||||
! normalize
|
|
||||||
rot_ax=rot_ax/sin_phi
|
|
||||||
|
|
||||||
! now the rotation can be done using Rodrigues' rotation formula
|
|
||||||
! v'=v*cos(p) + (k x v)sin(p) + k (k*v) (1-cos(p))
|
|
||||||
! for v=tr k*v vanishes by construction:
|
|
||||||
|
|
||||||
! check that the rotation does what it should
|
|
||||||
call rodrigues(vrot,tr,rot_ax,cos_phi,sin_phi)
|
|
||||||
if (dsqrt(vrot(2)**2+vrot(3)**2).gt.1.0d-12) then
|
|
||||||
write(6,*) "ERROR: BROKEN TRISECTOR"
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
tr=vrot
|
|
||||||
|
|
||||||
call rodrigues(vrot,v1,rot_ax,cos_phi,sin_phi)
|
|
||||||
v1=vrot
|
|
||||||
call rodrigues(vrot,v2,rot_ax,cos_phi,sin_phi)
|
|
||||||
v2=vrot
|
|
||||||
call rodrigues(vrot,v3,rot_ax,cos_phi,sin_phi)
|
|
||||||
v3=vrot
|
|
||||||
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!-------------------------------------------------------------------
|
|
||||||
|
|
||||||
subroutine rodrigues(vrot,v,axis,cos_phi,sin_phi)
|
|
||||||
implicit none
|
|
||||||
real*8 vrot(3),v(3),axis(3)
|
|
||||||
real*8 cos_phi,sin_phi
|
|
||||||
|
|
||||||
real*8 ortho(3)
|
|
||||||
|
|
||||||
call xprod(ortho,axis,v)
|
|
||||||
vrot = v*cos_phi + ortho*sin_phi+axis*scalar(axis,v,3)*(1-cos_phi)
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!-------------------------------------------------------------------
|
|
||||||
|
|
||||||
real*8 function get_ang(v,xaxis,yaxis)
|
|
||||||
implicit none
|
|
||||||
! get normalized [0:2pi) angle from vectors in the yz plane
|
|
||||||
real*8 v(3),xaxis(3),yaxis(3)
|
|
||||||
|
|
||||||
real*8 phi
|
|
||||||
|
|
||||||
real*8 pi
|
|
||||||
parameter (pi=3.141592653589793d0)
|
|
||||||
|
|
||||||
phi=atan2(scalar(yaxis,v,3),scalar(xaxis,v,3))
|
|
||||||
if (phi.lt.0.0d0) then
|
|
||||||
phi=2*pi+phi
|
|
||||||
endif
|
|
||||||
get_ang=phi
|
|
||||||
|
|
||||||
end function
|
|
||||||
|
|
||||||
end subroutine cart2int
|
|
||||||
subroutine genANN_ctrans(pat_in)
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
include 'nnparams.incl'
|
|
||||||
include 'JTmod.incl'
|
|
||||||
|
|
||||||
real*8 pat_in(maxnin)
|
|
||||||
|
|
||||||
real*8 raw_in(maxnin),off_in(maxnin),ptrans_in(7)
|
|
||||||
real*8 r0
|
|
||||||
real*8 a,b,xs,ys,xb,yb
|
|
||||||
|
|
||||||
integer k
|
|
||||||
|
|
||||||
off_in(1:7)=pat_in(1:7)
|
|
||||||
r0=offsets(1)
|
|
||||||
|
|
||||||
! transform primitives
|
|
||||||
! recover raw distances from offset coords
|
|
||||||
do k=1,3
|
|
||||||
raw_in(k)=off_in(k)+offsets(1)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
do k=1,3
|
|
||||||
ptrans_in(k)=off_in(k)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
! rescale ONO angles
|
|
||||||
ptrans_in(4)=deg2rad*off_in(4)
|
|
||||||
ptrans_in(5)=deg2rad*off_in(5)
|
|
||||||
ptrans_in(6)=deg2rad*off_in(6)
|
|
||||||
! rescale umbrella
|
|
||||||
ptrans_in(7)=off_in(7)*deg2rad
|
|
||||||
|
|
||||||
! compute symmetry coordinates
|
|
||||||
|
|
||||||
! A (breathing)
|
|
||||||
a=(ptrans_in(1)+ptrans_in(2)+ptrans_in(3))/dsqrt(3.0d0)
|
|
||||||
! ES
|
|
||||||
call prim2emode(ptrans_in(1:3),xs,ys)
|
|
||||||
! EB
|
|
||||||
call prim2emode(ptrans_in(4:6),xb,yb)
|
|
||||||
! B (umbrella)
|
|
||||||
b=ptrans_in(7)
|
|
||||||
|
|
||||||
! overwrite input with output
|
|
||||||
|
|
||||||
pat_in(pat_index(1))=a ! 1
|
|
||||||
pat_in(pat_index(2))=xs
|
|
||||||
pat_in(pat_index(3))=ys
|
|
||||||
pat_in(pat_index(4))=xb
|
|
||||||
pat_in(pat_index(5))=yb
|
|
||||||
pat_in(pat_index(6))=b
|
|
||||||
! totally symmetric monomials
|
|
||||||
pat_in(pat_index(7))=xs**2 + ys**2 ! 2
|
|
||||||
pat_in(pat_index(8))=xb**2 + yb**2 ! 3
|
|
||||||
pat_in(pat_index(9))=b**2 ! 9
|
|
||||||
pat_in(pat_index(10))=xs*xb+ys*yb ! 4
|
|
||||||
! S^3, B^3
|
|
||||||
pat_in(pat_index(11))=xs*(xs**2-3*ys**2) ! 5
|
|
||||||
pat_in(pat_index(12))=xb*(xb**2-3*yb**2) ! 6
|
|
||||||
! S^2 B, S B^2
|
|
||||||
pat_in(pat_index(13))=xb*(xs**2-ys**2) - 2*yb*xs*ys ! 7
|
|
||||||
pat_in(pat_index(14))=xs*(xb**2-yb**2) - 2*ys*xb*yb ! 8
|
|
||||||
|
|
||||||
do k=11,14
|
|
||||||
pat_in(pat_index(k))=tanh(0.1d0*pat_in(pat_index(k)))*10.0d0
|
|
||||||
enddo
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
subroutine prim2emode(prim,ex,ey)
|
|
||||||
implicit none
|
|
||||||
! Takes a 2D-vector prim and returns the degenerate modes x and y
|
|
||||||
! following our standard conventions.
|
|
||||||
|
|
||||||
real*8 prim(3),ex,ey
|
|
||||||
|
|
||||||
ex=(2.0d0*prim(1)-prim(2)-prim(3))/dsqrt(6.0d0)
|
|
||||||
ey=(prim(2)-prim(3))/dsqrt(2.0d0)
|
|
||||||
|
|
||||||
end
|
|
||||||
end module ctrans_mod
|
|
||||||
|
|
|
@ -1,133 +0,0 @@
|
||||||
! <subroutine for manipulating the input Data before the Fit
|
|
||||||
subroutine data_transform(q,x1,x2,y,wt,p,npar,p_act)
|
|
||||||
use accuracy_constants, only: dp,idp
|
|
||||||
use dim_parameter,only : nstat,pst,ntot,qn,numdatpt,ndiab,ndata,sets
|
|
||||||
use ctrans_mod, only: ctrans
|
|
||||||
|
|
||||||
use surface_mod, only: eval_surface
|
|
||||||
use data_matrix
|
|
||||||
! use david_ctrans_mod, only: ctrans_d
|
|
||||||
implicit none
|
|
||||||
! IN: variables
|
|
||||||
integer(idp),intent(in) :: npar
|
|
||||||
Real(dp),intent(in) :: q(qn,numdatpt)
|
|
||||||
Real(dp),intent(in) :: p(npar)
|
|
||||||
integer(idp),intent(in) :: p_act(npar)
|
|
||||||
|
|
||||||
! INOUT: variables
|
|
||||||
Real(dp),intent(inout) :: y(ntot,numdatpt)
|
|
||||||
Real(dp),intent(inout) :: wt(ntot,numdatpt)
|
|
||||||
|
|
||||||
! OUT: vairables
|
|
||||||
Real(dp), intent(out) :: x1(qn,numdatpt),x2(qn,numdatpt)
|
|
||||||
! internal variables
|
|
||||||
|
|
||||||
|
|
||||||
Real(dp),dimension(ndiab,ndiab)::mat_x,mat_y,mat_z,U,V
|
|
||||||
|
|
||||||
Real(dp),dimension(nstat) :: E
|
|
||||||
integer(idp) pt,i,j,k,l, TYPES, BLK ! types is for the type of calculation
|
|
||||||
! blk is for which block to fit
|
|
||||||
logical,parameter:: dbg = .false.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if (pst(2,33) .ne. 2) then
|
|
||||||
|
|
||||||
write(*,*) "Error in Paramater Keys, TYPE_CAL should be 2 parameter", pst(2,33)
|
|
||||||
stop
|
|
||||||
end if
|
|
||||||
|
|
||||||
TYPES = int(p(pst(1,33)))! TYPE OF THE CALCULATION
|
|
||||||
BLK= int(p(pst(1,33)+1))! BLOCK IF TYPE IS 3
|
|
||||||
write(*,*) "TYPE of calculation:",TYPES
|
|
||||||
|
|
||||||
pt=1
|
|
||||||
|
|
||||||
do i=1,sets ! loop over the number of sets
|
|
||||||
do j=1,ndata(i) ! loop over the nbr of points in each sets
|
|
||||||
! remember to increment pt at the end of the loop
|
|
||||||
call ctrans(q(1:qn,pt),x1(:,pt),x2(:,pt)) ! transform the coordinate
|
|
||||||
|
|
||||||
! get the reference U matrix
|
|
||||||
|
|
||||||
!if (j .eq. 3) then
|
|
||||||
! call eval_surface(E,V,U_ref,q(1:qn,pt))
|
|
||||||
! call transform_U(U_ref)
|
|
||||||
!endif
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
!do pt=1,numdatpt
|
|
||||||
!call ctrans(q(1:qn,pt),x1(:,pt),x2(:,pt))! ctrans the dipole cooordinate.
|
|
||||||
write(7,'(I3,*(E17.8))') pt,x1(:,pt)
|
|
||||||
|
|
||||||
call eval_surface(E,V,U,q(1:qn,pt))
|
|
||||||
|
|
||||||
|
|
||||||
! Transform U mmatrix
|
|
||||||
call transform_U(U) ! Transform the U matrix
|
|
||||||
! write U matrix on f16
|
|
||||||
if (dbg) then
|
|
||||||
!write(7,*) "U matrix at point", pt
|
|
||||||
do k=1,ndiab
|
|
||||||
write(50+i,'(2E17.8,5X,5E17.8)')x1(2:3,pt),(U(k,l),l=1,ndiab)
|
|
||||||
enddo
|
|
||||||
write(50+i,*) ""
|
|
||||||
endif
|
|
||||||
!call overlap(U_ref,U)
|
|
||||||
call Y2mat(y(1:ntot,pt),mat_x,mat_y,mat_z)
|
|
||||||
|
|
||||||
if (TYPES .eq.1 ) then
|
|
||||||
! Trace of the potential
|
|
||||||
call trace_mat(mat_x,mat_y,y(1:ntot,pt))
|
|
||||||
else if (TYPES .eq.2) then
|
|
||||||
! Eigenvalue decomposition of the potential
|
|
||||||
call Eigen(mat_x,mat_y,y(1:ntot,pt))
|
|
||||||
else if (TYPES .eq.3) then
|
|
||||||
! Adiabatic transformation of the potential
|
|
||||||
call adiabatic_transform(mat_x,U)
|
|
||||||
call adiabatic_transform(mat_y,U)
|
|
||||||
call block_diab(mat_x,mat_y,y(1:ntot,pt),BLK)
|
|
||||||
|
|
||||||
else if (TYPES .eq.4) then
|
|
||||||
! Write the full upper diabatic matrix
|
|
||||||
call adiabatic_transform(mat_x,U)
|
|
||||||
call adiabatic_transform(mat_y,U)
|
|
||||||
! and write the full diabatic matrix to y
|
|
||||||
! This is the full diabatic matrix
|
|
||||||
call Full_diab_upper(mat_x,mat_y,y(1:ntot,pt))
|
|
||||||
else if (TYPES .eq.5) then
|
|
||||||
!call adiabatic_transform(mat_x,U)
|
|
||||||
!call adiabatic_transform(mat_y,U)
|
|
||||||
call Transformation_mat(U,E,y(1:ntot,pt))
|
|
||||||
else if (TYPES .eq.6) then
|
|
||||||
! Just do the adiabatic transformation and write the matrix
|
|
||||||
! transform the lz
|
|
||||||
call adiabatic_transform(mat_z,U)
|
|
||||||
call one_dia_upper(mat_z,y(1:ntot,pt))
|
|
||||||
else
|
|
||||||
write(*,*) "Error in TYPE of calculationss",TYPES
|
|
||||||
write(*,*) "the value:,", p(pst(1,33))
|
|
||||||
stop
|
|
||||||
end if
|
|
||||||
pt=pt+1
|
|
||||||
enddo ! j
|
|
||||||
write(34,*) "#---- End of set ", i
|
|
||||||
|
|
||||||
write(7,*) "#---- End of set ", i
|
|
||||||
|
|
||||||
enddo ! i
|
|
||||||
|
|
||||||
!enddo
|
|
||||||
|
|
||||||
call weight(wt,y)
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,84 +0,0 @@
|
||||||
module keys_mod
|
|
||||||
implicit none
|
|
||||||
contains
|
|
||||||
!program gen_key
|
|
||||||
! implicit none
|
|
||||||
! call init_keys()
|
|
||||||
!end program gen_key
|
|
||||||
subroutine init_keys
|
|
||||||
use io_parameters, only: key
|
|
||||||
character(len=1) prefix(4)
|
|
||||||
parameter (prefix=['N','P','A','S'])
|
|
||||||
!character (len=20) key(4,25)
|
|
||||||
integer,parameter:: np=33
|
|
||||||
character(len=16) parname(np)
|
|
||||||
integer i,j
|
|
||||||
! Defining keys for potential
|
|
||||||
! the electronic state of NO3 A2' E" E'
|
|
||||||
! Naming convention
|
|
||||||
! the keys for Lx and Ly
|
|
||||||
! the coupling between A2' and A2"
|
|
||||||
parname(1)='LXYVA2O1'
|
|
||||||
parname(2)='LXYVE1O1'
|
|
||||||
parname(3)='LXYVE2O1'
|
|
||||||
parname(4)='LXYVA2O2'
|
|
||||||
parname(5)='LXYVE1O2'
|
|
||||||
parname(6)='LXYVE2O2'
|
|
||||||
|
|
||||||
! W & Z of E1
|
|
||||||
parname(7)='LXYWZE1O0'
|
|
||||||
parname(8)='LXYWZE1O1'
|
|
||||||
parname(9)='LXYWZE1O2'
|
|
||||||
parname(10)='LXYWZE2O0'
|
|
||||||
parname(11)='LXYWZE2O1'
|
|
||||||
parname(12)='LXYWZE2O2'
|
|
||||||
|
|
||||||
|
|
||||||
! WW and Z Pseudo between E1 and E2
|
|
||||||
! p STANDS FOR PSEUDO JAHN-TELLER
|
|
||||||
parname(13)='LXYPE1E2O0'
|
|
||||||
parname(14)='LXYPE1E2O1'
|
|
||||||
parname(15)='LXYPE1E2O2'
|
|
||||||
! no order 3
|
|
||||||
|
|
||||||
! PSEUDO A2 & E1
|
|
||||||
parname(16)='LXYPA2E1O0'
|
|
||||||
parname(17)='LXYPA2E1O1'
|
|
||||||
parname(18)='LXYPA2E1O2'
|
|
||||||
|
|
||||||
! Pseudo JAHN-TELLER BETWEEN A2 AND E1
|
|
||||||
|
|
||||||
parname(19)='LXYPA2E2O0'
|
|
||||||
parname(20)='LXYPA2E2O1'
|
|
||||||
parname(21)='LXYPA2E2O2'
|
|
||||||
|
|
||||||
|
|
||||||
! keys for lz
|
|
||||||
|
|
||||||
parname(22)='LZWZE1O1'
|
|
||||||
parname(23)='LZWZE1O2'
|
|
||||||
parname(24)='LZWZE2O1'
|
|
||||||
parname(25)='LZWZE2O2'
|
|
||||||
parname(26)='LZPE1E2O0'
|
|
||||||
parname(27)='LZPE1E2O1'
|
|
||||||
parname(28)='LZPE1E2O2'
|
|
||||||
parname(29)='LZPA2E1O1'
|
|
||||||
parname(30)='LZPA2E1O2'
|
|
||||||
parname(31)='LZPA2E2O1'
|
|
||||||
parname(32)='LZPA2E2O2'
|
|
||||||
|
|
||||||
|
|
||||||
parname(33)='TYPE_CAL'! TYPE OF THE CALCULATION WHETHER IT IS THE TRACE OR SOMETHING ELSE
|
|
||||||
|
|
||||||
do i=1,np
|
|
||||||
do j=1,4
|
|
||||||
key(j, i)=prefix(j)//trim(parname(i))//':'
|
|
||||||
write(8,*) key(j,i)
|
|
||||||
enddo
|
|
||||||
write(8,*) ''
|
|
||||||
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
end module keys_mod
|
|
|
@ -1,374 +0,0 @@
|
||||||
module data_matrix
|
|
||||||
use dim_parameter, only:ndiab,nstat,ntot,pst
|
|
||||||
! use surface_mod, only: eval_surface
|
|
||||||
contains
|
|
||||||
! subroutine trace
|
|
||||||
|
|
||||||
subroutine trace_mat(mx,my,y)
|
|
||||||
IMPLICIT NONE
|
|
||||||
integer::i
|
|
||||||
double precision,intent(inout):: y(:)
|
|
||||||
double precision, intent(in):: mx(:,:),my(:,:)
|
|
||||||
y=0.0d0
|
|
||||||
!y(1)=mx(4,4)+mx(5,5)
|
|
||||||
|
|
||||||
do i=1,ndiab
|
|
||||||
y(1)=y(1)+mx(i,i)
|
|
||||||
y(2)=y(2)+my(i,i)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
END SUBROUTINE trace_mat
|
|
||||||
!! subroutine Ydata to matrix
|
|
||||||
|
|
||||||
subroutine Y2mat(Y,Mx,My,mz)
|
|
||||||
IMPLICIT NONE
|
|
||||||
integer:: ii,i,j
|
|
||||||
double precision, intent(in):: y(:)
|
|
||||||
double precision,dimension(ndiab,ndiab),intent(out):: mx, my,mz
|
|
||||||
|
|
||||||
!if (ndiab .ne. 4 ) then
|
|
||||||
!write(*,*) " NDIAB should be equal to 4",NDIAB
|
|
||||||
!write(*,*) "CHECK DATA_TRANSFORM TO MAKE IT ADAPTABLE"
|
|
||||||
!stop
|
|
||||||
!endif
|
|
||||||
ii=1
|
|
||||||
do i=1,ndiab
|
|
||||||
do j=1,i
|
|
||||||
! !mx
|
|
||||||
|
|
||||||
mx(i,j)=y(ii)
|
|
||||||
! ! My
|
|
||||||
my(i,j)=y( (ntot/3)+ii)
|
|
||||||
! remember to adjust here I added the energy
|
|
||||||
mz(i,j)= y(2*(ntot/3)+ ii )
|
|
||||||
!
|
|
||||||
ii=ii+1
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
call copy_2_upper(mx)
|
|
||||||
call copy_2_upper(my)
|
|
||||||
call copy_2_upper(mz)
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
subroutine Full_diab_upper(mx,my,y)
|
|
||||||
implicit none
|
|
||||||
double precision,intent(inout) :: y(:)
|
|
||||||
double precision, intent(in) :: mx(ndiab,ndiab), my(ndiab,ndiab)
|
|
||||||
integer i,j,ii
|
|
||||||
ii=1
|
|
||||||
y=0.0d0
|
|
||||||
|
|
||||||
do i=1,ndiab
|
|
||||||
do j=i,ndiab
|
|
||||||
! mx
|
|
||||||
y(ii) = mx(i,j)
|
|
||||||
! my
|
|
||||||
y((ntot/2)+ii) = my(i,j)
|
|
||||||
! increment the index
|
|
||||||
ii=ii+1
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
end subroutine Full_diab_upper
|
|
||||||
|
|
||||||
subroutine one_dia_upper(m,y)
|
|
||||||
implicit none
|
|
||||||
double precision,intent(inout) :: y(:)
|
|
||||||
double precision, intent(in) :: m(ndiab,ndiab)
|
|
||||||
integer i,j,ii
|
|
||||||
ii=1
|
|
||||||
y=0.0d0
|
|
||||||
|
|
||||||
do i=1,ndiab
|
|
||||||
do j=i,ndiab
|
|
||||||
! mx
|
|
||||||
y(ii) = m(i,j)
|
|
||||||
! increment the index
|
|
||||||
ii=ii+1
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
end subroutine one_dia_upper
|
|
||||||
|
|
||||||
|
|
||||||
Subroutine adiabatic_transform(mx,U)
|
|
||||||
implicit none
|
|
||||||
double precision, intent(inout) :: mx(ndiab,ndiab)
|
|
||||||
double precision, dimension(:,:), intent(inout) :: U
|
|
||||||
double precision, dimension(ndiab,ndiab) :: temp1, temp2
|
|
||||||
integer i, j
|
|
||||||
|
|
||||||
!call transform_U(U) ! Transform the U matrix
|
|
||||||
|
|
||||||
! Transform mx and my to adiabatic basis
|
|
||||||
temp1 = matmul(mx, transpose(U))
|
|
||||||
mx = matmul(U, temp1)
|
|
||||||
!temp2 = matmul(my, transpose(U))
|
|
||||||
!my = matmul(U, temp2)
|
|
||||||
|
|
||||||
end subroutine adiabatic_transform
|
|
||||||
|
|
||||||
! the eigenvalue of the dipole
|
|
||||||
|
|
||||||
SUBROUTINE Eigen(mx,my,Yres)
|
|
||||||
implicit none
|
|
||||||
double precision,dimension(:,:),intent(inout) :: mx,my
|
|
||||||
double precision,dimension(:),intent(out) :: Yres
|
|
||||||
double precision,dimension(ndiab) :: vx,vy
|
|
||||||
double precision,dimension(size(mx,1),size(my,2)) :: temp
|
|
||||||
! create a temorary matrix fo the eigenvctors
|
|
||||||
|
|
||||||
double precision, allocatable :: mux(:,:), muy(:,:)
|
|
||||||
|
|
||||||
! Lapak parameters
|
|
||||||
integer :: n,info,i
|
|
||||||
integer,parameter :: lwork = 100
|
|
||||||
double precision :: work(lwork)
|
|
||||||
! temporary
|
|
||||||
double precision:: max_row
|
|
||||||
Yres = 0.0d0
|
|
||||||
Allocate(mux,source=mx)
|
|
||||||
call DSYEV('V', 'U', size(mx,1), mux, size(mx,1), vx, work, lwork, info)
|
|
||||||
mx=mux
|
|
||||||
if (info /= 0) then
|
|
||||||
write(*,*) "Error in Eigenvalue decomposition of mx info = ", info
|
|
||||||
stop
|
|
||||||
end if
|
|
||||||
deallocate(mux)
|
|
||||||
Allocate(muy,source=my)
|
|
||||||
call DSYEV('V', 'U', size(my,1), muy, size(my,1), vy, work, lwork, info)
|
|
||||||
if (info /= 0) then
|
|
||||||
write(*,*) "Error in Eigenvalue decomposition of my info = ", info
|
|
||||||
stop
|
|
||||||
end if
|
|
||||||
deallocate(muy)
|
|
||||||
Yres(1:size(mx,1)) = vx(1:size(mx,1))
|
|
||||||
do i=1,size(mx,1)
|
|
||||||
max_row=maxloc(abs(mx(:,i)),1)
|
|
||||||
!yres(size(mx,1)+i)=(mx(max_row,i))**2
|
|
||||||
!yres(size(mx,1)+i)=real(max_row)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
!Yres(size(mx,1)+1:2*size(mx,1)) = vy(1:size(my,1))
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
subroutine copy_2_upper(m)
|
|
||||||
implicit none
|
|
||||||
double precision, intent(inout) :: m(:,:)
|
|
||||||
integer :: i,j
|
|
||||||
! copy the lower part of the matrix to the upper part
|
|
||||||
do i=1,size(m,1)
|
|
||||||
do j=1,i-1
|
|
||||||
m(j,i) = m(i,j)
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
end subroutine copy_2_upper
|
|
||||||
|
|
||||||
subroutine coppy_2_low(m)
|
|
||||||
implicit none
|
|
||||||
double precision, intent(inout) :: m(:,:)
|
|
||||||
integer :: i,j
|
|
||||||
! copy the upper part of the matrix to the lower part
|
|
||||||
do i=1,size(m,1)
|
|
||||||
do j=i+1,size(m,2)
|
|
||||||
m(j,i) = m(i,j)
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
end subroutine coppy_2_low
|
|
||||||
|
|
||||||
|
|
||||||
!1 SUBROUTNE BLOCKS
|
|
||||||
!! EACH BLOCK OF dIABTIC MATRIX
|
|
||||||
SUBROUTINE block_diab(mx,my,Y,block)
|
|
||||||
implicit none
|
|
||||||
double precision, intent(inout):: Y(:)
|
|
||||||
double precision, intent(in) :: mx(ndiab,ndiab), my(ndiab,ndiab)
|
|
||||||
integer, intent(in) :: block
|
|
||||||
integer i,j,ii,nn
|
|
||||||
y=0.0d0
|
|
||||||
|
|
||||||
select case (block)
|
|
||||||
case(1)
|
|
||||||
! fill the first E1 block state 2 &3
|
|
||||||
y(1)=mx(2,2)
|
|
||||||
y(2)=mx(2,3)
|
|
||||||
!y(3)=mx(3,2)
|
|
||||||
y(4)=mx(3,3)
|
|
||||||
!y(5)=my(2,2)
|
|
||||||
!y(6)=my(2,3)
|
|
||||||
!y(7)=my(3,2)
|
|
||||||
!y(8)=my(3,3)
|
|
||||||
|
|
||||||
case(2)
|
|
||||||
! fill the second E2 block state 4 & 5
|
|
||||||
y(1)=mx(4,4)
|
|
||||||
y(2)=mx(4,5)
|
|
||||||
!y(3)=mx(5,4)
|
|
||||||
y(4)=mx(5,5)
|
|
||||||
y(5)=my(4,4)
|
|
||||||
y(6)=my(4,5)
|
|
||||||
!y(7)=my(5,4)
|
|
||||||
y(8)=my(5,5)
|
|
||||||
case(3)
|
|
||||||
! Filling the pseudo block E1 and E2
|
|
||||||
y(1)=mx(2,4)
|
|
||||||
y(2)=mx(2,5)
|
|
||||||
y(3)=mx(3,4)
|
|
||||||
y(4)=mx(3,5)
|
|
||||||
y(5)=my(2,4)
|
|
||||||
y(6)=my(2,5)
|
|
||||||
y(7)=my(3,4)
|
|
||||||
y(8)=my(3,5)
|
|
||||||
case(4)
|
|
||||||
! filling the block of A2 coupling with E1
|
|
||||||
y(1)=mx(1,2)
|
|
||||||
y(2)=mx(1,3)
|
|
||||||
y(3)=mx(2,1)
|
|
||||||
y(4)=mx(3,1)
|
|
||||||
!y(5)=my(1,2)
|
|
||||||
!y(6)=my(1,3)
|
|
||||||
!y(7)=my(2,1)
|
|
||||||
!y(8)=my(3,1)
|
|
||||||
|
|
||||||
|
|
||||||
case(5)
|
|
||||||
! couplinng A2 with E2
|
|
||||||
Y(1)=mx(1,4)
|
|
||||||
Y(2)=mx(1,5)
|
|
||||||
!Y(3)=mx(4,1)
|
|
||||||
!Y(4)=mx(5,1)
|
|
||||||
Y(5)=my(1,4)
|
|
||||||
Y(6)=my(1,5)
|
|
||||||
!Y(7)=my(4,1)
|
|
||||||
!Y(8)=my(5,1)
|
|
||||||
case(6)
|
|
||||||
! Filling A only
|
|
||||||
y(1)=mx(1,1)
|
|
||||||
y(5)=my(1,1)
|
|
||||||
|
|
||||||
case default
|
|
||||||
write(*,*) "Error in block_diab subroutine, block not recognized"
|
|
||||||
write(*,*) "The block is:", block
|
|
||||||
stop
|
|
||||||
end select
|
|
||||||
end subroutine block_diab
|
|
||||||
subroutine ident(A)
|
|
||||||
implicit none
|
|
||||||
integer i,j
|
|
||||||
double precision,intent(inout)::A(:,:)
|
|
||||||
do i=1,size(A,1)
|
|
||||||
do j=1,size(A,1)
|
|
||||||
if (i==j) then
|
|
||||||
A(i,j)=1.0d0
|
|
||||||
else
|
|
||||||
A(i,j)=0.0d0
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
|
|
||||||
! subroutine trasform the U matrix
|
|
||||||
subroutine transform_U(U)
|
|
||||||
implicit none
|
|
||||||
double precision, intent(inout) :: U(ndiab,ndiab)
|
|
||||||
|
|
||||||
double precision :: U_ref(ndiab,ndiab), V(ndiab,ndiab), E(nstat)
|
|
||||||
integer i,max_row
|
|
||||||
double precision:: dot_prod,q_ref(9)
|
|
||||||
logical,parameter:: dbg_sign =.true.
|
|
||||||
|
|
||||||
!q_ref= [1.000174,0.000000,0.000000,-0.503595,-0.872253,0.000000,-0.530624,0.919068,0.000000]
|
|
||||||
!call eval_surface(E,V,U_ref,q_ref,p) ! get the reference transformation matrix
|
|
||||||
do i=1,ndiab
|
|
||||||
max_row = maxloc(abs(U(:,i)),1)
|
|
||||||
if (U(max_row,i) .lt. 0) then
|
|
||||||
U(:,i) = -1*U(:,i)
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
!dot_prod=dot_product(U(2:3,4),U_ref(2:3,4))
|
|
||||||
!if (dot_prod .lt. 0.0d0) then
|
|
||||||
! U(:,4) = -1.0d0*U(:,4)
|
|
||||||
!endif
|
|
||||||
|
|
||||||
|
|
||||||
end subroutine transform_U
|
|
||||||
|
|
||||||
subroutine write_type_calc(p,id_write)
|
|
||||||
! Subroutine to write the type of calculation
|
|
||||||
implicit none
|
|
||||||
double precision, intent(in) :: p(:)
|
|
||||||
integer, intent(in) :: id_write
|
|
||||||
integer :: type_calc, blk
|
|
||||||
type_calc = int(p(pst(1,33)))
|
|
||||||
blk = int(p(pst(1,33)+1))
|
|
||||||
|
|
||||||
if (type_calc ==1) then
|
|
||||||
write(id_write,*) "Type of calculation: TRACE"
|
|
||||||
else if (type_calc ==2) then
|
|
||||||
write(id_write,*) "Type of calculation: EIGENVALUE"
|
|
||||||
else if (type_calc ==3) then
|
|
||||||
IF (blk == 1) then
|
|
||||||
write(id_write,*) "Type of calculation: E1 BLOCK"
|
|
||||||
ELSE IF (BLK ==2) THEN
|
|
||||||
write(id_write,*) "Type of calculation: E2 BLOCK"
|
|
||||||
ELSE IF (BLK ==3) THEN
|
|
||||||
write(id_write,*) "Type of calculation: Pseudo E1 and E2 BLOCK"
|
|
||||||
ELSE IF (BLK ==4) THEN
|
|
||||||
write(id_write,*) "Type of calculation: COUPLING A2 with E1 BLOCK"
|
|
||||||
ELSE IF (BLK ==5) THEN
|
|
||||||
write(id_write,*) "Type of calculation: COUPLING A2 with E2 BLOCK"
|
|
||||||
ELSE IF (BLK ==6) THEN
|
|
||||||
write(id_write,*) "Type of calculation: A2 ONLY"
|
|
||||||
ELSE
|
|
||||||
write(id_write,*) "Type of calculation: Diabatic transformation with unknown block size", blk
|
|
||||||
END IF
|
|
||||||
|
|
||||||
else if (type_calc ==4) then
|
|
||||||
write(id_write,*) "Type of calculation: Full Diabatic Matrix"
|
|
||||||
else if (type_calc ==5) then
|
|
||||||
write(id_write,*) "Type of calculation: Transformation matrix U"
|
|
||||||
else
|
|
||||||
write(id_write,*) "Error in type of calculation:", type_calc
|
|
||||||
stop
|
|
||||||
end if
|
|
||||||
END SUBROUTINE write_type_calc
|
|
||||||
|
|
||||||
!! subroutine for writting the transformtion matrix U
|
|
||||||
subroutine Transformation_mat(temp,v,y)
|
|
||||||
implicit none
|
|
||||||
double precision, intent(in) :: temp(ndiab,ndiab), v(:)
|
|
||||||
double precision, intent(inout) :: y(:)
|
|
||||||
double precision :: U(ndiab,ndiab )
|
|
||||||
integer i,j,ii
|
|
||||||
U(1:ndiab,1:ndiab) = temp(1:ndiab,1:ndiab)
|
|
||||||
!call transform_U(U,P)
|
|
||||||
|
|
||||||
y=0.0d0
|
|
||||||
!y(1:4) = v(1:4) ! copy the first 4 elements of v to y
|
|
||||||
ii=1
|
|
||||||
do i=1,ndiab
|
|
||||||
do j=1,ndiab
|
|
||||||
y(ii) = U(i,j)
|
|
||||||
ii=ii+1
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
y(ii:30)=v(:)
|
|
||||||
end subroutine
|
|
||||||
! compute the overlap between U matrix
|
|
||||||
subroutine overlap(U_ref,U)
|
|
||||||
implicit none
|
|
||||||
double precision, intent(in):: U_ref(ndiab,ndiab)
|
|
||||||
double precision, intent(inout):: U(ndiab,ndiab)
|
|
||||||
double precision:: over
|
|
||||||
integer i
|
|
||||||
do i=1,ndiab
|
|
||||||
|
|
||||||
over=dot_product(U_ref(:,i),U(:,i))
|
|
||||||
if (over .lt. 0.0d0 ) then
|
|
||||||
U(:,i)=-U(:,i)
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
|
|
||||||
end module
|
|
|
@ -1,507 +0,0 @@
|
||||||
! Author: jnshuti
|
|
||||||
! Created: 2025-10-03 14:09:49
|
|
||||||
! Last modified: 2025-10-03 14:10:10 jnshuti
|
|
||||||
! model for L-matrix of NO3 radical
|
|
||||||
|
|
||||||
module diab_mod
|
|
||||||
use accuracy_constants, only: dp, idp
|
|
||||||
use dim_parameter, only: ndiab, nstat, ntot,qn,pst
|
|
||||||
implicit none
|
|
||||||
private
|
|
||||||
public :: diab
|
|
||||||
|
|
||||||
contains
|
|
||||||
subroutine diab(lx,ly,lz,n,x1,x2,p)
|
|
||||||
implicit none
|
|
||||||
real(dp), intent(out),dimension(ndiab,ndiab):: lx,ly,lz
|
|
||||||
real(dp), intent(in), dimension(qn):: x1,x2
|
|
||||||
real(dp), intent(in),dimension(:):: p
|
|
||||||
integer(idp),intent(in):: n
|
|
||||||
|
|
||||||
call Lx_diab(lx,x1,x2,p)
|
|
||||||
call Ly_diab(ly,x1,x2,p)
|
|
||||||
call Lz_diab(lz,x1,x2,p)
|
|
||||||
|
|
||||||
end subroutine diab
|
|
||||||
|
|
||||||
|
|
||||||
subroutine Lx_diab(E,q,t,p)
|
|
||||||
implicit none
|
|
||||||
real(dp),dimension(ndiab,ndiab), intent(out):: E
|
|
||||||
real(dp),dimension(:),intent(in):: q,t
|
|
||||||
real(dp),dimension(:),intent(in):: p
|
|
||||||
real(dp):: xs,ys,xb,yb,a,b
|
|
||||||
real(dp):: v3_vec(8), v2(6)
|
|
||||||
integer(idp):: i,j,id
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
! check the dimension of the matrix
|
|
||||||
if (size(E,1) .ne. ndiab) then
|
|
||||||
write(*,*) " Error in Lx_diab: wrong dimension of L matrix ", size(E,1)
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
|
|
||||||
! rewrite the coordinate array q into symmetry adapted coordinates
|
|
||||||
call rewrite_coord(q,a,xs,ys,xb,yb,b,1)
|
|
||||||
v2(1)=xs**2-ys**2
|
|
||||||
v2(2)=xb**2-yb**2
|
|
||||||
v2(3)=xs*xb-ys*yb
|
|
||||||
v2(4)=2*xs*ys
|
|
||||||
v2(5)=2*xb*yb
|
|
||||||
v2(6)=xs*yb+xb*ys
|
|
||||||
|
|
||||||
e = 0.0_dp
|
|
||||||
id = 1
|
|
||||||
e(1,1)=e(1,1)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb ! 2 param
|
|
||||||
id=id+1 ! 2
|
|
||||||
e(2,2)=e(2,2)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb ! 2 p
|
|
||||||
e(3,3)=e(3,3)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
|
||||||
id =id+1 ! 3
|
|
||||||
e(4,4)=e(4,4)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb ! 2 p
|
|
||||||
e(5,5)=e(5,5)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
|
||||||
|
|
||||||
|
|
||||||
id=id+1 ! 4
|
|
||||||
! order 2
|
|
||||||
|
|
||||||
e(1,1)=e(1,1)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) & ! 3 p
|
|
||||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)
|
|
||||||
id =id+1 ! 5
|
|
||||||
e(2,2)=e(2,2)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
|
||||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)
|
|
||||||
e(3,3)=e(3,3)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
|
||||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)
|
|
||||||
id =id+1 ! 6
|
|
||||||
e(4,4)=e(4,4)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
|
||||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)
|
|
||||||
e(5,5)=e(5,5)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
|
||||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)
|
|
||||||
! W and Z term of E1
|
|
||||||
! order 0
|
|
||||||
id=id+1 ! 7
|
|
||||||
e(2,2)=e(2,2)+p(pst(1,id))
|
|
||||||
e(3,3)=e(3,3)-p(pst(1,id))
|
|
||||||
!e(2,3)=e(2,3)
|
|
||||||
|
|
||||||
! order 1
|
|
||||||
id=id+1 ! 8 ! 2 param
|
|
||||||
e(2,2)=e(2,2)+ p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
|
||||||
e(3,3)=e(3,3)- (p(pst(1,id))*xs+p(pst(1,id)+1)*xb)
|
|
||||||
e(2,3)=e(2,3)- p(pst(1,id))*ys -p(pst(1,id)+1)*yb
|
|
||||||
! order 2
|
|
||||||
id=id+1 ! 9 ! 3p
|
|
||||||
do i=1,3
|
|
||||||
e(2,2)=e(2,2)+p(pst(1,id)+(i-1))*v2(i)
|
|
||||||
e(3,3)=e(3,3)-p(pst(1,id)+(i-1))*v2(i)
|
|
||||||
e(2,3)=e(2,3)+ p(pst(1,id)+(i-1))*v2(i+3)
|
|
||||||
enddo
|
|
||||||
! order 3
|
|
||||||
|
|
||||||
|
|
||||||
! try the testing of higher order terms
|
|
||||||
!e(2,3)=e(2,3)- p(pst(1,id))*ys*ss +p(pst(1,id)+1)*ss*2*xs*ys
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
! W and Z for E2
|
|
||||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
||||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
||||||
id=id+1 ! 10
|
|
||||||
e(4,4)=e(4,4)+p(pst(1,id))
|
|
||||||
e(5,5)=e(5,5)-p(pst(1,id))
|
|
||||||
e(4,5)=e(4,5)
|
|
||||||
|
|
||||||
! order 1
|
|
||||||
id=id+1 !112 param 15
|
|
||||||
e(4,4)=e(4,4)+ p(pst(1,id))*xs+p(pst(1,id)+1)*xb
|
|
||||||
e(5,5)=e(5,5)- (p(pst(1,id))*xs+p(pst(1,id)+1)*xb)
|
|
||||||
e(4,5)=e(4,5)- p(pst(1,id))*ys-p(pst(1,id)+1)*yb
|
|
||||||
! order 2
|
|
||||||
id=id+1 ! 12 ! 3p
|
|
||||||
do i=1,3
|
|
||||||
e(4,4)=e(4,4)+p(pst(1,id)+(i-1))*v2(i)
|
|
||||||
e(5,5)=e(5,5)-p(pst(1,id)+(i-1))*v2(i)
|
|
||||||
e(4,5)=e(4,5)+ p(pst(1,id)+(i-1))*v2(i+3)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
! make the dipole E = b* E
|
|
||||||
|
|
||||||
e = b * e
|
|
||||||
|
|
||||||
! E1 X E2
|
|
||||||
! WW and ZZ
|
|
||||||
|
|
||||||
|
|
||||||
id =id+1 ! 13
|
|
||||||
e(2,4)=e(2,4)+p(pst(1,id))*b
|
|
||||||
e(3,5)=e(3,5)-p(pst(1,id))*b
|
|
||||||
|
|
||||||
! ORDER 1
|
|
||||||
id=id+1 ! 14 ! 6 parama
|
|
||||||
e(2,4)=e(2,4)+b*((p(pst(1,id))+p(pst(1,id)+1)+p(pst(1,id)+2))*xs+(p(pst(1,id)+3)+p(pst(1,id)+4)+p(pst(1,id)+5))*xb)
|
|
||||||
e(3,5)=e(3,5)+b*((p(pst(1,id))+p(pst(1,id)+1)-p(pst(1,id)+2))*xs+(p(pst(1,id)+3)+p(pst(1,id)+4)-p(pst(1,id)+5))*xb)
|
|
||||||
e(2,5)=e(2,5)+b*((p(pst(1,id))-p(pst(1,id)+1)-p(pst(1,id)+2))*ys+(p(pst(1,id)+3)-p(pst(1,id)+4)-p(pst(1,id)+5))*yb)
|
|
||||||
e(3,4)=e(3,4)+b*((-p(pst(1,id))+p(pst(1,id)+1)-p(pst(1,id)+2))*ys+(-p(pst(1,id)+3)+p(pst(1,id)+4)-p(pst(1,id)+5))*yb)
|
|
||||||
! order 2
|
|
||||||
id=id+1 ! 15
|
|
||||||
|
|
||||||
do i=1,3 ! param
|
|
||||||
e(2,4)=e(2,4)+b*(p(pst(1,id)+(i-1))+p(pst(1,id)+(i+2))+p(pst(1,id)+(i+5)))*v2(i)
|
|
||||||
e(3,5)=e(3,5)+b*(-p(pst(1,id)+(i-1))+p(pst(1,id)+(i+2))+p(pst(1,id)+(i+5)))*v2(i)
|
|
||||||
e(2,5)=e(2,5)+b*(p(pst(1,id)+(i-1))+p(pst(1,id)+(i+2))-p(pst(1,id)+(i+5)))*v2(i+3)
|
|
||||||
e(3,4)=e(3,4)+b*(p(pst(1,id)+(i-1))-p(pst(1,id)+(i+2))+p(pst(1,id)+(i+5)))*v2(i+3)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
! pseudo A2 & E1
|
|
||||||
! ##################################################
|
|
||||||
!###################################################
|
|
||||||
! order 0
|
|
||||||
id=id+1 ! 1 param ! 16
|
|
||||||
|
|
||||||
e(1,3)=e(1,3)+b*(p(pst(1,id)))
|
|
||||||
|
|
||||||
! order 1
|
|
||||||
id = id +1 ! 17
|
|
||||||
e(1,2)=e(1,2)-b*(p(pst(1,id))*ys + p(pst(1,id)+1)*yb)
|
|
||||||
e(1,3)=e(1,3)+b*(p(pst(1,id))*xs + p(pst(1,id)+1)*xb)
|
|
||||||
|
|
||||||
! order 2
|
|
||||||
id=id+1 ! 18
|
|
||||||
|
|
||||||
e(1,2)=e(1,2)+b*(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
|
||||||
e(1,3)=e(1,3)+b*(p(pst(1,id))*(xs**2-ys**2) + p(pst(1,id)+1)*(xb**2-yb**2) &
|
|
||||||
+p(pst(1,id)+2)*(xs*xb-ys*yb))
|
|
||||||
|
|
||||||
! COUPLING OF A2 WITH E2
|
|
||||||
|
|
||||||
!##########################################################################################################
|
|
||||||
|
|
||||||
! order 0
|
|
||||||
id =id+1 !19
|
|
||||||
e(1,5)=e(1,5)+p(pst(1,id))
|
|
||||||
|
|
||||||
! order 1
|
|
||||||
id = id +1 ! 20
|
|
||||||
e(1,4)=e(1,4)-(p(pst(1,id))*ys + p(pst(1,id)+1)*yb)
|
|
||||||
e(1,5)=e(1,5)+(p(pst(1,id))*xs + p(pst(1,id)+1)*xb)
|
|
||||||
|
|
||||||
! order 2
|
|
||||||
id=id+1 ! 21
|
|
||||||
|
|
||||||
e(1,4)=e(1,4)+p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)+p(pst(1,id)+2)*(xs*yb+xb*ys)
|
|
||||||
e(1,5)=e(1,5)+p(pst(1,id))*(xs**2-ys**2) + p(pst(1,id)+1)*(xb**2-yb**2) &
|
|
||||||
+p(pst(1,id)+2)*(xs*xb-ys*yb)
|
|
||||||
|
|
||||||
e(1,4:5) = b* e(1,4:5)
|
|
||||||
|
|
||||||
|
|
||||||
call copy_2_lower_triangle(e)
|
|
||||||
end subroutine Lx_diab
|
|
||||||
|
|
||||||
! Ly matrix
|
|
||||||
subroutine Ly_diab(e,q,t,p)
|
|
||||||
implicit none
|
|
||||||
real(dp),dimension(ndiab,ndiab), intent(out):: e
|
|
||||||
real(dp),dimension(:),intent(in):: q,t
|
|
||||||
real(dp),dimension(:),intent(in):: p
|
|
||||||
real(dp):: xs,ys,xb,yb,a,b
|
|
||||||
real(dp):: v2(6)
|
|
||||||
integer(idp):: i,j,id
|
|
||||||
|
|
||||||
! check the dimension of the matrix
|
|
||||||
if (size(e,1) .ne. ndiab) then
|
|
||||||
write(*,*) " Error in Ly_diab: wrong dimension of L matrix ", size(e,1)
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
|
|
||||||
! rewrite the coordinate array q into symmetry adapted coordinates
|
|
||||||
call rewrite_coord(q,a,xs,ys,xb,yb,b,1)
|
|
||||||
v2(1)=xs**2-ys**2
|
|
||||||
v2(2)=xb**2-yb**2
|
|
||||||
v2(3)=xs*xb-ys*yb
|
|
||||||
v2(4)=2*xs*ys
|
|
||||||
v2(5)=2*xb*yb
|
|
||||||
v2(6)=xs*yb+xb*ys
|
|
||||||
|
|
||||||
e = 0.0_dp
|
|
||||||
|
|
||||||
! V-term
|
|
||||||
|
|
||||||
id=1 ! 1
|
|
||||||
! order 1
|
|
||||||
e(1,1)=e(1,1)+p(pst(1,id))*ys + p(pst(1,id)+1)*yb
|
|
||||||
id=id+1 ! 2
|
|
||||||
e(2,2)=e(2,2)+p(pst(1,id))*ys + p(pst(1,id)+1)*yb
|
|
||||||
e(3,3)=e(3,3)+p(pst(1,id))*ys + p(pst(1,id)+1)*yb
|
|
||||||
id =id+1 ! 3
|
|
||||||
e(4,4)=e(4,4)+p(pst(1,id))*ys + p(pst(1,id)+1)*yb
|
|
||||||
e(5,5)=e(5,5)+p(pst(1,id))*ys + p(pst(1,id)+1)*yb
|
|
||||||
|
|
||||||
id=id+1 ! 4b*(
|
|
||||||
e(1,1)=e(1,1)-(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
|
||||||
id =id+1 ! 5
|
|
||||||
e(2,2)=e(2,2)-(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
|
||||||
e(3,3)=e(3,3)-(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
|
||||||
id=id+1 ! 6
|
|
||||||
e(4,4)=e(4,4)-(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
|
||||||
e(5,5)=e(5,5)-(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
|
||||||
|
|
||||||
|
|
||||||
! W and Z of E1
|
|
||||||
! order 0
|
|
||||||
id=id+1 ! 7
|
|
||||||
e(2,3)=e(2,3)+p(pst(1,id))
|
|
||||||
! order 1
|
|
||||||
id=id+1 ! 8
|
|
||||||
e(2,2)=e(2,2)-p(pst(1,id))*ys -p(pst(1,id)+1)*yb
|
|
||||||
e(3,3)=e(3,3)+p(pst(1,id))*ys+ p(pst(1,id)+1)*yb
|
|
||||||
e(2,3)=e(2,3)-p(pst(1,id))*xs -p(pst(1,id)+1)*xb
|
|
||||||
! order 2
|
|
||||||
id=id+1 ! 9
|
|
||||||
do i=1,3
|
|
||||||
e(2,2)=e(2,2)+p(pst(1,id)+(i-1))*v2(i+3)
|
|
||||||
e(3,3)=e(3,3)-p(pst(1,id)+(i-1))*v2(i+3)
|
|
||||||
e(2,3)=e(2,3)-p(pst(1,id)+(i-1))*v2(i)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
|
|
||||||
!! W and Z of E2
|
|
||||||
!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
||||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
||||||
|
|
||||||
! order 0
|
|
||||||
id=id+1 ! 10
|
|
||||||
e(4,5)=e(4,5)+p(pst(1,id))
|
|
||||||
! order 1
|
|
||||||
id=id+1 ! 11
|
|
||||||
e(4,4)=e(4,4)-p(pst(1,id))*ys -p(pst(1,id)+1)*yb
|
|
||||||
e(5,5)=e(5,5)+p(pst(1,id))*ys+ p(pst(1,id)+1)*yb
|
|
||||||
e(4,5)=e(4,5)-p(pst(1,id))*xs -p(pst(1,id)+1)*xb
|
|
||||||
! order 2
|
|
||||||
id=id+1 ! 12
|
|
||||||
do i=1,3
|
|
||||||
e(4,4)=e(4,4)+p(pst(1,id)+(i-1))*v2(i+3)
|
|
||||||
e(5,5)=e(5,5)-p(pst(1,id)+(i-1))*v2(i+3)
|
|
||||||
e(4,5)=e(4,5)-p(pst(1,id)+(i-1))*v2(i)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
! PSEUDO JAHN-TELLER E1 AND E2
|
|
||||||
|
|
||||||
e = b* e
|
|
||||||
|
|
||||||
!ORDER 0
|
|
||||||
id=id+1 ! 13
|
|
||||||
|
|
||||||
e(2,5)=e(2,5)+p(pst(1,id))
|
|
||||||
e(3,4)=e(3,4)+p(pst(1,id))
|
|
||||||
! order 1
|
|
||||||
|
|
||||||
id=id+1 ! 14
|
|
||||||
e(2,4)=e(2,4)+((p(pst(1,id))+p(pst(1,id)+1)-p(pst(1,id)+2))*ys+(p(pst(1,id)+3)+p(pst(1,id)+4)-p(pst(1,id)+5))*yb)
|
|
||||||
e(3,5)=e(3,5)+((p(pst(1,id))+p(pst(1,id)+1)+p(pst(1,id)+2))*ys+(p(pst(1,id)+3)+p(pst(1,id)+4)+p(pst(1,id)+5))*yb)
|
|
||||||
e(2,5)=e(2,5)+((-p(pst(1,id))+p(pst(1,id)+1)-p(pst(1,id)+2))*xs+(-p(pst(1,id)+3)+p(pst(1,id)+4)-p(pst(1,id)+5))*xb)
|
|
||||||
e(3,4)=e(3,4)+((p(pst(1,id))-p(pst(1,id)+1)-p(pst(1,id)+2))*xs+(+p(pst(1,id)+3)-p(pst(1,id)+4)-p(pst(1,id)+5))*xb)
|
|
||||||
|
|
||||||
! order 2
|
|
||||||
id=id+1 ! 15
|
|
||||||
|
|
||||||
e(2,4)=e(2,4)+(p(pst(1,id)+(i-1))-p(pst(1,id)+(i+2))-p(pst(1,id)+(i+5)))*v2(i+3)
|
|
||||||
e(3,5)=e(3,5)+(-p(pst(1,id)+(i-1))-p(pst(1,id)+(i+2))-p(pst(1,id)+(i+5)))*v2(i+3)
|
|
||||||
e(2,5)=e(2,5)+(-p(pst(1,id)+(i-1))+p(pst(1,id)+(i+2))-p(pst(1,id)+(i+5)))*v2(i)
|
|
||||||
e(3,4)=e(3,4)+(-p(pst(1,id)+(i-1))-p(pst(1,id)+(i+2))+p(pst(1,id)+(i+5)))*v2(i)
|
|
||||||
|
|
||||||
! no order 3
|
|
||||||
!!!!!!!!!!!!!!!!
|
|
||||||
|
|
||||||
! the coupling A2 & E1
|
|
||||||
! #####################
|
|
||||||
! order 0
|
|
||||||
|
|
||||||
id=id+1 ! 16
|
|
||||||
e(1,2)=e(1,2)+(p(pst(1,id)))
|
|
||||||
! order 1
|
|
||||||
|
|
||||||
id=id+1 ! 17
|
|
||||||
e(1,2)=e(1,2)-(p(pst(1,id))*xs + p(pst(1,id)+1)*xb)
|
|
||||||
e(1,3)=e(1,3)-(p(pst(1,id))*ys + p(pst(1,id)+1)*yb)
|
|
||||||
|
|
||||||
! order 2
|
|
||||||
id=id+1 !18
|
|
||||||
e(1,2)=e(1,2)-(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
|
||||||
+p(pst(1,id)+2)*(xs*xb-ys*yb))
|
|
||||||
e(1,3)=e(1,3)+(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)+ &
|
|
||||||
+p(pst(1,id)+2)*(xs*yb+xb*ys))
|
|
||||||
|
|
||||||
! COUPLING OF A2 WITH E2
|
|
||||||
!#######################################################################################
|
|
||||||
!###############################################################################
|
|
||||||
! order 0
|
|
||||||
|
|
||||||
id = id+1 !19
|
|
||||||
e(1,4)=e(1,4)+p(pst(1,id))
|
|
||||||
! order 1
|
|
||||||
|
|
||||||
id=id+1 ! 20
|
|
||||||
e(1,4)=e(1,4)-(p(pst(1,id))*xs + p(pst(1,id)+1)*xb)
|
|
||||||
e(1,5)=e(1,5)-(p(pst(1,id))*ys + p(pst(1,id)+1)*yb)
|
|
||||||
|
|
||||||
! order 2
|
|
||||||
id=id+1 ! 21
|
|
||||||
e(1,4)=e(1,4)-(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
|
|
||||||
+p(pst(1,id)+2)*(xs*xb-ys*yb))
|
|
||||||
e(1,5)=e(1,5)+(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)+ &
|
|
||||||
p(pst(1,id)+2)*(xs*yb+xb*ys))
|
|
||||||
|
|
||||||
!write(*,*)'idy=',id
|
|
||||||
e(1:4,5) = b * e(1:4,5)
|
|
||||||
|
|
||||||
|
|
||||||
call copy_2_lower_triangle(e)
|
|
||||||
|
|
||||||
end subroutine Ly_diab
|
|
||||||
! Lz matrix
|
|
||||||
subroutine Lz_diab(e,q,t,p)
|
|
||||||
implicit none
|
|
||||||
real(dp),dimension(ndiab,ndiab), intent(out):: e
|
|
||||||
real(dp),dimension(:),intent(in):: q,t
|
|
||||||
real(dp),dimension(:),intent(in):: p
|
|
||||||
real(dp):: xs,ys,xb,yb,a,b
|
|
||||||
real(dp):: v2(6)
|
|
||||||
integer(idp):: i,j,id
|
|
||||||
|
|
||||||
! check the dimension of the matrix
|
|
||||||
if (size(e,1) .ne. ndiab) then
|
|
||||||
write(*,*) " Error in Lz_diab: wrong dimension of e matrix ", size(e,1)
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
call rewrite_coord(q,a,xs,ys,xb,yb,b,1)
|
|
||||||
|
|
||||||
|
|
||||||
e = 0.0_dp
|
|
||||||
! id for lz
|
|
||||||
id = 22 ! has to be
|
|
||||||
! the diagonal terms
|
|
||||||
|
|
||||||
! the v-term is 0th order and 3rd order.
|
|
||||||
! There is no zeroth order for diagonal
|
|
||||||
|
|
||||||
! w and z of E''
|
|
||||||
! order 1
|
|
||||||
id = id ! 22
|
|
||||||
e(2,2) = e(2,2) + p(pst(1,id))*ys + p(pst(1,id)+1)*yb
|
|
||||||
e(3,3) = e(3,3) - p(pst(1,id))*ys - p(pst(1,id)+1)*yb
|
|
||||||
e(2,3) = e(2,3) - p(pst(1,id))*xs -p(pst(1,id)+1)*xb
|
|
||||||
|
|
||||||
! order 2
|
|
||||||
id = id +1 ! 23
|
|
||||||
do i =1,3
|
|
||||||
e(2,2) = e(2,2) + p(pst(1,id)+(i-1))*v2(i+3)
|
|
||||||
e(3,3) = e(3,3) - p(pst(1,id)+(i-1))*v2(i+3)
|
|
||||||
e(2,3) = e(2,3) + p(pst(1,id)+(i-1))*v2(i)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
! W and Z of E'
|
|
||||||
! order 1
|
|
||||||
|
|
||||||
id = id +1 ! 24
|
|
||||||
e(4,4) = e(4,4) + p(pst(1,id))*ys + p(pst(1,id)+1)*yb
|
|
||||||
e(5,5) = e(5,5) - p(pst(1,id))*ys - p(pst(1,id)+1)*yb
|
|
||||||
e(4,5) = e(4,5) - p(pst(1,id))*xs -p(pst(1,id)+1)*xb
|
|
||||||
|
|
||||||
! order 2
|
|
||||||
id = id +1 ! 25
|
|
||||||
do i =1,3
|
|
||||||
e(4,4) = e(4,4) + p(pst(1,id)+(i-1))*v2(i+3)
|
|
||||||
e(5,5) = e(5,5) - p(pst(1,id)+(i-1))*v2(i+3)
|
|
||||||
e(4,5) = e(4,5) + p(pst(1,id)+(i-1))*v2(i)
|
|
||||||
enddo
|
|
||||||
! the coupling
|
|
||||||
! Pseudo of E' and E''
|
|
||||||
! it must have odd power of b
|
|
||||||
|
|
||||||
id = id +1 !26
|
|
||||||
! order 0
|
|
||||||
e(2,4) = e(2,4)
|
|
||||||
e(3,5) = e(3,5)
|
|
||||||
e(2,5) = e(2,5) + b*(p(pst(1,id)))
|
|
||||||
e(3,4) = e(3,4) - b*(p(pst(1,id)))
|
|
||||||
|
|
||||||
! order 1
|
|
||||||
id = id +1 !27
|
|
||||||
e(2,4) = e(2,4) + b*(p(pst(1,id))*ys + p(pst(1,id)+1)*yb)
|
|
||||||
e(3,5) = e(3,5) + b*(p(pst(1,id))*ys + p(pst(1,id)+1)*yb)
|
|
||||||
e(2,5) = e(2,5) - b*(p(pst(1,id))*xs + p(pst(1,id)+1)*xb)
|
|
||||||
e(3,4) = e(3,4) + b*(p(pst(1,id))*xs + p(pst(1,id)+1)*xb)
|
|
||||||
! order 2
|
|
||||||
id = id +1 !28
|
|
||||||
do i=1,3
|
|
||||||
e(2,4) = e(2,4) + b*(p(pst(1,id)+(i-1)))*v2(i+3)
|
|
||||||
e(3,5) = e(3,5) + b*(p(pst(1,id)+(i-1)))*v2(i+3)
|
|
||||||
e(2,5) = e(2,5) + b*(p(pst(1,id)+(i-1)))*v2(i)
|
|
||||||
e(3,4) = e(3,4) - b*(p(pst(1,id)+(i-1)))*v2(i)
|
|
||||||
enddo
|
|
||||||
! no third order
|
|
||||||
|
|
||||||
! the coupling between A2' and E''
|
|
||||||
! order 1
|
|
||||||
id = id +1 !29
|
|
||||||
e(1,2) = e(1,2) + b*(p(pst(1,id))*xs + p(pst(1,id)*xb))
|
|
||||||
e(1,3) = e(1,3) - b*(p(pst(1,id))*ys + p(pst(1,id)*yb))
|
|
||||||
|
|
||||||
|
|
||||||
id = id +1 !30
|
|
||||||
! order 2
|
|
||||||
do i=1,3
|
|
||||||
e(1,2) = e(1,2) + b*(p(pst(1,id)+(i-1)))*v2(i)
|
|
||||||
e(1,3) = e(1,3) + b*(p(pst(1,id)+(i-1)))*v2(i+3)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
! the coupling of A2' and E'
|
|
||||||
|
|
||||||
! order 1
|
|
||||||
id = id +1 !31
|
|
||||||
e(1,2) = e(1,2) + (p(pst(1,id))*xs + p(pst(1,id)*xb))
|
|
||||||
e(1,3) = e(1,3) - (p(pst(1,id))*ys + p(pst(1,id)*yb))
|
|
||||||
|
|
||||||
id = id +1 ! 32
|
|
||||||
! order 2
|
|
||||||
do i=1,3
|
|
||||||
e(1,2) = e(1,2) + (p(pst(1,id)+(i-1)))*v2(i)
|
|
||||||
e(1,3) = e(1,3) + (p(pst(1,id)+(i-1)))*v2(i+3)
|
|
||||||
enddo
|
|
||||||
call copy_2_lower_triangle(e)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
end subroutine Lz_diab
|
|
||||||
|
|
||||||
subroutine rewrite_coord(q,a,xs,ys,xb,yb,b,start)
|
|
||||||
implicit none
|
|
||||||
real(dp),dimension(:),intent(in):: q
|
|
||||||
real(dp),intent(out):: xs,ys,xb,yb,a,b
|
|
||||||
integer(idp),intent(in):: start
|
|
||||||
integer(idp):: i,j
|
|
||||||
|
|
||||||
a= q(start)
|
|
||||||
xs = q(start+1)
|
|
||||||
ys = q(start+2)
|
|
||||||
xb = q(start+3)
|
|
||||||
yb = q(start+4)
|
|
||||||
b = q(start+5)
|
|
||||||
end subroutine rewrite_coord
|
|
||||||
|
|
||||||
subroutine copy_2_lower_triangle(mat)
|
|
||||||
real(dp), intent(inout) :: mat(:, :)
|
|
||||||
integer :: m, n
|
|
||||||
! write lower triangle of matrix symmetrical
|
|
||||||
do n=1,size(mat,1)
|
|
||||||
do m=n,size(mat,1)
|
|
||||||
mat(m,n)=mat(n,m)
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
end subroutine copy_2_lower_triangle
|
|
||||||
|
|
||||||
|
|
||||||
end module diab_mod
|
|
|
@ -1,43 +0,0 @@
|
||||||
!**** Declarations
|
|
||||||
|
|
||||||
real*8 pi
|
|
||||||
real*8 hart2eV, eV2hart
|
|
||||||
real*8 hart2icm, icm2hart
|
|
||||||
real*8 eV2icm, icm2eV
|
|
||||||
real*8 deg2rad, rad2deg
|
|
||||||
integer maxnin,maxnout
|
|
||||||
|
|
||||||
!**********************************************************
|
|
||||||
!**** Parameters
|
|
||||||
!*** maxnin: max. number of neurons in input layer
|
|
||||||
!*** maxnout: max. number of neurons in output layer
|
|
||||||
|
|
||||||
parameter (maxnin=14,maxnout=15)
|
|
||||||
|
|
||||||
!**********************************************************
|
|
||||||
!**** Numerical Parameters
|
|
||||||
!*** infty: largest possible double precision real value.
|
|
||||||
!*** iinfty: largest possible integer value.
|
|
||||||
|
|
||||||
! 3.14159265358979323846264338327950...
|
|
||||||
parameter (pi=3.1415926536D0)
|
|
||||||
|
|
||||||
!**********************************************************
|
|
||||||
!**** Unit Conversion Parameters
|
|
||||||
!*** X2Y: convert from X to Y.
|
|
||||||
!***
|
|
||||||
!*** hart: hartree
|
|
||||||
!*** eV: electron volt
|
|
||||||
!*** icm: inverse centimeters (h*c/cm)
|
|
||||||
!****
|
|
||||||
!*** deg: degree
|
|
||||||
!*** rad: radians
|
|
||||||
|
|
||||||
parameter (hart2icm=219474.69d0)
|
|
||||||
parameter (hart2eV=27.211385d0)
|
|
||||||
parameter (eV2icm=hart2icm/hart2eV)
|
|
||||||
parameter (icm2hart=1.0d0/hart2icm)
|
|
||||||
parameter (eV2hart=1.0d0/hart2eV)
|
|
||||||
parameter (icm2eV=1.0d0/eV2icm)
|
|
||||||
parameter (deg2rad=pi/180.0d0)
|
|
||||||
parameter (rad2deg=1.0d0/deg2rad)
|
|
|
@ -1,85 +0,0 @@
|
||||||
module surface_mod
|
|
||||||
use accuracy_constants, only: dp
|
|
||||||
implicit none
|
|
||||||
private
|
|
||||||
public eval_surface
|
|
||||||
contains
|
|
||||||
subroutine eval_surface(e, w, u, x1)
|
|
||||||
|
|
||||||
use accuracy_constants, only: dp, idp
|
|
||||||
use dim_parameter, only: ndiab
|
|
||||||
implicit none
|
|
||||||
real(dp), dimension(:, :), intent(out) :: w, u
|
|
||||||
real(dp), dimension(:), intent(out) :: e
|
|
||||||
real(dp), dimension(:), intent(in) :: x1
|
|
||||||
real(dp), allocatable, dimension(:, :) :: Mat
|
|
||||||
|
|
||||||
! debug parameter
|
|
||||||
|
|
||||||
logical, parameter:: dbg=.false.
|
|
||||||
integer(kind=idp):: i,j
|
|
||||||
! lapack variables
|
|
||||||
integer(kind=idp), parameter :: lwork = 1000
|
|
||||||
real(kind=dp) work(lwork)
|
|
||||||
integer(kind=idp) info
|
|
||||||
|
|
||||||
|
|
||||||
!write(*,*)"# Calling the potential routine "
|
|
||||||
call init_pot_para
|
|
||||||
call potentialno35s(W,X1)
|
|
||||||
|
|
||||||
allocate (Mat, source=w)
|
|
||||||
call dsyev('V', 'U', ndiab, Mat, ndiab, e, work, lwork, info)
|
|
||||||
if( info .ne. 0) then
|
|
||||||
write(*,*) " Error in eigenvalues decomposition routine of potential info=", info
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
u(:, :) = Mat(:, :)
|
|
||||||
deallocate (Mat)
|
|
||||||
|
|
||||||
if (dbg) then
|
|
||||||
do i=1,ndiab
|
|
||||||
|
|
||||||
write(19,99) e(i),(U(i,j),j=1,ndiab)
|
|
||||||
enddo
|
|
||||||
write(19,*)""
|
|
||||||
endif
|
|
||||||
99 format(2x,f16.8,2X,5f16.8)
|
|
||||||
|
|
||||||
end subroutine eval_surface
|
|
||||||
|
|
||||||
! subroutine init_surface(p)
|
|
||||||
! use dim_parameter, only: ndiab, nstat, ntot, nci ,qn
|
|
||||||
! use parameterkeys, only: parameterkey_read
|
|
||||||
! use fileread_mod, only: get_datfile, internalize_datfile
|
|
||||||
! use io_parameters, only: llen
|
|
||||||
! use accuracy_constants, only: dp
|
|
||||||
! implicit none
|
|
||||||
! real(dp), dimension(:), allocatable, intent(out) :: p
|
|
||||||
! character(len=llen), allocatable, dimension(:) :: infile
|
|
||||||
!
|
|
||||||
! qn = 9
|
|
||||||
! ndiab = 4
|
|
||||||
! nstat = 4
|
|
||||||
! nci = 4
|
|
||||||
! ntot = ndiab + nstat + nci
|
|
||||||
!
|
|
||||||
! block
|
|
||||||
! character(len=:),allocatable :: datnam
|
|
||||||
! integer :: linenum
|
|
||||||
! !get parameter file
|
|
||||||
! call get_datfile(datnam)
|
|
||||||
! !internalize datfile
|
|
||||||
! call internalize_datfile(datnam, infile, linenum, llen)
|
|
||||||
! end block
|
|
||||||
!
|
|
||||||
! !read parameters from file
|
|
||||||
! block
|
|
||||||
! real(dp), dimension(:), allocatable :: p_spread
|
|
||||||
! integer,dimension(:),allocatable :: p_act
|
|
||||||
! integer :: npar
|
|
||||||
! real(dp), parameter :: facspread = 1.0_dp, gspread = 1.0_dp
|
|
||||||
! call parameterkey_read(infile, size(infile, 1), p, p_act, p_spread, npar, gspread, facspread)
|
|
||||||
! end block
|
|
||||||
! end subroutine init_surface
|
|
||||||
end module surface_mod
|
|
|
@ -1,50 +0,0 @@
|
||||||
! <Subroutine weight(wt,y,ntot,numdatpt)
|
|
||||||
subroutine weight(wt,y)
|
|
||||||
use dim_parameter, only: nstat,ndiab,nci,ntot,numdatpt,
|
|
||||||
> hybrid,wt_en2ci,wt_en,wt_ci
|
|
||||||
implicit none
|
|
||||||
! data arrays and their dimensions
|
|
||||||
double precision wt(ntot,numdatpt),y(ntot,numdatpt)
|
|
||||||
! loop index
|
|
||||||
integer i,j,k,n
|
|
||||||
|
|
||||||
do i=1,numdatpt
|
|
||||||
wt(1,i)=1.d0
|
|
||||||
enddo
|
|
||||||
|
|
||||||
call norm_weight(wt,ntot,numdatpt)
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
! <Subroutine norm_weight(wt,ntot,numdatpt)
|
|
||||||
subroutine norm_weight(wt,ntot,numdatpt)
|
|
||||||
implicit none
|
|
||||||
integer ntot,numdatpt
|
|
||||||
double precision norm,wt(ntot,numdatpt)
|
|
||||||
integer i,j,count
|
|
||||||
|
|
||||||
write(6,*) 'Normalizing Weights...'
|
|
||||||
norm=0.d0
|
|
||||||
count = 0
|
|
||||||
do i=1,numdatpt
|
|
||||||
do j=1,ntot
|
|
||||||
norm = norm + wt(j,i)*wt(j,i)
|
|
||||||
if (wt(j,i).gt.0.d0) count=count+1
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
|
|
||||||
norm = dsqrt(norm)
|
|
||||||
if(norm.gt.0.d0) then
|
|
||||||
do i=1,numdatpt
|
|
||||||
do j=1,ntot
|
|
||||||
wt(j,i) = wt(j,i)/norm
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
else
|
|
||||||
write(6,*) 'Warning: Norm of Weights is Zero'
|
|
||||||
endif
|
|
||||||
|
|
||||||
Write(6,'(''No. of weigthed data points:'',i0)') count
|
|
||||||
|
|
||||||
end subroutine
|
|
|
@ -1,763 +0,0 @@
|
||||||
module write_mod
|
|
||||||
implicit none
|
|
||||||
! unit conversion
|
|
||||||
double precision ,parameter :: h2icm = 219474.69d0
|
|
||||||
double precision, parameter :: au2Debye = 2.541746d0
|
|
||||||
character(len=250), parameter :: sep_line = '(250("-"))'
|
|
||||||
character(len=250), parameter :: block_line = '(250("="))'
|
|
||||||
|
|
||||||
contains
|
|
||||||
|
|
||||||
! <Subroutine for writing the Output
|
|
||||||
subroutine write_output
|
|
||||||
> (q,x1,x2,y,wt,par,p_act,p_spread,nset,npar,
|
|
||||||
> flag,lauf)
|
|
||||||
use adia_mod, only: adia
|
|
||||||
use dim_parameter,only: qn,ntot,numdatpt,ndiab
|
|
||||||
use ctrans_mod,only: ctrans
|
|
||||||
implicit none
|
|
||||||
! IN: variables
|
|
||||||
integer lauf
|
|
||||||
integer flag !< 0= initial output 1=fit not converged 2= Fit Converged, 3= max iteration reached
|
|
||||||
integer npar,nset
|
|
||||||
double precision par(npar,nset),p_spread(npar)
|
|
||||||
integer p_act(npar)
|
|
||||||
double precision q(qn,numdatpt),x1(qn,numdatpt),x2(qn,numdatpt)
|
|
||||||
double precision y(ntot,numdatpt),wt(ntot,numdatpt)
|
|
||||||
|
|
||||||
! INTERNAL: Variables
|
|
||||||
integer,parameter :: id_out = 20 , std_out = 6
|
|
||||||
integer pt
|
|
||||||
integer i, id_print
|
|
||||||
double precision, allocatable :: ymod(:,:)
|
|
||||||
double precision, allocatable :: ew(:,:)
|
|
||||||
double precision, allocatable :: ev(:,:,:)
|
|
||||||
|
|
||||||
logical skip
|
|
||||||
|
|
||||||
allocate(ymod(ntot,numdatpt))
|
|
||||||
allocate(ew(ndiab,numdatpt))
|
|
||||||
allocate(ev(ndiab,ndiab,numdatpt))
|
|
||||||
|
|
||||||
skip=.false.
|
|
||||||
|
|
||||||
! get Model Outputs for all geometries for current best parameter set par(:,1)
|
|
||||||
do pt=1,numdatpt
|
|
||||||
call adia(pt,par(1:npar,1),npar,ymod(1:ntot,pt),
|
|
||||||
> ew(1:ndiab,pt),ev(1:ndiab,1:ndiab,pt),skip)
|
|
||||||
call ctrans(q(:,pt),x1(:,pt),x2(:,pt))
|
|
||||||
enddo
|
|
||||||
|
|
||||||
! Initial write print everything you want to see before the fit and return
|
|
||||||
if(flag.eq.0) then
|
|
||||||
call print_parameterstate(std_out,par(:,1),p_act,npar)
|
|
||||||
call print_ErrorSummary(std_out,y,ymod,wt)
|
|
||||||
! print Data into the plotfiles
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
! open output files for individual makro iterations
|
|
||||||
call open_outfile(id_out,lauf)
|
|
||||||
! print Data into the plotfiles
|
|
||||||
call print_plotfiles(x1,y,wt,ymod)
|
|
||||||
|
|
||||||
! print Genetic output into files
|
|
||||||
do i=1, 2
|
|
||||||
if (i.eq.1) then
|
|
||||||
id_print= std_out
|
|
||||||
else
|
|
||||||
id_print= id_out
|
|
||||||
endif
|
|
||||||
write(id_print,'("Writing Iteration: ",i4)') lauf
|
|
||||||
write(id_print,block_line)
|
|
||||||
! write data information only in outfile
|
|
||||||
if(i.eq.2) then
|
|
||||||
call print_data(id_print,x1,y,ymod,wt)
|
|
||||||
call print_Set_Errors(id_print,y,ymod,wt)
|
|
||||||
endif
|
|
||||||
call print_parameterblock
|
|
||||||
> (id_print,par(:,1),p_act,p_spread,npar)
|
|
||||||
call print_ErrorSummary(id_print,y,ymod,wt)
|
|
||||||
|
|
||||||
enddo
|
|
||||||
|
|
||||||
call print_fortranfile(par(:,1),npar)
|
|
||||||
|
|
||||||
! write the type of calc at the end of the output
|
|
||||||
|
|
||||||
|
|
||||||
close (id_out)
|
|
||||||
deallocate(ymod,ev,ew)
|
|
||||||
end subroutine
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
! <subroutine for scan seperated Error analysis>
|
|
||||||
subroutine print_Set_Errors(id_out,y, ymod, wt)
|
|
||||||
use io_parameters,only: llen
|
|
||||||
use dim_parameter,only: ndata,nstat,ntot,numdatpt,sets
|
|
||||||
integer , intent(in) :: id_out
|
|
||||||
double precision, intent(in) :: y(ntot,numdatpt),
|
|
||||||
> ymod(ntot,numdatpt), wt(ntot,numdatpt)
|
|
||||||
integer :: set, setpoint, pt
|
|
||||||
double precision :: Set_rms(sets,ntot), Set_num(sets,ntot)
|
|
||||||
double precision :: Total_rms, Total_Energy_rms,Energy_rms(nstat)
|
|
||||||
character(len=llen) fmt
|
|
||||||
write(id_out,'(A)') 'Errors in icm for individual Sets' //
|
|
||||||
> '(specified by sets: and npoints:)'
|
|
||||||
write(id_out,'(A5,3A16)')'Set','Total',
|
|
||||||
> 'Total_Energy', 'Energy[nstat]'
|
|
||||||
write(id_out,sep_line)
|
|
||||||
write(fmt,'("(I5,2f16.1,",I2,"f16.1)")') nstat
|
|
||||||
Set_rms = 0.d0
|
|
||||||
pt = 0
|
|
||||||
do set=1, sets
|
|
||||||
do setpoint=1, ndata(set)
|
|
||||||
pt = pt + 1
|
|
||||||
where(wt(:,pt) > 0.d0)
|
|
||||||
Set_rms(set,:) = Set_rms(set,:)+(ymod(:,pt)-y(:,pt))**2
|
|
||||||
Set_num(set,:) = Set_num(set,:) + 1
|
|
||||||
end where
|
|
||||||
enddo
|
|
||||||
Total_rms
|
|
||||||
> = dsqrt(sum(Set_rms(set,:))
|
|
||||||
> / (sum(Set_num(set,:))))
|
|
||||||
Total_Energy_rms
|
|
||||||
> = dsqrt(sum(Set_rms(set,1:nstat))
|
|
||||||
> / (sum(Set_num(set,1:nstat))))
|
|
||||||
Energy_rms(1:nstat)
|
|
||||||
> = dsqrt(Set_rms(set,1:nstat)
|
|
||||||
> / (Set_num(set,1:nstat)))
|
|
||||||
write(id_out,fmt) set, Total_rms*h2icm, Total_Energy_rms*h2icm,
|
|
||||||
> Energy_rms(1:nstat)*h2icm
|
|
||||||
enddo
|
|
||||||
write(id_out,block_line)
|
|
||||||
write(id_out,*) ''
|
|
||||||
end subroutine print_Set_Errors
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
! <subroutine for printing the parameter and the pst vector in fortran readable style for including the fitted parameters in other programs
|
|
||||||
subroutine print_fortranfile(p,npar)
|
|
||||||
use io_parameters,only: maxpar_keys
|
|
||||||
use dim_parameter,only: pst
|
|
||||||
implicit none
|
|
||||||
! IN: variables
|
|
||||||
integer npar
|
|
||||||
double precision p(npar)
|
|
||||||
! INTERNAL: variables
|
|
||||||
integer i
|
|
||||||
integer, parameter :: id_out = 49
|
|
||||||
character(len=32), parameter :: fname ='fit_genric_bend_no3.f90'
|
|
||||||
|
|
||||||
open(id_out,file=fname)
|
|
||||||
|
|
||||||
30 format(6x,A2,i3,A2,d18.9)
|
|
||||||
31 format(6x,A6,i3,A2,i3)
|
|
||||||
|
|
||||||
write(id_out,'(2X,A)') "Module dip_param"
|
|
||||||
write(id_out,'(5X,A)') "IMPLICIT NONE"
|
|
||||||
write(id_out,'(5X,A,I0)') "Integer,parameter :: np=",npar
|
|
||||||
write(id_out,'(5X,A,I0,A)') "Double precision :: p(",npar,")"
|
|
||||||
write(id_out,'(5X,A,I0,A)') "integer :: pst(2,",maxpar_keys,")"
|
|
||||||
write(id_out,'(5X,A)') "contains"
|
|
||||||
write(id_out,*)''
|
|
||||||
|
|
||||||
write (id_out,'(5x,a)') "SUBROUTINE init_dip_planar_data()"
|
|
||||||
write (id_out,'(8X,A)') "implicit none"
|
|
||||||
do i=1,npar
|
|
||||||
write(id_out,30) 'p(',i,')=',p(i)
|
|
||||||
enddo
|
|
||||||
do i=1,maxpar_keys
|
|
||||||
write(id_out,31) 'pst(1,',i,')=',pst(1,i)
|
|
||||||
write(id_out,31) 'pst(2,',i,')=',pst(2,i)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
|
|
||||||
write(id_out,"(A)") "End SUBROUTINE init_dip_planar_data"
|
|
||||||
write(id_out,"(A)") "End Module dip_param"
|
|
||||||
|
|
||||||
close(id_out)
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
! <subroutine print_ErrorSummary: calculates the rms errros and prints them in the corresponding file
|
|
||||||
subroutine print_ErrorSummary(id_out,y,ymod,wt)
|
|
||||||
use dim_parameter,only: nstat,rms_thr,ntot,numdatpt
|
|
||||||
use io_parameters,only: llen
|
|
||||||
implicit none
|
|
||||||
! IN: variables
|
|
||||||
integer id_out
|
|
||||||
double precision y(ntot,numdatpt),ymod(ntot,numdatpt)
|
|
||||||
double precision wt(ntot,numdatpt)
|
|
||||||
! INTERNAL: variables
|
|
||||||
! Counter and RMS variables
|
|
||||||
double precision Cut_thr(nstat)
|
|
||||||
double precision Output_rms(ntot),Cut_rms(nstat),Weighted_rms
|
|
||||||
integer Output_num(ntot),Cut_num(nstat)
|
|
||||||
double precision Weighted_wt
|
|
||||||
double precision Total_rms,Total_Weighted_rms
|
|
||||||
double precision Total_Energie_rms,Total_State_rms(nstat)
|
|
||||||
double precision Cut_Energie_rms, Cut_State_rms(nstat)
|
|
||||||
|
|
||||||
! Variables for computing the NRMSE
|
|
||||||
!double precision:: ymean(ntot),ysum(ntot),NRMSE
|
|
||||||
|
|
||||||
! loop control
|
|
||||||
integer j,pt
|
|
||||||
|
|
||||||
! Fabian
|
|
||||||
character(len=llen) fmt
|
|
||||||
! initialize RMS variables
|
|
||||||
Output_rms(1:ntot) = 0.d0
|
|
||||||
Output_num(1:ntot) = 0
|
|
||||||
Weighted_rms = 0.d0
|
|
||||||
Weighted_wt = 0.d0
|
|
||||||
Cut_rms(1:nstat)= 0.d0
|
|
||||||
Cut_num(1:nstat)= 0
|
|
||||||
|
|
||||||
! Define Threshold for Cut_* RMS Values
|
|
||||||
Cut_thr(1:nstat) = rms_thr(1:nstat)
|
|
||||||
! SUMM!
|
|
||||||
! Loop over all Datapoints
|
|
||||||
do pt=1,numdatpt
|
|
||||||
! get unweighted rms for each output value and count their number
|
|
||||||
do j=1,ntot
|
|
||||||
if(wt(j,pt).gt.0.d0) then
|
|
||||||
Output_rms(j) = Output_rms(j) +
|
|
||||||
> (ymod(j,pt)-y(j,pt))**2
|
|
||||||
Output_num(j)=Output_num(j) + 1
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
! get the unweighted rms under the given threshold and count their number
|
|
||||||
do j=1,nstat
|
|
||||||
if(wt(j,pt).gt.0.d0) then
|
|
||||||
if(y(j,pt).le.Cut_thr(j)) then
|
|
||||||
Cut_rms(j) = Cut_rms(j) +
|
|
||||||
> (ymod(j,pt)-y(j,pt))**2
|
|
||||||
Cut_num(j) = Cut_num(j) + 1
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
! get the weighted rms over all output values
|
|
||||||
Weighted_rms = Weighted_rms +
|
|
||||||
> sum(((ymod(1:ntot,pt)-y(1:ntot,pt))**2)
|
|
||||||
> *(wt(1:ntot,pt)**2))
|
|
||||||
Weighted_wt = Weighted_wt + sum(wt(1:ntot,pt)**2)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
! NORM!
|
|
||||||
! TOTAL RMS:
|
|
||||||
! unweighted
|
|
||||||
Total_rms =
|
|
||||||
> dsqrt(sum(Output_rms(1:ntot)) /(sum(Output_num(1:ntot))))
|
|
||||||
|
|
||||||
! Weighted
|
|
||||||
Total_Weighted_rms = dsqrt(Weighted_rms/Weighted_wt)
|
|
||||||
|
|
||||||
! unweighted, considering only first nstat values
|
|
||||||
Total_Energie_rms =
|
|
||||||
> dsqrt(sum(Output_rms(1:nstat)) /(sum(Output_num(1:nstat))))
|
|
||||||
|
|
||||||
! unweighted,for each of the first nstat values separatly
|
|
||||||
Total_State_rms(1:nstat) =
|
|
||||||
> dsqrt(Output_rms(1:nstat) / Output_num(1:nstat))
|
|
||||||
|
|
||||||
! unweighted,first nstat values only counting points under given threshold
|
|
||||||
Cut_Energie_rms =
|
|
||||||
> dsqrt(sum(Cut_rms(1:nstat)) /(sum(Cut_num(1:nstat))))
|
|
||||||
|
|
||||||
! unweighted,each nstat values seperatly only counting points under threshold
|
|
||||||
Cut_State_rms(1:nstat) =
|
|
||||||
> dsqrt(Cut_rms(1:nstat)/Cut_num(1:nstat))
|
|
||||||
|
|
||||||
! WRITE!
|
|
||||||
! make the actual writing into the file
|
|
||||||
write(id_out,39)
|
|
||||||
write(id_out,40)
|
|
||||||
write(id_out,41) Total_rms, Total_rms*au2Debye!Total_rms*h2icm
|
|
||||||
write(id_out,42) sum(Output_num(1:ntot))
|
|
||||||
write(id_out,43) Total_Weighted_rms, Total_Weighted_rms*h2icm
|
|
||||||
write(id_out,44) Weighted_wt
|
|
||||||
write(id_out,45) Total_Energie_rms, Total_Energie_rms*h2icm
|
|
||||||
write(id_out,42) sum(Output_num(1:nstat))
|
|
||||||
write(fmt,'("(A,10x,A,",I2,"f8.1)")') nstat
|
|
||||||
write(id_out,fmt) '#','State resolved RMS(icm): ',
|
|
||||||
$ Total_State_rms(1:nstat)*h2icm
|
|
||||||
write(fmt,'("(A,10x,A,",I2,"i8)")') nstat
|
|
||||||
write(id_out,fmt) '#','No. of Points per State: ',
|
|
||||||
$ Output_num(1:nstat)
|
|
||||||
write(id_out,51)
|
|
||||||
|
|
||||||
! write the errors under a given threshold if there were any points
|
|
||||||
if(any(Cut_num(1:nstat).gt.0)) then
|
|
||||||
write(id_out,48) Cut_Energie_rms, Cut_Energie_rms*h2icm
|
|
||||||
write(id_out,42) sum(Cut_num(1:nstat))
|
|
||||||
|
|
||||||
write(fmt,'("(A,10x,A,",I2,"f8.1,A)")') nstat
|
|
||||||
write(id_out,fmt) '#','Red. State resolved RMS: ',
|
|
||||||
$ Cut_State_rms(1:nstat)*h2icm,' icm'
|
|
||||||
write(fmt,'("(A,10x,A,",I2,"i8)")') nstat
|
|
||||||
write(id_out,fmt) '#','No. of Points per State: ',
|
|
||||||
$ Cut_num(1:nstat)
|
|
||||||
write(fmt,'("(A,10x,A,",I2,"f8.1,A)")') nstat
|
|
||||||
write(id_out,fmt) '#','Threshold per State: ',
|
|
||||||
$ Cut_thr(1:nstat)*h2icm,' icm above Reference Point.'
|
|
||||||
|
|
||||||
endif
|
|
||||||
write(id_out,39)
|
|
||||||
|
|
||||||
! FORMAT! specifications for the writing
|
|
||||||
39 format(250('#'))
|
|
||||||
40 format('#',10x,'ERROR SUMMARY: ')
|
|
||||||
41 format('#',10x,'Total RMS: ',g16.8, '(',g16.8,
|
|
||||||
> ' Debye)')
|
|
||||||
42 format('#',10x,'No. of Points: ',i10)
|
|
||||||
43 format('#',10x,'Total weighted RMS: ',g16.8, '(',f8.1,' icm)')
|
|
||||||
44 format('#',10x,'Sum of point weights: ',f16.8)
|
|
||||||
45 format('#',10x,'Total Energie RMS: ',g16.8, '(',f8.1,' icm)')
|
|
||||||
|
|
||||||
48 format('#',10x,'Red. Energie RMS: ',g16.8,'(',f8.1,' icm)')
|
|
||||||
51 format('#')
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
subroutine print_plotfiles(x,y,wt,ymod)
|
|
||||||
use dim_parameter,only: ndata,sets,qn,ntot,numdatpt,plot_coord
|
|
||||||
implicit none
|
|
||||||
! IN: variables
|
|
||||||
double precision x(qn,numdatpt),y(ntot,numdatpt)
|
|
||||||
double precision wt(ntot,numdatpt), ymod(ntot,numdatpt)
|
|
||||||
! INTERNAL: variables
|
|
||||||
integer sstart,ssend,set,id_plot
|
|
||||||
|
|
||||||
! Initialize position pointer
|
|
||||||
ssend=0
|
|
||||||
! loop over datasets and print the plotfiles
|
|
||||||
do set=1 ,sets
|
|
||||||
if(ndata(set).eq.0) cycle
|
|
||||||
id_plot=50+set
|
|
||||||
call open_plotfile(id_plot,set)
|
|
||||||
write(id_plot,'(A)') '# -*- truncate-lines: t -*-'
|
|
||||||
! get start and end point of each set
|
|
||||||
sstart=ssend+1
|
|
||||||
ssend=ssend+ndata(set)
|
|
||||||
if (plot_coord(set).eq.0) then
|
|
||||||
call print_plotwalk(x(:,sstart:ssend),y(:,sstart:ssend),
|
|
||||||
> wt(:,sstart:ssend),ymod(:,sstart:ssend),
|
|
||||||
> ndata(set),id_plot,set)
|
|
||||||
else
|
|
||||||
call print_plotcoord(plot_coord(set),
|
|
||||||
> x(:,sstart:ssend),y(:,sstart:ssend),
|
|
||||||
> wt(:,sstart:ssend),ymod(:,sstart:ssend),
|
|
||||||
> ndata(set),id_plot,set)
|
|
||||||
endif
|
|
||||||
close(id_plot)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
subroutine print_plotwalk(x,y,wt,ymod,npt,id_plot,set)
|
|
||||||
use dim_parameter,only: qn,ntot
|
|
||||||
use io_parameters,only: llen
|
|
||||||
implicit none
|
|
||||||
! IN: variables
|
|
||||||
integer id_plot,npt,set
|
|
||||||
double precision x(qn,npt),y(ntot,npt),ymod(ntot,npt),wt(ntot,npt)
|
|
||||||
! INTERNAL: variables
|
|
||||||
double precision xdiff(qn),walktime
|
|
||||||
double precision walknorm
|
|
||||||
! loop control
|
|
||||||
integer i,j
|
|
||||||
|
|
||||||
character(len=llen) fmt
|
|
||||||
j=ntot-1
|
|
||||||
|
|
||||||
call print_plotheader(id_plot,0,npt,set)
|
|
||||||
|
|
||||||
call getwalknorm(x,walknorm,npt)
|
|
||||||
walktime = 0.d0
|
|
||||||
do i=1,npt
|
|
||||||
if(i.gt.1) then
|
|
||||||
xdiff(1:qn) = x(1:qn,i) - x(1:qn,i-1)
|
|
||||||
walktime = walktime + dsqrt(sum(xdiff(1:qn)**2))/walknorm
|
|
||||||
endif
|
|
||||||
write(id_plot,"(ES16.8,*(3(ES16.8),:))")
|
|
||||||
> walktime ,ymod(:,i),y(:,i),(wt(:,i))
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
subroutine print_plotcoord(coord,x,y,wt,ymod,npt,id_plot,set)
|
|
||||||
use dim_parameter,only: qn,ntot
|
|
||||||
use io_parameters,only: llen
|
|
||||||
implicit none
|
|
||||||
! IN: variables
|
|
||||||
integer, intent(in) :: id_plot,npt,set,coord
|
|
||||||
double precision, intent(in) :: x(qn,npt),y(ntot,npt)
|
|
||||||
double precision, intent(in) :: ymod(ntot,npt),wt(ntot,npt)
|
|
||||||
! loop control
|
|
||||||
integer i
|
|
||||||
|
|
||||||
call print_plotheader(id_plot,coord,npt,set)
|
|
||||||
do i=1,npt
|
|
||||||
! write(id_plot,"(ES16.8,*(3(ES16.8),:))")
|
|
||||||
! > x(coord,i), ymod(:,i),y(:,i),(wt(:,i))
|
|
||||||
write(id_plot,"(2ES16.8,*(3(ES16.8),:))")
|
|
||||||
> x(coord,i), x(coord+1,i),y(:,i)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
subroutine print_plotheader(id_plot,coord,npt,set)
|
|
||||||
use dim_parameter,only: qn,ntot
|
|
||||||
use io_parameters,only: llen
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: id_plot,npt,set,coord
|
|
||||||
|
|
||||||
character(len=llen) fmt
|
|
||||||
|
|
||||||
write(id_plot,'("#SET: ",i5)') set
|
|
||||||
write(id_plot,'("#OUTPUT VALUES",i4)') ntot
|
|
||||||
write(id_plot,'("#DATA POINTS: ",i4)') npt
|
|
||||||
if (coord.le.0) then
|
|
||||||
write(id_plot,'("#t(x) = WALK")')
|
|
||||||
else
|
|
||||||
write(id_plot,'("#t(x) = x(",I0,")")') coord
|
|
||||||
endif
|
|
||||||
write(id_plot,'("#UNIT: hartree")')
|
|
||||||
write(id_plot,'()')
|
|
||||||
write(id_plot,'("#",A15)',advance='no') "t(x)"
|
|
||||||
write(fmt,'("(3(7X,A9,",I3,"(16x)))")') ntot-1
|
|
||||||
write(id_plot,fmt) 'ymod(p,x)','y(x) ','wt(x) '
|
|
||||||
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
! <subroutine walknorm calulates the distance in coordinate space for each set
|
|
||||||
subroutine getwalknorm(x,walknorm,npt)
|
|
||||||
use dim_parameter,only: qn
|
|
||||||
implicit none
|
|
||||||
! IN: variables
|
|
||||||
integer npt
|
|
||||||
double precision x(qn,npt)
|
|
||||||
double precision walknorm
|
|
||||||
! INTERNAL: variables
|
|
||||||
double precision xdiff(qn)
|
|
||||||
integer i
|
|
||||||
|
|
||||||
walknorm =0.d0
|
|
||||||
do i=2,npt
|
|
||||||
xdiff(1:qn) = x(1:qn,i) - x(1:qn,i-1)
|
|
||||||
walknorm = walknorm + dsqrt(sum(xdiff(1:qn)**2))
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
! <Subroutine for generating output filenames and openeing the correspondign files
|
|
||||||
subroutine open_plotfile(id_plot,set)
|
|
||||||
implicit none
|
|
||||||
! IN: Variables
|
|
||||||
integer id_plot,set
|
|
||||||
! INTERNAL: Variables
|
|
||||||
character(len=30) name !name of output file
|
|
||||||
|
|
||||||
! define name sheme for plot files
|
|
||||||
if (set .lt. 10 ) then
|
|
||||||
write(name,203) set
|
|
||||||
else
|
|
||||||
write(name,202) set
|
|
||||||
endif
|
|
||||||
|
|
||||||
202 format('scan',I2,'.dat')
|
|
||||||
203 format('scan0',I1,'.dat')
|
|
||||||
!write (name,202) set
|
|
||||||
|
|
||||||
c open plotfile
|
|
||||||
open(id_plot,file=name)
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
! <Subroutine for generating output filenames and openeing the correspondign files
|
|
||||||
subroutine open_outfile(id_out,it_makro)
|
|
||||||
implicit none
|
|
||||||
integer id_out,it_makro
|
|
||||||
character(len=30) outname !name of output file
|
|
||||||
|
|
||||||
543 format('mnlfit-',i1,'.out')
|
|
||||||
544 format('mnlfit-',i2,'.out')
|
|
||||||
545 format('mnlfit-',i3,'.out')
|
|
||||||
|
|
||||||
if(it_makro.lt.10) then
|
|
||||||
write(outname,543) it_makro
|
|
||||||
else if (it_makro.lt.100) then
|
|
||||||
write(outname,544) it_makro
|
|
||||||
else if (it_makro.lt.1000) then
|
|
||||||
write(outname,545) it_makro
|
|
||||||
else
|
|
||||||
write(6,*)
|
|
||||||
> 'ERROR: No rule for Outputfile naming for MAXIT >= 1000'
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
|
|
||||||
open (id_out,file=outname)
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
! <Subroutine for printing the Parameterkeys for use in Input File
|
|
||||||
! < prints the keystring given in keys.incl and the corresponding parameters when there was atleast one parameter given in the input for the spcific key
|
|
||||||
! < how many parameters and spreads per line are printed can be specified with the hardcoded parameters np and nsp but they must be atleast >=2
|
|
||||||
! <@param id_out specifies the file in which the Parameters are Printed
|
|
||||||
! <@param p vector containing one set of parameter values
|
|
||||||
! <@param p_act vector containing the active state 0 (inactive) or 1 (active) for each parameter
|
|
||||||
! <@param p_spread vector containing the spreads for each parameter
|
|
||||||
! <@param npar lenght of the parmeter vectors (p,p_act,p_spread)
|
|
||||||
! <@TODO extract subroutine for printing the multiline values, would make this more readable
|
|
||||||
subroutine print_parameterblock(id_out,p,p_act,p_spread,npar)
|
|
||||||
use dim_parameter,only: pst, facspread
|
|
||||||
use io_parameters,only: key, parkeynum,parkeylen,llen
|
|
||||||
implicit none
|
|
||||||
! IN: Variables
|
|
||||||
integer id_out,npar,p_act(npar)
|
|
||||||
double precision p(npar),p_spread(npar)
|
|
||||||
|
|
||||||
! INTERNAL: variables
|
|
||||||
! loop index
|
|
||||||
integer i,k,l,t,n !< internal variables for loops and positions in parameter vectors
|
|
||||||
|
|
||||||
! number of values per line, values must be atleast 2 set this to personal preference
|
|
||||||
integer, parameter :: np=5,nsp=5
|
|
||||||
|
|
||||||
character(len=llen) fmt
|
|
||||||
|
|
||||||
|
|
||||||
! Write header for Parameter block
|
|
||||||
1 format('!',200('='))
|
|
||||||
write(id_out,1)
|
|
||||||
write(id_out,'(A2,5x,A11,i3)') '! ','PARAMETER: ',npar
|
|
||||||
write(id_out,1)
|
|
||||||
|
|
||||||
! loop over all Parameter Keys
|
|
||||||
do i = 1, parkeynum
|
|
||||||
! save start and end of parameter block for specific key
|
|
||||||
k = pst(1,i)
|
|
||||||
l = pst(1,i)+pst(2,i)-1
|
|
||||||
! print only used keys with atleast one parameter
|
|
||||||
if(pst(2,i).gt.0) then
|
|
||||||
write(fmt,'("(a",I3,"'' ''i3)")') parkeylen
|
|
||||||
write(id_out,fmt) adjustl(key(1,i)), pst(2,i)
|
|
||||||
|
|
||||||
! write the actual parameters -> subroutine print_parameterlines()?
|
|
||||||
if(l-k.le.(np-1)) then
|
|
||||||
write(fmt,'("(a",I3,"'' ''",I3,"g24.15)")') parkeylen,np
|
|
||||||
write(id_out,fmt) key(2,i),(p(n), n=k,l)
|
|
||||||
|
|
||||||
else
|
|
||||||
! start of multi line parameter print, number of values per line specified by np
|
|
||||||
write(fmt,'("(a",I3,"'' ''",I3,"g24.15'' &'')")')
|
|
||||||
$ parkeylen,np
|
|
||||||
write(id_out,fmt) key(2,i),(p(n), n=k,k+(np-1))
|
|
||||||
|
|
||||||
t=k+np
|
|
||||||
! write continuation lines till left parameters fit on last line
|
|
||||||
do while(t.le.l)
|
|
||||||
if(l-t.le.(np-1)) then
|
|
||||||
write(fmt,'("(",I3,"x'' ''",I3,"g24.15)")')
|
|
||||||
$ parkeylen,np
|
|
||||||
write(id_out,fmt) (p(n), n=t, l)
|
|
||||||
|
|
||||||
else
|
|
||||||
write(fmt,'("(",I3,"x'' ''",I3,"g24.15'' &'')")')
|
|
||||||
$ parkeylen,np
|
|
||||||
write(id_out,fmt) (p(n), n=t, t+(np-1))
|
|
||||||
|
|
||||||
endif
|
|
||||||
t=t+np
|
|
||||||
enddo
|
|
||||||
|
|
||||||
endif !-> end subroutine print_parameterlines
|
|
||||||
|
|
||||||
! write parameter active state in one line
|
|
||||||
write(fmt,'("(a",I3,"'' ''","50i3)")') parkeylen
|
|
||||||
write(id_out,fmt) key(3,i),(p_act(n),n=k,l)
|
|
||||||
|
|
||||||
! write the spreads for each parameter
|
|
||||||
if(l-k.le.(np-1)) then
|
|
||||||
write(fmt,'("(a",I3,"'' ''",I3,"g24.8)")') parkeylen,nsp
|
|
||||||
write(id_out,fmt) key(4,i),(p_spread(n)/facspread, n=k,l)
|
|
||||||
|
|
||||||
else
|
|
||||||
! start of multiline spread values
|
|
||||||
write(fmt,'("(a",I3,"'' ''",I3,"g24.8'' &'')")')
|
|
||||||
$ parkeylen,nsp
|
|
||||||
write(id_out,fmt) key(4,i),(p_spread(n)/facspread, n=k,k
|
|
||||||
> +(np-1))
|
|
||||||
|
|
||||||
t=k+nsp
|
|
||||||
! write continuation lines till left spreads fit on last line
|
|
||||||
do while(t.le.l)
|
|
||||||
if(l-t.le.(np-1)) then
|
|
||||||
write(fmt,'("(",I3,"x'' ''",I3,"g24.8)")')
|
|
||||||
$ parkeylen,nsp
|
|
||||||
write(id_out,fmt) (p_spread(n)/facspread, n=t, l)
|
|
||||||
else
|
|
||||||
write(fmt,'("(",I3,"x'' ''",I3,"g24.8'' &'')")')
|
|
||||||
$ parkeylen,nsp
|
|
||||||
write(id_out,fmt) (p_spread(n)/facspread, n=t, t
|
|
||||||
> +(np-1))
|
|
||||||
|
|
||||||
endif
|
|
||||||
t=t+np
|
|
||||||
enddo
|
|
||||||
|
|
||||||
endif
|
|
||||||
! print empty line between diffrent parameter blocks for better readability
|
|
||||||
write(id_out,'(" ")')
|
|
||||||
endif
|
|
||||||
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
! <Subroutine for printing the current Parameters and their active state
|
|
||||||
! < prints only the numeric values of the parameters and does not specify the corresponding key
|
|
||||||
! <@param npar number of parameter
|
|
||||||
! <@param id_out specifies the output file
|
|
||||||
! <@param p,p_act parameter vectors containing the values and the activity state of parameters
|
|
||||||
subroutine print_parameterstate(id_out,p,p_act,npar)
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
! IN: Variables
|
|
||||||
integer npar,id_out
|
|
||||||
double precision p(npar)
|
|
||||||
integer p_act(npar)
|
|
||||||
|
|
||||||
! INTERNAL: Variables
|
|
||||||
integer i !< loop control
|
|
||||||
integer nopt !< number of counted active parameters
|
|
||||||
character(len=16) opt(npar) !< string for optimisation state
|
|
||||||
|
|
||||||
! initialize number of opt parameters and the string vector opt
|
|
||||||
nopt=0
|
|
||||||
opt = ' not opt. '
|
|
||||||
! loop over all parameters and check their active state count if active and set string to opt
|
|
||||||
do i=1,npar
|
|
||||||
! Nicole: change due to value 2 of p_act
|
|
||||||
! if(p_act(i).eq.1) then
|
|
||||||
if(p_act(i).ge.1) then
|
|
||||||
opt(i) = ' opt. '
|
|
||||||
nopt=nopt+1
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
! print the Parameters and their active state within separating lines
|
|
||||||
write(id_out,*)''
|
|
||||||
write(id_out,block_line)
|
|
||||||
write(id_out,*) 'Parameters:'
|
|
||||||
write(id_out,sep_line)
|
|
||||||
write(id_out,'(5g14.6)') (p(i),i=1,npar)
|
|
||||||
write(id_out,'(5a14)') (opt(i),i=1,npar)
|
|
||||||
write(id_out,sep_line)
|
|
||||||
write(id_out,'("No. of optimized parameters: ",i6)') nopt
|
|
||||||
write(id_out,block_line)
|
|
||||||
write(id_out,*)''
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
! <Subroutine for printing coordinates,refdata,modeldata,diffrence between them and the weights
|
|
||||||
! <@param id_out identiefies the output file
|
|
||||||
! <@param x vector of input pattern for each datapoint
|
|
||||||
! <@param y vector of expected output patterns for each datapoint
|
|
||||||
! <@param ymod vector of output patterns generated by the model depending on paramerters
|
|
||||||
! <@param wt vector of weights for each datapoint
|
|
||||||
! <@param qn number of input patterns
|
|
||||||
! <@param ntot total number of output patterns for each datapoint
|
|
||||||
! <@param numdatpt number of totatl datapoints
|
|
||||||
! <@param sets number of sets the datapoints are divided into
|
|
||||||
! <@param ndata vector containing the number of included datapoints for each set
|
|
||||||
! <@param i,j,point internal variables for loop controll and datapoint counting
|
|
||||||
subroutine print_data(id_out,x,y,ymod,wt)
|
|
||||||
use dim_parameter,only: sets,ndata,qn,ntot,numdatpt,qn_read
|
|
||||||
implicit none
|
|
||||||
! IN: Variables
|
|
||||||
integer id_out
|
|
||||||
double precision x(qn,numdatpt)
|
|
||||||
double precision y(ntot,numdatpt),ymod(ntot,numdatpt)
|
|
||||||
double precision wt(ntot,numdatpt)
|
|
||||||
|
|
||||||
! INTERNAL: Variables
|
|
||||||
integer i,j,point
|
|
||||||
|
|
||||||
18 format(A8,i6)
|
|
||||||
19 format (3(A15,3x), 2x, A18 , 4x, A12)
|
|
||||||
|
|
||||||
! print seperating line and header for Data output
|
|
||||||
write(id_out,*) 'Printing Data Sets:'
|
|
||||||
|
|
||||||
write(id_out,19) adjustl('y(x)'),adjustl('ymod(x)'),
|
|
||||||
> adjustl('y(x)-ymod(x)'),adjustl('weight'),
|
|
||||||
> adjustl('x(1:qn_read) ')
|
|
||||||
write(id_out,sep_line)
|
|
||||||
! loop over all datapoints for each set and count the actual datapointnumber with point
|
|
||||||
point=0
|
|
||||||
do i=1,sets
|
|
||||||
write(id_out,18) 'Set: ', i
|
|
||||||
do j=1,ndata(i)
|
|
||||||
write(id_out,18) 'Point: ', j
|
|
||||||
point=point+1
|
|
||||||
! print all data for one datapoint
|
|
||||||
call print_datapoint(id_out,x(:,point),y(:,point),
|
|
||||||
> ymod(:,point),wt(:,point))
|
|
||||||
write(id_out,sep_line)
|
|
||||||
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
! write end of data statement and two seperating lines
|
|
||||||
write(id_out,block_line)
|
|
||||||
write(id_out,*) ''
|
|
||||||
end subroutine
|
|
||||||
!----------------------------------------------------------------------------------------------------
|
|
||||||
! <Subroutine prints a single Datapoint splits Data in nstat nci(ndiab) blocks for readability
|
|
||||||
! <@param id_out identiefies the output file
|
|
||||||
! <@param x vector of input pattern for each datapoint
|
|
||||||
! <@param y vector of expected output patterns for each datapoint
|
|
||||||
! <@param ymod vector of output patterns generated by the model depending on paramerters
|
|
||||||
! <@param wt vector of weights for each datapoint
|
|
||||||
! <@param qn number of input patterns
|
|
||||||
! <@param ntot total number of output patterns for each datapoint
|
|
||||||
! <@param i,j,k internal variables for loop controll and counting
|
|
||||||
subroutine print_datapoint(id_out,x,y,ymod,wt)
|
|
||||||
use dim_parameter,only: nstat,ndiab,nci,qn,ntot,qn_read
|
|
||||||
use io_parameters,only: llen
|
|
||||||
implicit none
|
|
||||||
integer id_out
|
|
||||||
double precision x(qn),y(ntot),ymod(ntot),wt(ntot)
|
|
||||||
|
|
||||||
integer i,j,k
|
|
||||||
|
|
||||||
18 format(A10,i3)
|
|
||||||
19 format(3F18.8, 2X, F18.6, 4X,*(F12.6))
|
|
||||||
|
|
||||||
! print the nstat output patterns
|
|
||||||
do i=1,nstat
|
|
||||||
write(id_out,19)y(i),ymod(i),ymod(i)-y(i), wt(i), x(1:qn)
|
|
||||||
enddo
|
|
||||||
! loop over number (nci) of metadata with lenght (ndiab)
|
|
||||||
do i=1,nci
|
|
||||||
write(id_out,18) 'nci: ',i
|
|
||||||
do j=1,ndiab
|
|
||||||
k=nstat + (i-1)*ndiab + j
|
|
||||||
write(id_out,19) y(k),ymod(k),(ymod(k)-y(k)),
|
|
||||||
> wt(k), x(1:qn_read)
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end subroutine
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
end module write_mod
|
|
Loading…
Reference in New Issue