now there is an image processing to compute the radial profile (needed for graffy/lipase#3).

This commit is contained in:
Guillaume Raffy 2020-04-06 16:35:28 +02:00
parent e8b1e331fe
commit 4daf2bfe91
6 changed files with 262 additions and 209 deletions

View File

@ -0,0 +1,123 @@
"""
an image processing technique to produce a 1D signal for each pixel : this 1D signal is obtained by projecting the neighborhood of this pixel on a set of bases (each base is used as a convilution kernel)
https://subversion.ipr.univ-rennes1.fr/repos/main/projects/antipode/src/python/antipode/texori.py
"""
from imageengine import IImageEngine, PixelType
class IProjectorBase(object):
"""
a set of projectors
a projector is a grey level image, in which each pixel value is acting as a weight
"""
def __init__(self):
pass
def get_num_projectors(self):
pass
def get_projector_kernel(self, projector_index):
pass
def create_circle_image(image_size, circle_radius, circle_pos, circle_thickness, background_value=0.0, circle_value=1.0):
"""
:param dict image_size:
"""
ie = IImageEngine.get_instance()
width = image_size['width']
height = image_size['height']
assert isinstance(width, int)
assert isinstance(height, int)
circle_pos_x = float(circle_pos['x'])
circle_pos_y = float(circle_pos['y'])
r_min = max(0.0, circle_radius - circle_thickness * 0.5)
r_max = circle_radius + circle_thickness * 0.5
r_min_square = r_min * r_min
r_max_square = r_max * r_max
image = ie.create_image(width=width, height=height, pixel_type=PixelType.F32)
for y in range(height):
for x in range(width):
dx = x - circle_pos_x
dy = y - circle_pos_y
r_square = (dx * dx + dy * dy)
if r_min_square < r_square < r_max_square:
pixel_value = circle_value
else:
pixel_value = background_value
image.set_pixel(x, y, pixel_value)
return image
class CircularSymmetryProjectorBase(IProjectorBase):
"""
generates a base of circles
"""
def __init__(self, max_radius, oversampling_scale=2):
"""
:param int max_radius: the biggest circle radius in the set of projectors
:param int oversampling_scale: oversampling is used to generate antialased circles. The higher this value, the better the quality of antialiasing is
"""
super(CircularSymmetryProjectorBase, self).__init__()
assert max_radius > 0
assert oversampling_scale > 0
self.max_radius = max_radius
self.oversampling_scale = oversampling_scale
self.num_projectors = int(max_radius) + 1
def get_num_projectors(self):
return self.num_projectors
def get_projector_kernel(self, projector_index):
assert projector_index < self.get_num_projectors()
oversampling_is_handled = False # TODO: handle oversampling to increase quality
if not oversampling_is_handled and self.oversampling_scale != 1 :
raise NotImplementedError("at the moment, oversampling is not yet implemented")
radius = projector_index
image_size = int(self.max_radius) * 2 + 1
circle_pos = {'x': self.max_radius, 'y': self.max_radius}
oversampled_circle = create_circle_image(
image_size={'width': image_size * self.oversampling_scale, 'height': image_size*self.oversampling_scale},
circle_radius=radius * self.oversampling_scale,
circle_pos={'x': self.max_radius* self.oversampling_scale, 'y': self.max_radius* self.oversampling_scale},
circle_thickness=1 * self.oversampling_scale)
if self.oversampling_scale == 1:
circle_image = oversampled_circle
else:
if oversampling_is_handled:
circle_image = oversampled_circle.resample(width=image_size, height=image_size)
# mean_value = circle_image.get_mean_value()
# num_pixels = image_size * image_size
# sum_of_pixel_values = mean_value * num_pixels
# we want each circle to have a total weight of 1.0, regardless their radius
# circle_image.scale_values(1.0/sum_of_pixel_values)
anchor_point = {'x': int(circle_pos['x']), 'y': int(circle_pos['y'])}
return circle_image, anchor_point
class CircularSymmetryDetector:
def __init__(self, max_radius):
"""
:para float max_radius:
"""
self.max_radius = max_radius
def compute_radial_profiles(self, src_image):
""" Computes for each pixel the radial profile (with this pixel as center)
:param IImage src_image:
:rtype IHyperstack: each radial profile is stored in the channel coordinate of the hyperstack
"""
ie = IImageEngine.get_instance()
ie.debugger.on_image(src_image, 'src_image')
projector_base = CircularSymmetryProjectorBase(self.max_radius, oversampling_scale=1)
radial_profile_image = ie.create_hyperstack(width=src_image.get_width(), height=src_image.get_height(), num_channels=projector_base.get_num_projectors(), num_slices=1, num_frames=1, pixel_type=PixelType.F32)
for projector_index in range(projector_base.get_num_projectors()):
projector, center_of_filter = projector_base.get_projector_kernel(projector_index)
ie.debugger.on_image(projector, 'projector_%d' % (projector_index))
print(type(center_of_filter))
projection = ie.filter2D(src_image, dst_type=PixelType.F32, kernel=projector, anchor=(center_of_filter['x'], center_of_filter['y']))
ie.debugger.on_image(projection, 'projection_%d' % (projector_index))
radial_profile_image.set_image(self, projection, frame_index=0, slice_index=0, channel_index=projector_index)
return radial_profile_image

View File

@ -97,6 +97,14 @@ class IImage(ABC):
"""
pass
@abc.abstractmethod
def scale_values(self, src_image, scale):
"""
multiply the value of each pixel by a the given scalar
:param float scale:
"""
class IHyperStack(ABC):
@abc.abstractmethod
@ -426,6 +434,17 @@ class IImageEngine(ABC):
:param int radius: in pixels
"""
@abc.abstractmethod
def filter2D(self, src_image, dst_type, kernel, anchor=(-1, -1)):
""" as cv2.filter2D
:param IImage src_image:
:param PixelType or None dst_type: pixel type of the destination image (if None, the pixel type is the same as the source image type)
:param IImage kernel: convolution kernel (or rather a correlation kernel), a single-channel floating point matrix; if you want to apply different kernels to different channels, split the image into separate color planes using split() and process them individually.
:param tuple(int, int) angor: anchor of the kernel that indicates the relative position of a filtered point within the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor is at the kernel center.
:rtype IImage:
"""
@abc.abstractmethod
def perform_gray_morphology(self, image, operator, structuring_element_shape, structuring_element_radius):
"""
@ -515,3 +534,4 @@ class IImageEngine(ABC):
:param IImage src_binary_image:
:rtype IImage: binary image
"""

View File

@ -24,6 +24,12 @@ IJ_PIXELTYPE_TO_PIXEL_TYPE = {
ImagePlus.GRAY32: PixelType.F32
}
PIXEL_TYPE_TO_CV_PIXEL_TYPE = {
PixelType.U8: opencv_core.CV_8U,
PixelType.U16: opencv_core.CV_16U,
PixelType.F32: opencv_core.CV_32F,
}
class IJImage(IImage):
def __init__(self, image_engine, ij_image=None, width=None, height=None, pixel_type=None):
@ -101,6 +107,10 @@ class IJImage(IImage):
image_stats = processor.getStats() # :type ImageStatistics image_stats:
return image_stats.mean
def scale_values(self, scale):
raise NotImplementedError()
class IJHyperStack(IHyperStack):
def __init__(self, image_engine, width, height, num_channels, num_slices, num_frames, pixel_type):
@ -231,6 +241,7 @@ def perform_gray_morphology_with_ijopencv(image, operator, structuring_element_s
mat2imp = MatImagePlusConverter()
image.ij_image.setProcessor(mat2imp.toImageProcessor(cv_dst_image))
class ImageLogger(IImageProcessingDebugger):
def __init__(self):
@ -327,6 +338,39 @@ class IJImageEngine(IImageEngine):
"""Implement interface method."""
IJ.run(image.ij_image, "Mean...", "radius=%d" % radius)
def filter2D(self, src_image, dst_type, kernel, anchor=(-1, -1)):
print(type(anchor), anchor)
if anchor == (-1, -1):
assert kernel.get_width() % 2 == 1 and kernel.get_height() % 2 == 1, "kernel sizes are expected to be odd if you want the anchor to be at the center of the kernel"
anchor = ((kernel.get_width() - 1) / 2, (kernel.get_height() - 1) / 2)
imp2mat = ImagePlusMatConverter()
cv_src_image = imp2mat.toMat(src_image.ij_image.getProcessor())
cv_kernel = imp2mat.toMat(kernel.ij_image.getProcessor())
cv_anchor = opencv_core.Point(anchor[0], anchor[1])
ie = IImageEngine.get_instance()
dst_image = ie.create_image(width=src_image.get_width(), height=src_image.get_height(), pixel_type=PixelType.F32)
cv_dst_image = opencv_core.Mat(cv_src_image.size(), cv_src_image.type())
# warning ! trying to guess the arguments from opencv's documentation is time consuming as the error messages are misleading (in the following call, javacpp complains that the 1st argument is not a org.bytedeco.javacpp.opencv_core$Mat, while it is ! The problem comes from the order of the arguments). So, instead of guessing, the found accepted signatures of filter2D are in https://github.com/bytedeco/javacpp-presets/blob/master/opencv/src/gen/java/org/bytedeco/opencv/global/opencv_imgproc.java
# opencv_imgproc.morphologyEx(cv_src_image, opencv_imgproc.MORPH_OPEN, struct_element, dst_image)
# TypeError: morphologyEx(): 1st arg can't be coerced to org.bytedeco.javacpp.opencv_core$GpuMat, org.bytedeco.javacpp.opencv_core$Mat, org.bytedeco.javacpp.opencv_core$UMat
print('before opencv_imgproc.filter2D')
delta = 0
border_type = opencv_core.BORDER_DEFAULT
if dst_type is None:
ddepth = -1
else:
ddepth = PIXEL_TYPE_TO_CV_PIXEL_TYPE[dst_type]
opencv_imgproc.filter2D(cv_src_image, cv_dst_image, ddepth, cv_kernel, cv_anchor, delta, border_type)
print('after opencv_imgproc.filter2D')
mat2imp = MatImagePlusConverter()
dst_image.ij_image.setProcessor(mat2imp.toImageProcessor(cv_dst_image))
return dst_image
def perform_gray_morphology(self, image, operator, structuring_element_shape, structuring_element_radius):
"""
:param IJImage image:

View File

@ -1,143 +0,0 @@
"""
an image processing technique to produce a 1D signal for each pixel : this 1D signal is obtained by projecting the neighborhood of this pixel on a set of bases (each base is used as a convilution kernel)
https://subversion.ipr.univ-rennes1.fr/repos/main/projects/antipode/src/python/antipode/texori.py
"""
from imageengine import IImageEngine, PixelType
class IProjectorBase(object):
"""
a set of projectors
a projector is a grey level image, in which each pixel value is acting as a weight
"""
def __init__(self):
pass
def get_num_projectors(self):
pass
def get_projector_kernel(self, projector_index):
pass
def create_circle_image(image_size, circle_radius, circle_pos, circle_thickness, background_value=0.0, circle_value=1.0):
"""
:param dict image_size:
"""
ie = IImageEngine.get_instance()
width = image_size['width']
height = image_size['height']
circle_pos_x = float(circle_pos['x'])
circle_pos_y = float(circle_pos['y'])
r_min = circle_radius - circle_thickness * 0.5
assert r_min >= 0.0
r_max = circle_radius + circle_thickness * 0.5
r_min_square = r_min * r_min
r_max_square = r_max * r_max
image = ie.create_image(width=width, height=height, pixel_type=PixelType.F32)
for y in range(height):
for x in range(width):
dx = x - circle_pos_x
dy = y - circle_pos_y
r_square = (dx * dx + dy * dy)
if r_min_square < r_square < r_max_square:
pixel_value = circle_value
else:
pixel_value = background_value
image.set_pixel(x, y, pixel_value)
return image
class CircularSymetryProjectorBase(IProjectorBase):
"""
generates a base of circles
"""
def __init__(self, max_radius, oversampling_scale=2):
"""
:param int max_radius: the biggest circle radius in the set of projectors
:param int oversampling_scale: oversampling is used to generate antialased circles. The higher this value, the better the quality of antialiasing is
"""
super().__init__()
assert max_radius > 0
assert oversampling_scale > 0
self.max_radius = max_radius
self.oversampling_scale = oversampling_scale
self.num_projectors = max_radius + 1
def get_num_projectors(self):
return self.num_projectors
def get_projector_kernel(self, projector_index):
assert projector_index < self.get_num_projectors()
radius = projector_index
image_size = self.max_radius * 2 + 1
circle_pos = {'x': self.max_radius, 'y': self.max_radius}
oversampled_circle = create_circle_image(
image_size={'width':image_size * self.oversampling_scale, 'height':image_size*self.oversampling_scale},
circle_radius=radius * self.oversampling_scale,
circle_pos={'x': self.max_radius* self.oversampling_scale, 'y': self.max_radius* self.oversampling_scale},
circle_thickness=1 * self.oversampling_scale)
circle_image = oversampled_circle.resample(width=image_size, height=image_size)
anchor_point = circle_pos
return circle_image, anchor_point
# class LocalProjector:
# """ This image processor computes the probability for each pixel to have a material oriented in the given direction
# The technique is based on the notion of a projector. The role of the projector is to project (or cumulate) the 2D neighborhood of each pixel on a projection axis that passes through the pixel and that has an orientation chosen by the user.
# """
# def __init__(self, searched_orientation, image_process_listener=imageprocessing.NullImageProcessListener()):
# imageprocessing.IImageProcessor.__init__(self, image_process_listener)
# self.searched_orientation = searched_orientation
# self.orientation_amount_image = None
# @staticmethod
# def compute_noise_in_perpendicular_orientation(src_image, orientation, half_window_width=5, image_process_listener=imageprocessing.NullImageProcessListener()):
# """ Computes an image that gives for each pixel, the amount of noise in a direction perpendicular to the given orientation
# Because the projection has to be performed for each pixel, we encode the projector operator in the form of a set of num_projectors 2D kernels that are used as a filter. Each kernel cumulates the image signal (therefore computes the sum of the image signal) along a line perpendicular to the projection axis, but each at a different position (offset) on this projection axis.
# :param src_image: the input image, the one we want to process
# :type src_image: numpy.array
# :param orientation: the orientation along which the noise needs to be computed
# :type orientation: float (in radians)
# :param half_window_width: half size of the neighborhood window, in pixels (the heighborood window is a window of size (2*half_window_width+1, 2*half_window_width+1) centered on each pixel). The bigger, the more precise the measurement but with less locality.
# """
# projector_base = OrientationProbabilityEstimator.ProjectorBase2(orientation, searched_segment_size=10.0, cut_blur_stddev=3.0, image_process_listener=image_process_listener)
# projections = numpy.empty((src_image.shape[0], src_image.shape[1], projector_base.get_num_projectors()), dtype=numpy.float32)
# # print('projections.shape=%s' % str(projections.shape))
# for projector_index in range(projector_base.get_num_projectors()):
# projector, center_of_filter = projector_base.get_projector_kernel(projector_index)
# projection = cv2.filter2D(src_image.astype(numpy.float32), ddepth=-1, kernel=projector, anchor=tuple(center_of_filter))
# image_process_listener.onImage(projection, 'projection_%f_%d' % (orientation, projector_index))
# projections[:, :, projector_index] = projection
# # for each pixel, compute the gradient along its projection axis
# # swap axes because I don't think the filter2D only works along fist 2 axes
# projections = numpy.swapaxes(projections, 1, 2)
# grad_kernel = numpy.array((-0.5, 0.5), dtype=numpy.float32)
# gradients = cv2.filter2D(projections, ddepth=-1, kernel=grad_kernel, anchor=(0, 0))
# if image_process_listener is not None:
# # grab a slice of the gradient image for debugging purpose
# cut = gradients[:, :, gradients.shape[2] / 2]
# image_process_listener.onImage(cut, 'cut_%f' % (orientation))
# gradients = numpy.swapaxes(gradients, 1, 2)
# gradients *= gradients
# texture_amount = numpy.sum(gradients, axis=2)
# image_process_listener.onImage(texture_amount, 'texture_amount_%f' % (orientation))
# return texture_amount
# def processImage(self, image):
# self.orientation_amount_image = OrientationProbabilityEstimator.compute_noise_in_perpendicular_orientation(image, self.searched_orientation, self.get_image_process_listener())
# def get_result(self):
# return self.orientation_amount_image

View File

@ -8,7 +8,7 @@ import unittest # unittest2 doesn't exist in fiji
import sys
from lipase.imageengine import IImageEngine, PixelType, Aabb, NullDebugger, FileBasedDebugger
from lipase.imagej.ijimageengine import IJImageEngine, IJImage
from lipase.localprojector import create_circle_image
from lipase.circsymdetector import create_circle_image
class ImProcTester(unittest.TestCase):

View File

@ -16,6 +16,7 @@ from lipase.traps_detector import TrapsDetector
from lipase.catalog import ImageCatalog, Sequence
from lipase.lipase import Lipase, ImageLogger
from lipase.lipase import GlobulesAreaEstimator, EmptyFrameBackgroundEstimator
from lipase.circsymdetector import CircularSymmetryDetector
from lipase.imagej.hdf5serializer import save_hdf5_file
@ -35,78 +36,86 @@ class TestLipase(unittest.TestCase):
print("uninitializing TestLipase instance")
self.catalog = None
def test_estimate_white(self):
sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos2']
white_estimator = WhiteEstimator(open_size=75, close_size=75, average_size=75)
white_estimate = white_estimator.estimate_white([sequence], ['DM300_327-353_fluo'])
# find_white_reference_image(white_estimate, sequence.get_white())
print(white_estimate)
IImageEngine.get_instance().debugger.on_image(white_estimate, 'white_estimate')
# assert False, "hellooooo"
print('end of test_estimate_white')
# def test_estimate_white(self):
# sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos2']
# white_estimator = WhiteEstimator(open_size=75, close_size=75, average_size=75)
# white_estimate = white_estimator.estimate_white([sequence], ['DM300_327-353_fluo'])
# # find_white_reference_image(white_estimate, sequence.get_white())
# print(white_estimate)
# IImageEngine.get_instance().debugger.on_image(white_estimate, 'white_estimate')
# # assert False, "hellooooo"
# print('end of test_estimate_white')
def test_uniform_lighting_correction(self):
non_uniform_sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
uniform_sequence = correct_non_uniform_lighting(non_uniform_sequence, 'DM300_nofilter_vis', white_estimator=WhiteEstimator(open_size=75, close_size=75, average_size=75)) # pylint: disable=unused-variable
# def test_uniform_lighting_correction(self):
# non_uniform_sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
# uniform_sequence = correct_non_uniform_lighting(non_uniform_sequence, 'DM300_nofilter_vis', white_estimator=WhiteEstimator(open_size=75, close_size=75, average_size=75)) # pylint: disable=unused-variable
def test_template_matcher(self):
sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
stack = sequence.as_hyperstack(['DM300_nofilter_vis'], selected_frames=[0])
first_image = stack.get_image(frame_index=0)
x_min = 423
x_max = 553
y_min = 419
y_max = 533
template_trap_aabb = Aabb(x_min, y_min, x_max, y_max)
template_trap_image = first_image.get_subimage(template_trap_aabb)
for image in [first_image, template_trap_image]:
print(image.get_pixel_type(), image.get_width(), image.get_height())
# the typical value of peaks is -2.e10 and the value between peaks is below -8.0e10
threshold = -3.0e10
tolerance = 1.0e10
maxima_finder = MaximaFinder(threshold, tolerance)
template_matcher = TemplateMatcher(maxima_finder)
matches = template_matcher.match_template(first_image, template_trap_image)
num_traps = len(matches)
print("number of traps found : %d" % num_traps)
num_expected_traps = 13 # 13 traps are completely visible in the first image
self.assertAlmostEqual(len(matches), num_expected_traps, delta=1.0)
# def test_template_matcher(self):
# sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
# stack = sequence.as_hyperstack(['DM300_nofilter_vis'], selected_frames=[0])
# first_image = stack.get_image(frame_index=0)
# x_min = 423
# x_max = 553
# y_min = 419
# y_max = 533
# template_trap_aabb = Aabb(x_min, y_min, x_max, y_max)
# template_trap_image = first_image.get_subimage(template_trap_aabb)
# for image in [first_image, template_trap_image]:
# print(image.get_pixel_type(), image.get_width(), image.get_height())
# # the typical value of peaks is -2.e10 and the value between peaks is below -8.0e10
# threshold = -3.0e10
# tolerance = 1.0e10
# maxima_finder = MaximaFinder(threshold, tolerance)
# template_matcher = TemplateMatcher(maxima_finder)
# matches = template_matcher.match_template(first_image, template_trap_image)
# num_traps = len(matches)
# print("number of traps found : %d" % num_traps)
# num_expected_traps = 13 # 13 traps are completely visible in the first image
# self.assertAlmostEqual(len(matches), num_expected_traps, delta=1.0)
def test_traps_detector(self):
# the typical value of peaks is -500 and the value between peaks is below -2500
threshold = -1500.0
tolerance = 1500
maxima_finder = MaximaFinder(threshold, tolerance)
template_matcher = TemplateMatcher(maxima_finder)
traps_detector = TrapsDetector(template_matcher)
sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
x_min = 423
x_max = 553
y_min = 419
y_max = 533
trap_aabb = Aabb(x_min, y_min, x_max, y_max)
traps_mask = traps_detector.compute_traps_mask(sequence, 'DM300_nofilter_vis', trap_aabb)
measured_mean_value = traps_mask.get_mean_value()
expected_traps_coverage = 0.07909
traps_pixel_value = 255.0
expected_mean_value = expected_traps_coverage * traps_pixel_value
print("expected_mean_value: %f" % expected_mean_value)
print("measured_mean_value: %f" % measured_mean_value)
self.assertAlmostEqual(measured_mean_value, expected_mean_value, delta=0.01)
# def test_traps_detector(self):
# # the typical value of peaks is -500 and the value between peaks is below -2500
# threshold = -1500.0
# tolerance = 1500
# maxima_finder = MaximaFinder(threshold, tolerance)
# template_matcher = TemplateMatcher(maxima_finder)
# traps_detector = TrapsDetector(template_matcher)
# sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
# x_min = 423
# x_max = 553
# y_min = 419
# y_max = 533
# trap_aabb = Aabb(x_min, y_min, x_max, y_max)
# traps_mask = traps_detector.compute_traps_mask(sequence, 'DM300_nofilter_vis', trap_aabb)
# measured_mean_value = traps_mask.get_mean_value()
# expected_traps_coverage = 0.07909
# traps_pixel_value = 255.0
# expected_mean_value = expected_traps_coverage * traps_pixel_value
# print("expected_mean_value: %f" % expected_mean_value)
# print("measured_mean_value: %f" % measured_mean_value)
# self.assertAlmostEqual(measured_mean_value, expected_mean_value, delta=0.01)
def test_visible_traps_sequence_processing(self):
# def test_visible_traps_sequence_processing(self):
# traps_sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
# visible_traps_sequence = traps_sequence.as_hyperstack(['DM300_nofilter_vis'])
# background_estimator = EmptyFrameBackgroundEstimator(empty_frame_index=39)
# processor = GlobulesAreaEstimator(background_estimator=background_estimator, particle_threshold=2000.0)
# results = processor.detect_particles(visible_traps_sequence)
# save_hdf5_file('results.h5', results)
# # results file could be checked with "h5dump --xml ./lipase.git/results.h5"
# first_frame_measured_ratio = results['globules_area_ratio'][(0,)]
# first_frame_expected_ratio = 0.008
# self.assertAlmostEqual(first_frame_measured_ratio, first_frame_expected_ratio, delta=0.01)
def test_circle_detector(self):
traps_sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
visible_traps_sequence = traps_sequence.as_hyperstack(['DM300_nofilter_vis'])
background_estimator = EmptyFrameBackgroundEstimator(empty_frame_index=39)
processor = GlobulesAreaEstimator(background_estimator=background_estimator, particle_threshold=2000.0)
results = processor.detect_particles(visible_traps_sequence)
save_hdf5_file('results.h5', results)
# results file could be checked with "h5dump --xml ./lipase.git/results.h5"
first_frame_measured_ratio = results['globules_area_ratio'][(0,)]
first_frame_expected_ratio = 0.008
self.assertAlmostEqual(first_frame_measured_ratio, first_frame_expected_ratio, delta=0.01)
src_image = visible_traps_sequence.get_image(frame_index=0)
ie = IImageEngine.get_instance()
detector = CircularSymmetryDetector(max_radius=10.0)
radial_profiles = detector.compute_radial_profiles(src_image)
# def test_lipase_process(self):
# lipase = Lipase(self.catalog, debugger=NullDebugger())