more work on graffy/lipase#3 : added a plugin to detect globules based on circular symmetry.
- the detection is not great at the moment (15 globules detected amongst the 50), because: 1. the parameters are probably not optimal 2. the mask used is incomplete 3. some particules are very difficult to detect anyway - added documentation - still need some more work: 1 output the radius of detected particles 2. analyse why detection is not optimal 3. handle weights w_r and w_a 4. filter out radial profiles that are not expected 5. improve the computation of the peakness s_p v1.02
This commit is contained in:
parent
97dc74f08c
commit
ad18e2e451
2
Makefile
2
Makefile
|
@ -7,7 +7,7 @@ TEMP_PATH:=$(shell echo ~/work/lipase/tmp)
|
|||
TESTS_OUTPUT_DATA_PATH:=$(TEMP_PATH)
|
||||
LIB_SRC_FILES=$(shell find ./src/lipase -name "*.py")
|
||||
PLUGINS_SRC_FILES=$(shell find ./src/ij-plugins -name "*.py")
|
||||
LIPASE_VERSION=1.01
|
||||
LIPASE_VERSION=1.02
|
||||
|
||||
BUILD_ROOT_PATH:=$(TEMP_PATH)/build
|
||||
PACKAGE_FILE_PATH=$(BUILD_ROOT_PATH)/lipase-$(LIPASE_VERSION).zip
|
||||
|
|
152
doc/lipase.tex
152
doc/lipase.tex
|
@ -101,6 +101,47 @@
|
|||
\item \texttt{area over time} is computed by counting the number of non zero pixel values in each frame of \texttt{is\_globule}
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Ipr/Lipase/Radial profiles}
|
||||
|
||||
This imagej plugin computes $g(p, r)$ and $\sigma(p, r)$ of the method described in section \ref{sec:circularness}
|
||||
|
||||
\begin{itemize}
|
||||
\item Input data:
|
||||
\begin{description}
|
||||
\item [input image] an image containing particle-like globules
|
||||
\item [maximal radius of globules] the maximum size of globule we expect to have in the input image, expressed in pixels. (the value of $R$ descibed in section \ref{sec:circularness}')
|
||||
\item [number of radial sectors] (the value of $n_r$ described in section \ref{sec:circularness}')
|
||||
\item [number of angular sectors] (the value of $n_a$ described in section \ref{sec:circularness}')
|
||||
\end{description}
|
||||
\item Output data:
|
||||
\begin{description}
|
||||
\item [$g(p, r)$] this is returned as an hyperstack, where the channel axis is used for the different values of $r$
|
||||
\item [$\sigma(p, r)$] this is returned as an hyperstack, where the channel axis is used for the different values of $r$
|
||||
\end{description}
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Ipr/Lipase/Detect globules}
|
||||
|
||||
This imagej plugin detects circular shaped particules in the input image, using the method described in section \ref{sec:circularness}
|
||||
|
||||
\begin{itemize}
|
||||
\item Input data:
|
||||
\begin{description}
|
||||
\item [input image] an image containing particle-like globules
|
||||
\item [mask image] image containing non-zero values for pixels that should be ignored. This is useful to ignore areas in the image that we know can't contain globules.
|
||||
\item [maximal radius of globules] the maximum size of globule we expect to have in the input image, expressed in pixels. (the value of $R$ descibed in section \ref{sec:circularness}')
|
||||
\item [number of radial sectors] (the value of $n_r$ described in section \ref{sec:circularness}')
|
||||
\item [number of angular sectors] (the value of $n_a$ described in section \ref{sec:circularness}')
|
||||
\item [max finder parameters] the max finder is used to detect peaks in the circularness image. See section \ref{sec:max_finder} for this algorithm and the meaning of its parameters.
|
||||
\end{description}
|
||||
\item Output data:
|
||||
\begin{description}
|
||||
\item [the position of detected globules] they are returned in the form of an imagej table and displayed as crosses in the selection layer of the input image.
|
||||
\end{description}
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
\section{catalog images}
|
||||
|
||||
Images have been acquired on the telemos microscope\footnote{\url{https://www6.inrae.fr/pfl-cepia/content/download/3542/34651/version/1/file/notes_TELEMOS.pdf}}.
|
||||
|
@ -146,45 +187,90 @@
|
|||
\end{description}
|
||||
\selectlanguage{english}
|
||||
|
||||
\section{computing background image for trap sequences}
|
||||
\section {Algorithms}
|
||||
|
||||
Trap sequences show traps at fixed positions with particles that move over time, as shown in figure \ref{fig:trap_sequence1}. In order to detect the particles, we can subtract from each image a background image, which is an image of the scene without any particle.
|
||||
\subsection{computing background image for trap sequences}
|
||||
|
||||
If we suppose that particles are moving fast enough, we can estimate this background image $B$, as :
|
||||
Trap sequences show traps at fixed positions with particles that move over time, as shown in figure \ref{fig:trap_sequence1}. In order to detect the particles, we can subtract from each image a background image, which is an image of the scene without any particle.
|
||||
|
||||
\begin{equation}
|
||||
B(x,y) = \underset{t\in {1 \ldots T_{max}}}{\mathrm{median}} \{I(x,y,t)\}
|
||||
\end{equation}
|
||||
where $I(x,y,t)$ is the value of the input sequence at time $t$ and on pixel position $(x,y)$ and $T_{max}$ is the number of frames in the sequence.
|
||||
If we suppose that particles are moving fast enough, we can estimate this background image $B$, as :
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{subfigure}[b]{0.3\textwidth}
|
||||
\includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000000_DM300_nofilter_vis_000.png}
|
||||
%\includegraphics[width=\textwidth]{1.png}
|
||||
\caption{Frame 0}
|
||||
%\label{fig:1}
|
||||
\end{subfigure}
|
||||
~
|
||||
\begin{subfigure}[b]{0.3\textwidth}
|
||||
\includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000019_DM300_nofilter_vis_000.png}
|
||||
%\includegraphics[width=\textwidth]{1.png}
|
||||
\caption{Frame 19}
|
||||
%\label{fig:1}
|
||||
\end{subfigure}
|
||||
~
|
||||
\begin{subfigure}[b]{0.3\textwidth}
|
||||
\includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000039_DM300_nofilter_vis_000.png}
|
||||
%\includegraphics[width=\textwidth]{1.png}
|
||||
\caption{Frame 39}
|
||||
%\label{fig:1}
|
||||
\end{subfigure}
|
||||
\begin{equation}
|
||||
B(x,y) = \underset{t\in {1 \ldots T_{max}}}{\mathrm{median}} \{I(x,y,t)\}
|
||||
\end{equation}
|
||||
where $I(x,y,t)$ is the value of the input sequence at time $t$ and on pixel position $(x,y)$ and $T_{max}$ is the number of frames in the sequence.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{subfigure}[b]{0.3\textwidth}
|
||||
\includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000000_DM300_nofilter_vis_000.png}
|
||||
%\includegraphics[width=\textwidth]{1.png}
|
||||
\caption{Frame 0}
|
||||
%\label{fig:1}
|
||||
\end{subfigure}
|
||||
~
|
||||
\begin{subfigure}[b]{0.3\textwidth}
|
||||
\includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000019_DM300_nofilter_vis_000.png}
|
||||
%\includegraphics[width=\textwidth]{1.png}
|
||||
\caption{Frame 19}
|
||||
%\label{fig:1}
|
||||
\end{subfigure}
|
||||
~
|
||||
\begin{subfigure}[b]{0.3\textwidth}
|
||||
\includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000039_DM300_nofilter_vis_000.png}
|
||||
%\includegraphics[width=\textwidth]{1.png}
|
||||
\caption{Frame 39}
|
||||
%\label{fig:1}
|
||||
\end{subfigure}
|
||||
|
||||
|
||||
\caption{Example of trap sequence (\texttt{res\_soleil2018/GGH/GGH\_2018\_cin2\_phiG\_I\_327\_vis\_-40\_1/Pos0})}
|
||||
\label{fig:trap_sequence1}
|
||||
\end{figure}
|
||||
\caption{Example of trap sequence (\texttt{res\_soleil2018/GGH/GGH\_2018\_cin2\_phiG\_I\_327\_vis\_-40\_1/Pos0})}
|
||||
\label{fig:trap_sequence1}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{computing the circularness image}
|
||||
|
||||
\label{sec:circularness}
|
||||
|
||||
The circularness of a pixel is defined by its likeliness of being the center of a circular symmetry. When we compute this circularness for each pixel, then we obtain what we call a circularness image.
|
||||
|
||||
The idea is that for each pixel $p$ we compute, treating this pixel to be a center of circular symmetry :
|
||||
\begin{itemize}
|
||||
\item the radial profile $g(p,r)$ (where $r$ is the radius from the center of the pixel) of the pixel values in the neighborhood of this pixel.
|
||||
\item the radial profile standard deviation $\sigma(p,r)$ in the same neighborhood ($\sigma(p,r)$ is the standard deviation of the image on the circle centered on $p$ and of radius $r$)
|
||||
\end{itemize}
|
||||
|
||||
Let $s_p$ being the contrast of the radial profile, computed as the standard deviation of the radial profile $g(p, r)$, and $a(p)$ the angular noise, computed as the standard deviation of $\sigma(p,r)$. Center of circular particles can then be detected at pixels where:
|
||||
\begin{itemize}
|
||||
|
||||
\item the radial profile standard deviation $a(p)$ is small (which means there is a strong circular symmetry with this pixel as as center)
|
||||
\item and the radial profile exhibits a strong peak (to not consider uniform areas as proper center of circular symmetry). The position of the peak gives the particle radius. $s(p)$ can be used as an estimator of the peak strongness.
|
||||
\end{itemize}
|
||||
|
||||
The circularness $c(p)$ of pixel $p$ is computed as follow :
|
||||
\begin{equation}
|
||||
c(p) = w_s.s(p) - w_a.a(p)
|
||||
\end{equation}
|
||||
where $w_s$ and $w_a$ act as weighting parameters to give more importance to strong peaks or little noise along circles.
|
||||
|
||||
\subsubsection{Efficient computation of $g(p,r)$ and $\sigma(p,r)$}
|
||||
|
||||
$g(p,r)$ and $\sigma(p,r)$ can be computed efficiently using convolution techniques. For this, the disc area around pixels is discretised into $n_r \times n_a$ areas, $n_r$ being the number of radial zones (the radial range $\lbrack 0;R \rbrack$ around pixel $p$ is split into $n_r$ equal size zones), and $n_a$ the number of angular zones (the angular range $\lbrack 0;2\pi \rbrack$ is split int $n_a$ angular sectors).
|
||||
|
||||
\subsection{ImageJ's maxima finder}
|
||||
|
||||
\label{sec:max_finder}
|
||||
|
||||
% https://github.com/imagej/imagej1/blob/master/ij/plugin/filter/MaximumFinder.java#L636
|
||||
To understand the meaning of threshold and tolerance parameters, I had to look at the source code \footnote{\url{https://github.com/imagej/imagej1/blob/master/ij/plugin/filter/MaximumFinder.java\#L636} }
|
||||
\begin{enumerate}
|
||||
\item The algorithm first builds the list of maxima candidates. Only local maxima above this threshold are considered as valid maxima candidates
|
||||
\item Then each maximum candidate is processed to find its neighborhood area, starting from the highest. For ecach candidate, a propagation is performed on neighbours as long as the neighbour value is within the tolerance of the maximum candidate. If another candidate is encountered as a neighbour, then this candidate is removed as it('s been absorbed by the current maximum candidate)
|
||||
\end{enumerate}
|
||||
|
||||
\begin{description}
|
||||
\item[threshold] local maxima below this value are ignored
|
||||
\item[tolerance] ignore local maxima if they are in the neighborhood of another maximum. The neighborhood of a maximum is defined by the area that propagates until the the difference between the pixel value and the value of the considered local maximum exceeds tolerance. The higher the tolerance, the more local maxima are removed.
|
||||
\end{description}
|
||||
|
||||
\end{document}
|
|
@ -0,0 +1,63 @@
|
|||
#@ ImagePlus (label="the input image") INPUT_IMAGE
|
||||
#@ ImagePlus (label="mask containing non-zero values for pixels that should be ignored") MASK_IMAGE
|
||||
#@ Float (label="maximal radius of globules", value=32.0, min=0.0, max=100.0, style="slider") MAX_RADIUS
|
||||
#@ Integer (label="number of radial sectors", value=8, min=0, max=100, style="slider") NUM_RADIAL_SECTORS
|
||||
#@ Integer (label="number of angular sectors", value=4, min=0, max=100, style="slider") NUM_ANGULAR_SECTORS
|
||||
#@ Float (label="max finder threshold", value=200.0) MAX_FINDER_THRESHOLD
|
||||
#@ Float (label="max finder tolerance", value=1000.0) MAX_FINDER_TOLERANCE
|
||||
|
||||
"""This script is supposed to be launched from fiji's jython interpreter
|
||||
|
||||
This imagej plugin detects circular shaped particules in the input image, using a filter that computes the "circularness" of pixels. The circularness of a pixel is defined by its likeliness of being the center of a circular symmetry.
|
||||
"""
|
||||
|
||||
# # note: fiji's jython doesn't support encoding keyword
|
||||
|
||||
import sys
|
||||
print('python version %s' % sys.version) # prints python version
|
||||
|
||||
from lipase.settings import UserSettings
|
||||
|
||||
from lipase.imageengine import IImageEngine, PixelType
|
||||
from lipase.maxima_finder import MaximaFinder
|
||||
from lipase.imagej.ijimageengine import IJImageEngine
|
||||
from lipase.circsymdetector import CircularSymmetryDetector, GlobulesDetector
|
||||
|
||||
import ij.gui # pylint: disable=import-error
|
||||
from jarray import zeros, array # pylint: disable=import-error
|
||||
|
||||
def run_script():
|
||||
global INPUT_IMAGE # pylint:disable=global-variable-not-assigned
|
||||
global MASK_IMAGE # pylint:disable=global-variable-not-assigned
|
||||
global MAX_RADIUS # pylint:disable=global-variable-not-assigned
|
||||
global NUM_RADIAL_SECTORS # pylint:disable=global-variable-not-assigned
|
||||
global NUM_ANGULAR_SECTORS # pylint:disable=global-variable-not-assigned
|
||||
global MAX_FINDER_THRESHOLD # pylint:disable=global-variable-not-assigned
|
||||
global MAX_FINDER_TOLERANCE # pylint:disable=global-variable-not-assigned
|
||||
IImageEngine.set_instance(IJImageEngine())
|
||||
ie = IImageEngine.get_instance()
|
||||
src_image = ie.create_image(width=1, height=1, pixel_type=PixelType.U8)
|
||||
src_image.ij_image = INPUT_IMAGE # pylint: disable=undefined-variable
|
||||
|
||||
mask_image = None
|
||||
if MASK_IMAGE: # pylint: disable=undefined-variable
|
||||
mask_image = ie.create_image(width=1, height=1, pixel_type=PixelType.U8)
|
||||
mask_image.ij_image = MASK_IMAGE # pylint: disable=undefined-variable
|
||||
|
||||
# globules_edges = ie.compute_edge_transform(globules_image)
|
||||
circ_sym_filter = CircularSymmetryDetector(max_radius=MAX_RADIUS, num_angular_sectors=NUM_ANGULAR_SECTORS, num_radial_sectors=NUM_RADIAL_SECTORS) # pylint: disable=undefined-variable
|
||||
circles_finder = MaximaFinder(threshold=MAX_FINDER_THRESHOLD, tolerance=MAX_FINDER_TOLERANCE) # pylint: disable=undefined-variable
|
||||
detector = GlobulesDetector(circ_sym_filter=circ_sym_filter, circles_finder=circles_finder, ignore_mask=mask_image)
|
||||
detected_globules = detector.detect_globules(src_image)
|
||||
|
||||
points_roi = ij.gui.PointRoi()
|
||||
# points_roi.addPoint(21, 17)
|
||||
# points_roi.addPoint(13, 34)
|
||||
|
||||
for globule in detected_globules:
|
||||
points_roi.addPoint(globule.x, globule.y)
|
||||
|
||||
src_image.ij_image.setRoi(points_roi)
|
||||
|
||||
# note : when launched from fiji, __name__ doesn't have the value "__main__", as when launched from python
|
||||
run_script()
|
|
@ -4,7 +4,7 @@
|
|||
#@ Integer (label="number of angular sectors", value=4, min=0, max=100, style="slider") NUM_ANGULAR_SECTORS
|
||||
|
||||
#@output ImagePlus RADIAL_PROFILES
|
||||
#@output ImagePlus ANGULAR_VARIANCE_AVG_IMAGE
|
||||
#@output ImagePlus ANGULAR_STDDEV_PROFILES
|
||||
"""This script is supposed to be launched from fiji's jython interpreter
|
||||
|
||||
This imagej plugin computes the radial profile of each pixel of the input image. The resulting profiles are stored in a single hyperstack, where the profile data are stored along the channel axis
|
||||
|
@ -30,17 +30,17 @@ def run_script():
|
|||
global NUM_RADIAL_SECTORS # pylint:disable=global-variable-not-assigned
|
||||
global NUM_ANGULAR_SECTORS # pylint:disable=global-variable-not-assigned
|
||||
global RADIAL_PROFILES # pylint:disable=global-variable-not-assigned
|
||||
global ANGULAR_VARIANCE_AVG_IMAGE # pylint:disable=global-variable-not-assigned
|
||||
global ANGULAR_STDDEV_PROFILES # pylint:disable=global-variable-not-assigned
|
||||
IImageEngine.set_instance(IJImageEngine())
|
||||
|
||||
src_image = IImageEngine.get_instance().create_image(width=1, height=1, pixel_type=PixelType.U8)
|
||||
src_image.ij_image = INPUT_IMAGE # pylint: disable=undefined-variable
|
||||
|
||||
detector = CircularSymmetryDetector(max_radius=MAX_RADIUS, num_angular_sectors=NUM_ANGULAR_SECTORS, num_radial_sectors=NUM_RADIAL_SECTORS) # pylint: disable=undefined-variable
|
||||
radial_profiles, angular_variance_avg_image = detector.compute_radial_profiles(src_image)
|
||||
radial_profiles, angular_stddev_profiles = detector.compute_radial_profiles(src_image)
|
||||
|
||||
RADIAL_PROFILES = radial_profiles.hyperstack
|
||||
ANGULAR_VARIANCE_AVG_IMAGE = angular_variance_avg_image.ij_image
|
||||
ANGULAR_STDDEV_PROFILES = angular_stddev_profiles.hyperstack
|
||||
|
||||
|
||||
# note : when launched from fiji, __name__ doesn't have the value "__main__", as when launched from python
|
||||
|
|
|
@ -38,7 +38,7 @@ class Sequence(object):
|
|||
:param str micro_manager_metadata_file_path: eg ``/Users/graffy/ownCloud/ipr/lipase/raw-images/res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0/metadata.txt``
|
||||
"""
|
||||
self.catalog = catalog
|
||||
self.sequence_id = sequence_id
|
||||
self.id = sequence_id
|
||||
self.micro_manager_metadata_file_path = micro_manager_metadata_file_path
|
||||
print(micro_manager_metadata_file_path)
|
||||
print('reading micro manager metatdata from %s' % micro_manager_metadata_file_path)
|
||||
|
@ -51,7 +51,7 @@ class Sequence(object):
|
|||
assert pos_dir_name[0:3] == 'Pos', 'unexpected value : %s is expected to be of the form "Pos<n>"' % pos_dir_name
|
||||
print('micro_manager_metadata_file_parent_path = %s' % micro_manager_metadata_file_parent_path)
|
||||
dac_file_path = os.path.join(micro_manager_metadata_file_parent_path, 'display_and_comments.txt')
|
||||
(dac_id, file_name) = os.path.split(self.sequence_id)
|
||||
(dac_id, file_name) = os.path.split(self.id)
|
||||
self.dac = DacMetadata(dac_id, dac_file_path)
|
||||
|
||||
for channel_index in range(self.num_channels):
|
||||
|
@ -140,7 +140,7 @@ class Sequence(object):
|
|||
'res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0': 'res_soleil2018/DARK/DARK_40X_60min_1 im pae min_1/Pos0',
|
||||
'res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos2': 'res_soleil2018/DARK/DARK_40X_60min_1 im pae min_1/Pos0',
|
||||
}
|
||||
white_sequence = seqid_to_black[self.sequence_id]
|
||||
white_sequence = seqid_to_black[self.id]
|
||||
return self.catalog.sequences[white_sequence]
|
||||
|
||||
def get_white(self):
|
||||
|
@ -153,7 +153,7 @@ class Sequence(object):
|
|||
'res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0': 'res_soleil2018/white/white_24112018_2/Pos0',
|
||||
'res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos2': 'res_soleil2018/white/white_24112018_2/Pos0',
|
||||
}
|
||||
white_sequence = seqid_to_white[self.sequence_id]
|
||||
white_sequence = seqid_to_white[self.id]
|
||||
return self.catalog.sequences[white_sequence]
|
||||
|
||||
def as_hyperstack(self, selected_channel_ids=None, selected_frames=None, selected_slices=None):
|
||||
|
|
|
@ -158,10 +158,16 @@ class CircularSymmetryDetector:
|
|||
"""Method to detect objects exhibiting a circular symmetry
|
||||
"""
|
||||
def __init__(self, max_radius, num_angular_sectors, num_radial_sectors=None):
|
||||
"""
|
||||
:param float max_radius: in pixels
|
||||
:param int num_angular_sectors: the angle range [0;2 pi] is sampled into num_angular_sectors
|
||||
:param int or None num_radial_sectors: the radius range [0;max_radius] is sampled into num_radial_sectors. If not defined, the number of radial sectors is set so that a radial sector has the width of 1 pixel
|
||||
"""Constructor
|
||||
|
||||
Parameters
|
||||
----------
|
||||
max_radius : float
|
||||
in pixels
|
||||
num_angular_sectors : int
|
||||
the angle range [0;2 pi] is sampled into num_angular_sectors
|
||||
num_radial_sectors : int or None
|
||||
the radius range [0;max_radius] is sampled into num_radial_sectors. If not defined, the number of radial sectors is set so that a radial sector has the width of 1 pixel
|
||||
"""
|
||||
self.max_radius = max_radius
|
||||
self.num_angular_sectors = num_angular_sectors
|
||||
|
@ -175,16 +181,15 @@ class CircularSymmetryDetector:
|
|||
:param IImage src_image:
|
||||
:returns:
|
||||
- radial_profiles (:py:class:`~lipase.imageengine.IHyperStack`) - each pixel stores the radial profile for this pixel. The radial profile is a 1D signal stored along the channel axis of the hyperstack, each channel being related to a radius range.
|
||||
- angular_variance_profiles (:py:class:`IHyperStack`) - each pixel stores the angular variance profile for this pixel. The angular variance profile is a 1D signal stored along the channel axis of the hyperstack, each channel being related to a radius range.
|
||||
- angular_variance_avg (:py:class:`IImage`) - each pixel stores the average variance of signal along the circles of different diameters in the neighborhood
|
||||
- angular_stddev_profiles (:py:class:`IHyperStack`) - each pixel stores the angular variance profile for this pixel. The angular variance profile is a 1D signal stored along the channel axis of the hyperstack, each channel being related to a radius range.
|
||||
"""
|
||||
# https://stackoverflow.com/questions/39759503/how-to-document-multiple-return-values-using-restructuredtext-in-python-2
|
||||
ie = IImageEngine.get_instance()
|
||||
ie.debugger.on_image(src_image, 'src_image')
|
||||
projector_base = CircularSymmetryProjectorBase(self.max_radius, num_angular_sectors=self.num_angular_sectors, num_radial_sectors=self.num_radial_sectors, oversampling_scale=1)
|
||||
|
||||
radial_profile_image = ie.create_hyperstack(width=src_image.get_width(), height=src_image.get_height(), num_channels=projector_base.num_radial_sectors, num_slices=1, num_frames=1, pixel_type=PixelType.F32)
|
||||
angular_variances_image = ie.create_hyperstack(width=src_image.get_width(), height=src_image.get_height(), num_channels=projector_base.num_radial_sectors, num_slices=1, num_frames=1, pixel_type=PixelType.F32)
|
||||
radial_profiles = ie.create_hyperstack(width=src_image.get_width(), height=src_image.get_height(), num_channels=projector_base.num_radial_sectors, num_slices=1, num_frames=1, pixel_type=PixelType.F32)
|
||||
angular_stddev_profiles = ie.create_hyperstack(width=src_image.get_width(), height=src_image.get_height(), num_channels=projector_base.num_radial_sectors, num_slices=1, num_frames=1, pixel_type=PixelType.F32)
|
||||
for radius_index in range(projector_base.num_radial_sectors):
|
||||
circle_stack = ie.create_hyperstack(width=src_image.get_width(), height=src_image.get_height(), num_channels=projector_base.num_angular_sectors, num_slices=1, num_frames=1, pixel_type=PixelType.F32)
|
||||
for angular_sector_index in range(projector_base.num_angular_sectors):
|
||||
|
@ -195,15 +200,83 @@ class CircularSymmetryDetector:
|
|||
circle_stack.set_image(projection, frame_index=0, slice_index=0, channel_index=angular_sector_index)
|
||||
# compute the image in which each pixel contains the mean value of the source image in the given circular region around the pixel
|
||||
circle_mean_image = ie.compute_mean(StackImageFeeder(circle_stack))
|
||||
radial_profile_image.set_image(circle_mean_image, frame_index=0, slice_index=0, channel_index=radius_index)
|
||||
radial_profiles.set_image(circle_mean_image, frame_index=0, slice_index=0, channel_index=radius_index)
|
||||
|
||||
angular_stddev_image = ie.compute_stddev(StackImageFeeder(circle_stack))
|
||||
angular_stddev_profiles.set_image(angular_stddev_image, frame_index=0, slice_index=0, channel_index=radius_index)
|
||||
return radial_profiles, angular_stddev_profiles
|
||||
|
||||
def compute_stddev_images(self, src_image):
|
||||
"""Computes the radial variance image and the angular variance average image
|
||||
|
||||
Parameters
|
||||
----------
|
||||
src_image: IImage
|
||||
the source image
|
||||
|
||||
Returns
|
||||
-------
|
||||
radial_stddev_image : IImage
|
||||
Each pixel contains the standard deviation of the radial profile for this pixel
|
||||
angular_stddev_avg_image : IImage
|
||||
Each pixel contains the average of standard deviation for each circle radius
|
||||
"""
|
||||
ie = IImageEngine.get_instance()
|
||||
radial_profiles, angular_stddev_profiles = self.compute_radial_profiles(src_image)
|
||||
radial_stddev_image = ie.compute_stddev(StackImageFeeder(radial_profiles))
|
||||
|
||||
angular_stddev_avg_image = ie.compute_mean(StackImageFeeder(angular_stddev_profiles))
|
||||
return radial_stddev_image, angular_stddev_avg_image
|
||||
|
||||
|
||||
class GlobulesDetector(object):
|
||||
|
||||
def __init__(self, circ_sym_filter, circles_finder, ignore_mask=None):
|
||||
"""Constructor
|
||||
|
||||
Parameters
|
||||
----------
|
||||
circ_sym_filter : CircularSymmetryDetector
|
||||
the method and its parameters used to compute the radial and angular profile images
|
||||
circles_finder : IMaximaFinder
|
||||
the method to detect circles from the circularness image
|
||||
ignore_mask : IImage or None
|
||||
the pixels that can't have globules
|
||||
"""
|
||||
self.circ_sym_filter = circ_sym_filter
|
||||
self.circles_finder = circles_finder
|
||||
self.ignore_mask = ignore_mask
|
||||
|
||||
|
||||
def detect_globules(self, src_image):
|
||||
"""Detects the globules in the given input image
|
||||
|
||||
Parameters
|
||||
----------
|
||||
src_image : IImage
|
||||
the input image
|
||||
|
||||
"""
|
||||
ie = IImageEngine.get_instance()
|
||||
radial_profiles, angular_stddev_profiles = self.circ_sym_filter.compute_radial_profiles(src_image)
|
||||
ie.debugger.on_hyperstack(radial_profiles, 'radial_profiles')
|
||||
ie.debugger.on_hyperstack(angular_stddev_profiles, 'angular_stddev_profiles')
|
||||
|
||||
radial_stddev_image = ie.compute_stddev(StackImageFeeder(radial_profiles))
|
||||
ie.debugger.on_image(radial_stddev_image, 'radial_stddev_image')
|
||||
|
||||
angular_stddev_avg_image = ie.compute_mean(StackImageFeeder(angular_stddev_profiles))
|
||||
ie.debugger.on_image(angular_stddev_avg_image, 'angular_stddev_avg_image')
|
||||
circularness = ie.subtract(radial_stddev_image, angular_stddev_avg_image)
|
||||
if self.ignore_mask:
|
||||
circularness.set_masked_pixels(self.ignore_mask, 0.0)
|
||||
|
||||
ie.debugger.on_image(circularness, 'circularness')
|
||||
matches = self.circles_finder.find_maxima(circularness)
|
||||
print('number of globules found : %d' % len(matches))
|
||||
for match in matches:
|
||||
print(match)
|
||||
return matches
|
||||
|
||||
|
||||
|
||||
square_diffs_stack = circle_stack # note : circle_stack is reused to store square_diffs_stack
|
||||
for angular_sector_index in range(projector_base.num_angular_sectors):
|
||||
angular_sector_image = circle_stack.get_image(frame_index=0, slice_index=0, channel_index=angular_sector_index)
|
||||
diff_image = ie.subtract(angular_sector_image, circle_mean_image)
|
||||
square_diff_image = ie.multiply(diff_image, diff_image)
|
||||
square_diffs_stack.set_image(square_diff_image, frame_index=0, slice_index=0, channel_index=angular_sector_index)
|
||||
variance_image = ie.compute_mean(StackImageFeeder(square_diffs_stack))
|
||||
angular_variances_image.set_image(variance_image, frame_index=0, slice_index=0, channel_index=radius_index)
|
||||
angular_variance_avg_image = ie.compute_mean(StackImageFeeder(angular_variances_image))
|
||||
return radial_profile_image, angular_variance_avg_image
|
||||
|
|
|
@ -109,6 +109,22 @@ class IImage(ABC):
|
|||
:param float scale:
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def set_masked_pixels(self, mask, pixel_value):
|
||||
"""
|
||||
Sets the value of pixels (for which the related mask value is non-zero) to pixel_value
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
mask : IImage
|
||||
only pixels for which mask value is non zero are modified
|
||||
pixel_value : float
|
||||
the new pixel value for modified pixels
|
||||
"""
|
||||
|
||||
|
||||
|
||||
class IHyperStack(ABC):
|
||||
"""An abstact class representing an hyperstack (5D matrix of pixels)
|
||||
|
||||
|
@ -295,11 +311,27 @@ class IImageProcessingDebugger(ABC):
|
|||
|
||||
@abc.abstractmethod
|
||||
def on_image(self, image, image_id):
|
||||
'''This method is called by image processing methods when they have an intermediate image they want to send to the debugger
|
||||
"""This method is called by image processing methods when they have an intermediate image they want to send to the debugger
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : IImage
|
||||
the image sent to the debugger
|
||||
image_id : str
|
||||
an identifier for the given image, which is used by the debugger as it wishes (to act on a specific image, or as a filename if the debugger saves the images it receives, etc.)
|
||||
"""
|
||||
|
||||
:param IImage image:
|
||||
:param str image_id:
|
||||
'''
|
||||
@abc.abstractmethod
|
||||
def on_hyperstack(self, hyperstack, hyperstack_id):
|
||||
"""This method is called by image processing methods when they have an intermediate hyperstack they want to send to the debugger (to act on a specific image, or as a filename if the debugger saves the hyperstack it receives, etc.)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
hyperstack : IHyperstack
|
||||
the hyperstack sent to the debugger
|
||||
hyperstack_id : str
|
||||
an identifier for the given hyperstack
|
||||
"""
|
||||
|
||||
class NullDebugger(IImageProcessingDebugger):
|
||||
"""
|
||||
|
@ -313,6 +345,9 @@ class NullDebugger(IImageProcessingDebugger):
|
|||
def on_image(self, image, image_id):
|
||||
pass # do nothing
|
||||
|
||||
def on_hyperstack(self, hyperstack, hyperstack_id):
|
||||
pass # do nothing
|
||||
|
||||
def mkdir_p(path):
|
||||
try:
|
||||
os.makedirs(path)
|
||||
|
@ -335,7 +370,12 @@ class FileBasedDebugger(IImageProcessingDebugger):
|
|||
def on_image(self, image, image_id):
|
||||
# print('FileBasedDebugger.on_image : image_id = %s' % image_id)
|
||||
ie = IImageEngine.get_instance()
|
||||
ie.save_as_tiff(image, '%s/%s.tiff' % (self.debug_images_root_path, image_id))
|
||||
ie.save_image_as_tiff(image, '%s/%s.tiff' % (self.debug_images_root_path, image_id))
|
||||
|
||||
def on_hyperstack(self, hyperstack, hyperstack_id):
|
||||
# print('FileBasedDebugger.on_image : image_id = %s' % image_id)
|
||||
ie = IImageEngine.get_instance()
|
||||
ie.save_hyperstack_as_tiff(hyperstack, '%s/%s.tiff' % (self.debug_images_root_path, hyperstack_id))
|
||||
|
||||
|
||||
class IImageEngine(ABC):
|
||||
|
@ -391,7 +431,7 @@ class IImageEngine(ABC):
|
|||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def save_as_tiff(self, image, out_file_path):
|
||||
def save_image_as_tiff(self, image, out_file_path):
|
||||
"""
|
||||
:param IImage image:
|
||||
:param str out_file_path: eg './white_estimate.tiff'
|
||||
|
@ -474,6 +514,22 @@ class IImageEngine(ABC):
|
|||
:rtype: IImage
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def compute_stddev(self, image_feeder):
|
||||
"""Compute for each pixel position the standard deviation at this position in all input images.
|
||||
|
||||
:param IImageFeeder image_feeder:
|
||||
:rtype: IImage
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def compute_variance(self, image_feeder):
|
||||
"""Compute for each pixel position the variance at this position in all input images.
|
||||
|
||||
:param IImageFeeder image_feeder:
|
||||
:rtype: IImage
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def mean_filter(self, image, radius):
|
||||
"""Each pixel becomes an average of its neighbours within the given radius
|
||||
|
|
|
@ -2,7 +2,7 @@ from ij import IJ # pylint: disable=import-error
|
|||
|
||||
|
||||
def open_sequence_as_hyperstack(sequence):
|
||||
hyperstack = IJ.createHyperStack(sequence.sequence_id, sequence.width, sequence.height, sequence.num_channels, sequence.num_slices, sequence.num_frames, sequence.num_bits_per_pixels)
|
||||
hyperstack = IJ.createHyperStack(sequence.id, sequence.width, sequence.height, sequence.num_channels, sequence.num_slices, sequence.num_frames, sequence.num_bits_per_pixels)
|
||||
for channel_index in range(sequence.num_channels):
|
||||
for frame_index in range(sequence.num_frames):
|
||||
slice_index = 0
|
||||
|
@ -19,7 +19,7 @@ def open_sequence_as_stack(sequence, channel_id):
|
|||
:param str channel_id: eg 'DM300_327-353_fluo'
|
||||
'''
|
||||
channel_index = sequence.get_channel_index(channel_id)
|
||||
hyperstack = IJ.createHyperStack(sequence.sequence_id, sequence.width, sequence.height, 1, sequence.num_slices, sequence.num_frames, sequence.num_bits_per_pixels)
|
||||
hyperstack = IJ.createHyperStack(sequence.id, sequence.width, sequence.height, 1, sequence.num_slices, sequence.num_frames, sequence.num_bits_per_pixels)
|
||||
for frame_index in range(sequence.num_frames):
|
||||
slice_index = 0
|
||||
src_image_file_path = sequence.get_image_file_path(channel_index=channel_index, frame_index=frame_index)
|
||||
|
@ -31,7 +31,7 @@ def open_sequence_as_stack(sequence, channel_id):
|
|||
return hyperstack
|
||||
|
||||
def open_sequence_in_imagej(sequence):
|
||||
# ip = IJ.createHyperStack(title=sequence.sequence_id, width=sequence.width, height= sequence.height, channels=1, slices=1, frames=sequence.get_num_frames(), bitdepth=16)
|
||||
# ip = IJ.createHyperStack(title=sequence.id, width=sequence.width, height= sequence.height, channels=1, slices=1, frames=sequence.get_num_frames(), bitdepth=16)
|
||||
hyperstack = open_sequence_as_hyperstack(sequence)
|
||||
hyperstack.show()
|
||||
for channel_index in range(sequence.num_channels):
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
import os.path
|
||||
from ..imageengine import IImage, IHyperStack, IImageEngine, PixelType, IImageProcessingDebugger, NullDebugger
|
||||
from ..maxima_finder import Match
|
||||
from java.awt import Polygon
|
||||
from ij import IJ, ImagePlus # pylint: disable=import-error
|
||||
from ij.process import FloodFiller # pylint: disable=import-error
|
||||
from ij.process import Blitter # pylint: disable=import-error
|
||||
|
@ -11,6 +12,7 @@ from ij.measure import ResultsTable # pylint: disable=import-error
|
|||
from ij.plugin import ImageCalculator # pylint: disable=import-error
|
||||
from ij.plugin.filter import MaximumFinder # pylint: disable=import-error
|
||||
from ij.plugin import ZProjector # pylint: disable=import-error
|
||||
from ij.gui import ImageRoi # pylint: disable=import-error
|
||||
from ijopencv.ij import ImagePlusMatConverter # pylint: disable=import-error
|
||||
from ijopencv.opencv import MatImagePlusConverter # pylint: disable=import-error
|
||||
import org.bytedeco.javacpp.opencv_core as opencv_core # pylint: disable=import-error
|
||||
|
@ -120,6 +122,47 @@ class IJImage(IImage):
|
|||
processor = self.ij_image.getProcessor()
|
||||
processor.multiply(scale)
|
||||
|
||||
def set_masked_pixels(self, mask, pixel_value):
|
||||
assert isinstance(mask, IJImage)
|
||||
assert mask.get_pixel_type() != PixelType.F32, "imagej doesn't work with floating point masks (the mask is ignored)"
|
||||
assert mask.get_pixel_type() == PixelType.U8
|
||||
|
||||
# https://imagej.nih.gov/ij/developer/api/index.html setRoi
|
||||
x = 0
|
||||
y = 0
|
||||
image_plus = self.ij_image
|
||||
|
||||
# image_plus.setMask(mask)
|
||||
# image_roi = ImageRoi(x, y, mask.ij_image.getProcessor())
|
||||
# image_plus.setRoi(image_roi)
|
||||
image_plus.getProcessor().snapshot()
|
||||
#image_plus.getProcessor().setRoi(image_roi)
|
||||
#image_plus.getProcessor().setRoi(p)
|
||||
|
||||
# image_plus.setValue(pixel_value) # no such method ???
|
||||
# image_plus.setColor(Color())
|
||||
# image_plus.getProcessor().setColor(pixel_value)
|
||||
# image_plus.fill() # no such method ???
|
||||
# image_plus.getProcessor().set(pixel_value) # doesn't seem to respect roi as said in doc
|
||||
image_plus.getProcessor().setValue(pixel_value)
|
||||
image_plus.getProcessor().fill()
|
||||
# image_plus.getProcessor().reset(image_plus.getProcessor().getMask())
|
||||
image_plus.getProcessor().reset(mask.ij_image.getProcessor())
|
||||
# image_plus.getProcessor().fill(mask.ij_image.getProcessor())
|
||||
# File "__pyclasspath__/lipase/imagej/ijimageengine.py", line 141, in set_masked_pixels
|
||||
# image_plus.getProcessor().fill(mask.ij_image.getProcessor())
|
||||
# ClassCastException: java.lang.ClassCastException: [F cannot be cast to [B
|
||||
|
||||
# image_plus.killRoi()
|
||||
# image_plus.setRoi(None)
|
||||
# image_plus.setMask(mask)
|
||||
|
||||
# IJ.run(imp, "Create Selection", "");
|
||||
# mask = imp.createRoiMask();
|
||||
# IJ.run("Restore Selection", "");
|
||||
# IJ.run(imp, "Set...", "value=12345");
|
||||
|
||||
|
||||
|
||||
class IJHyperStack(IHyperStack):
|
||||
|
||||
|
@ -279,12 +322,18 @@ class IJImageEngine(IImageEngine):
|
|||
image_plus = IJ.openImage(src_image_file_path)
|
||||
return IJImage(self, image_plus)
|
||||
|
||||
def save_as_tiff(self, image, out_file_path):
|
||||
def save_image_as_tiff(self, image, out_file_path):
|
||||
IJ.saveAsTiff(image.ij_image, out_file_path)
|
||||
# IJ.saveAsTiff catches io exception in case the file couldn't be saved. So we have to check if the operation succeeded in another way
|
||||
if not os.path.isfile(out_file_path):
|
||||
assert False, 'failed to create %s' % out_file_path
|
||||
|
||||
def save_hyperstack_as_tiff(self, hyperstack, out_file_path):
|
||||
IJ.saveAsTiff(hyperstack.hyperstack, out_file_path)
|
||||
# IJ.saveAsTiff catches io exception in case the file couldn't be saved. So we have to check if the operation succeeded in another way
|
||||
if not os.path.isfile(out_file_path):
|
||||
assert False, 'failed to create %s' % out_file_path
|
||||
|
||||
def subtract(self, image1, image2):
|
||||
ic = ImageCalculator()
|
||||
result_image = ic.run("Subtract create float", image1.ij_image, image2.ij_image)
|
||||
|
@ -332,28 +381,52 @@ class IJImageEngine(IImageEngine):
|
|||
ic.run("max", max_image, other_image.ij_image)
|
||||
return IJImage(self, max_image)
|
||||
|
||||
def _zproject(self, image_feeder, operator):
|
||||
"""
|
||||
Performs a reduction along the stack's z axis, using one of the reduction operators
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image_feeder: IImageFeeder
|
||||
the provider of input images along z axis
|
||||
operator: str
|
||||
one of the reduction operators supported by imagej's ZProjector (https://imagej.nih.gov/ij/developer/api/ij/plugin/ZProjector.html)
|
||||
|
||||
Returns
|
||||
-------
|
||||
projected_image: IImage
|
||||
the image resulting of the reduction
|
||||
"""
|
||||
assert operator in ['median', 'average', 'sd']
|
||||
hyperstack = image_feeder.create_hyperstack()
|
||||
# https://imagej.nih.gov/ij/developer/api/ij/plugin/ZProjector.html
|
||||
projector = ZProjector()
|
||||
projection_image = projector.run(hyperstack.hyperstack, operator)
|
||||
# imagej_run_image_command(image=hyperstack.hyperstack, command="Z Project...", options="projection=Median")
|
||||
# # after median computation, the resulting image is expected to be the selected one
|
||||
# median_image = IJ.getImage() # get the currently selected image
|
||||
return IJImage(self, projection_image)
|
||||
|
||||
|
||||
def compute_median(self, image_feeder):
|
||||
"""Computes for each pixel position the median value at this position in all input images.
|
||||
|
||||
:param IImageFeeder image_feeder:
|
||||
:rtype: IJmage
|
||||
"""
|
||||
hyperstack = image_feeder.create_hyperstack()
|
||||
# https://imagej.nih.gov/ij/developer/api/ij/plugin/ZProjector.html
|
||||
projector = ZProjector()
|
||||
median_image = projector.run(hyperstack.hyperstack, 'median')
|
||||
# imagej_run_image_command(image=hyperstack.hyperstack, command="Z Project...", options="projection=Median")
|
||||
# # after median computation, the resulting image is expected to be the selected one
|
||||
# median_image = IJ.getImage() # get the currently selected image
|
||||
return IJImage(self, median_image)
|
||||
return self._zproject(image_feeder, 'median')
|
||||
|
||||
def compute_mean(self, image_feeder):
|
||||
hyperstack = image_feeder.create_hyperstack()
|
||||
# https://imagej.nih.gov/ij/developer/api/ij/plugin/ZProjector.html
|
||||
projector = ZProjector()
|
||||
mean_image = projector.run(hyperstack.hyperstack, 'average')
|
||||
# imagej_run_image_command(image=hyperstack.hyperstack, command="Z Project...", options="projection=Mean")
|
||||
return IJImage(self, mean_image)
|
||||
return self._zproject(image_feeder, 'average')
|
||||
|
||||
def compute_variance(self, image_feeder):
|
||||
stddev_image = self.compute_stddev(image_feeder)
|
||||
variance_image = self.multiply(stddev_image, stddev_image)
|
||||
return variance_image
|
||||
|
||||
def compute_stddev(self, image_feeder):
|
||||
return self._zproject(image_feeder, 'sd')
|
||||
|
||||
|
||||
def mean_filter(self, image, radius):
|
||||
"""Implement interface method."""
|
||||
|
|
|
@ -13,6 +13,9 @@ class Match(object):
|
|||
def __str__(self):
|
||||
return "(%d, %d) - %f" % (self.x, self.y, self.correlation)
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
class IMaximaFinder(ABC):
|
||||
"""Abstract class for methods aiming at detecting the maxima of an image
|
||||
"""
|
||||
|
@ -33,7 +36,7 @@ class MaximaFinder(IMaximaFinder):
|
|||
|
||||
def __init__(self, threshold, tolerance):
|
||||
"""
|
||||
to understand the meaning of threshold and maxima, I had to look at the source code in https://github.com/imagej/imagej1/blob/master/ij/plugin/filter/MaximumFinder.java#L636
|
||||
to understand the meaning of threshold and tolerance, I had to look at the source code in https://github.com/imagej/imagej1/blob/master/ij/plugin/filter/MaximumFinder.java#L636
|
||||
1. The algorithm first builds the list of maxima candidates. Only local maxima above this threshold are considered as valid maxima candidates
|
||||
2. Then each maximum candidate is processed to find its neighborhood area, starting from the highest. For ecach candidate, a propagation is performed on neighbours as long as the neighbour value is within the tolerance of the maximum candidate. If another candidate is encountered as a neighbour, then this candidate is removed as it('s been absorbed by the current maximum candidate)
|
||||
|
||||
|
|
|
@ -107,7 +107,7 @@ class TrapsDetector(object):
|
|||
binarizer = TrapBinarizer((70,34))
|
||||
trap_mask = binarizer.binarize_trap(clean_trap_image)
|
||||
|
||||
traps_mask = ie.create_image(width=uniform_stack.get_width(), height=uniform_stack.get_height(), pixel_type=uniform_stack.get_pixel_type())
|
||||
traps_mask = ie.create_image(width=uniform_stack.get_width(), height=uniform_stack.get_height(), pixel_type=PixelType.U8)
|
||||
for frame_trap_index in range(num_traps_per_frame):
|
||||
match = matches[frame_trap_index]
|
||||
traps_mask.set_subimage(trap_mask, (match.x, match.y))
|
||||
|
|
|
@ -18,9 +18,32 @@ from lipase.traps_detector import TrapsDetector
|
|||
from lipase.catalog import ImageCatalog, Sequence
|
||||
from lipase.lipase import Lipase, ImageLogger
|
||||
from lipase.lipase import GlobulesAreaEstimator, EmptyFrameBackgroundEstimator
|
||||
from lipase.circsymdetector import CircularSymmetryDetector
|
||||
from lipase.circsymdetector import CircularSymmetryDetector, GlobulesDetector
|
||||
from lipase.imagej.hdf5serializer import save_hdf5_file
|
||||
|
||||
def get_trap_area(sequence):
|
||||
if sequence.id == 'res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0':
|
||||
x_min = 423
|
||||
x_max = 553
|
||||
y_min = 419
|
||||
y_max = 533
|
||||
else:
|
||||
assert False, "unhandled sequence : %s" % sequence.id
|
||||
return Aabb(x_min, y_min, x_max, y_max)
|
||||
|
||||
def get_traps_mask(sequence):
|
||||
# the typical value of peaks is -500 and the value between peaks is below -2500
|
||||
threshold = -1500.0
|
||||
tolerance = 1500
|
||||
maxima_finder = MaximaFinder(threshold, tolerance)
|
||||
template_matcher = TemplateMatcher(maxima_finder)
|
||||
traps_detector = TrapsDetector(template_matcher)
|
||||
trap_aabb = get_trap_area(sequence)
|
||||
channel_id = {
|
||||
'res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0': 'DM300_nofilter_vis',
|
||||
}[sequence.id]
|
||||
traps_mask = traps_detector.compute_traps_mask(sequence, channel_id, trap_aabb)
|
||||
return traps_mask
|
||||
|
||||
class TestLipase(unittest.TestCase):
|
||||
|
||||
|
@ -57,11 +80,7 @@ class TestLipase(unittest.TestCase):
|
|||
sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
|
||||
stack = sequence.as_hyperstack(['DM300_nofilter_vis'], selected_frames=[0])
|
||||
first_image = stack.get_image(frame_index=0)
|
||||
x_min = 423
|
||||
x_max = 553
|
||||
y_min = 419
|
||||
y_max = 533
|
||||
template_trap_aabb = Aabb(x_min, y_min, x_max, y_max)
|
||||
template_trap_aabb = get_trap_area(sequence)
|
||||
template_trap_image = first_image.get_subimage(template_trap_aabb)
|
||||
for image in [first_image, template_trap_image]:
|
||||
print(image.get_pixel_type(), image.get_width(), image.get_height())
|
||||
|
@ -78,19 +97,9 @@ class TestLipase(unittest.TestCase):
|
|||
|
||||
|
||||
def test_traps_detector(self):
|
||||
# the typical value of peaks is -500 and the value between peaks is below -2500
|
||||
threshold = -1500.0
|
||||
tolerance = 1500
|
||||
maxima_finder = MaximaFinder(threshold, tolerance)
|
||||
template_matcher = TemplateMatcher(maxima_finder)
|
||||
traps_detector = TrapsDetector(template_matcher)
|
||||
sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
|
||||
x_min = 423
|
||||
x_max = 553
|
||||
y_min = 419
|
||||
y_max = 533
|
||||
trap_aabb = Aabb(x_min, y_min, x_max, y_max)
|
||||
traps_mask = traps_detector.compute_traps_mask(sequence, 'DM300_nofilter_vis', trap_aabb)
|
||||
traps_mask = get_traps_mask(sequence)
|
||||
|
||||
measured_mean_value = traps_mask.get_mean_value()
|
||||
expected_traps_coverage = 0.07909
|
||||
traps_pixel_value = 255.0
|
||||
|
@ -117,7 +126,27 @@ class TestLipase(unittest.TestCase):
|
|||
src_image = visible_traps_sequence.get_image(frame_index=0)
|
||||
# ie = IImageEngine.get_instance()
|
||||
detector = CircularSymmetryDetector(max_radius=32.0, num_angular_sectors=4, num_radial_sectors=8)
|
||||
radial_profiles, angular_variance_avg_image = detector.compute_radial_profiles(src_image) # pylint: disable=unused-variable
|
||||
radial_profiles, angular_stddev_profiles = detector.compute_radial_profiles(src_image) # pylint: disable=unused-variable
|
||||
|
||||
def test_globules_detector(self):
|
||||
traps_sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
|
||||
visible_traps_sequence = traps_sequence.as_hyperstack(['DM300_nofilter_vis'])
|
||||
traps_mask = get_traps_mask(traps_sequence)
|
||||
ie = IImageEngine.get_instance()
|
||||
|
||||
background_estimator = EmptyFrameBackgroundEstimator(empty_frame_index=39)
|
||||
estimated_background = background_estimator.estimate_background(visible_traps_sequence)
|
||||
src_image = visible_traps_sequence.get_image(frame_index=0)
|
||||
globules_image = ie.subtract(src_image, estimated_background)
|
||||
# globules_edges = ie.compute_edge_transform(globules_image)
|
||||
circ_sym_filter = CircularSymmetryDetector(max_radius=32.0, num_angular_sectors=8, num_radial_sectors=8)
|
||||
circles_finder = MaximaFinder(threshold=200.0, tolerance=1000)
|
||||
detector = GlobulesDetector(circ_sym_filter=circ_sym_filter, circles_finder=circles_finder, ignore_mask=traps_mask)
|
||||
detected_globules = detector.detect_globules(globules_image)
|
||||
num_expected_globules = 50 # I manually counted 50 globules but
|
||||
num_detected_globules = 15 # the current settings only detect 15
|
||||
delta = num_expected_globules - num_detected_globules # set the delta so that the test passes, even if the current settings largely underestimate the number of globules (hopefully, the detection performance will improve at some point)
|
||||
self.assertAlmostEqual(len(detected_globules), num_expected_globules, delta=delta)
|
||||
|
||||
# def test_lipase_process(self):
|
||||
# lipase = Lipase(self.catalog, debugger=NullDebugger())
|
||||
|
|
Loading…
Reference in New Issue