now a clean trap image is computed as the median value of all traps

This commit is contained in:
Guillaume Raffy 2020-01-30 16:44:11 +01:00
parent dcf5d61f3d
commit 1702d97965
4 changed files with 122 additions and 37 deletions

View File

@ -113,11 +113,35 @@ class IImageFeeder(ABC):
@abc.abstractmethod
def next(self):
"""returns the nex image in the collection
"""returns the next image in the collection
for iterator
"""
pass
@abc.abstractmethod
def get_num_images(self):
pass
def create_hyperstack(self):
"""
creates an hyperstack from this image feeder
:rtype IHyperStack
"""
it = iter(self)
image = it.next()
ie = IImageEngine.get_instance()
hyperstack = ie.create_hyperstack(width=image.width(), height=image.height(), num_channels=1, num_slices=1, num_frames=self.get_num_images(), pixel_type=image.get_pixel_type())
frame_index = 0
for image in it:
hyperstack.set_image(image, frame_index=frame_index)
frame_index += 1
print(frame_index)
print(self.get_num_images())
assert frame_index == self.get_num_images()
return hyperstack
class FileImageFeeder(IImageFeeder):
@ -137,6 +161,9 @@ class FileImageFeeder(IImageFeeder):
return image
raise StopIteration
def get_num_images(self):
return len(self.image_filepaths)
def add_image(self, image_filepath):
self.image_filepaths.append(image_filepath)
@ -160,29 +187,42 @@ class StackImageFeeder(IImageFeeder):
return self
def next(self):
print(self.next_channel_index, self.next_frame_index, self.next_slice_index)
print(self.hyperstack.num_channels, self.hyperstack.num_frames, self.hyperstack.num_slices)
print("channel %d/%d frame %d/%d slice %d/%d" % (self.next_channel_index, self.hyperstack.num_channels(), self.next_frame_index, self.hyperstack.num_frames(), self.next_slice_index, self.hyperstack.num_slices()))
if self.end_is_reached:
raise StopIteration
else:
image = self.hyperstack.get_image(frame_index=self.next_frame_index, slice_index=self.next_slice_index, channel_index=self.next_channel_index)
# compute next image index
if self.next_slice_index < self.hyperstack.num_slices():
self.next_slice_index += 1
else:
self.next_slice_index += 1
if self.next_slice_index == self.hyperstack.num_slices():
self.next_slice_index = 0
if self.next_frame_index < self.hyperstack.num_frames():
self.next_frame_index += 1
else:
self.next_frame_index += 1
if self.next_frame_index == self.hyperstack.num_frames():
self.next_frame_index = 0
if self.next_channel_index < self.hyperstack.num_channels():
self.next_channel_index += 1
else:
self.next_channel_index += 1
if self.next_channel_index == self.hyperstack.num_channels():
self.end_is_reached = True
# if self.next_slice_index < self.hyperstack.num_slices() - 1:
# self.next_slice_index += 1
# else:
# self.next_slice_index = 0
# if self.next_frame_index < self.hyperstack.num_frames() - 1:
# self.next_frame_index += 1
# else:
# self.next_frame_index = 0
# if self.next_channel_index < self.hyperstack.num_channels():
# self.next_channel_index += 1
# else:
# self.end_is_reached = True
print("after : channel %d/%d frame %d/%d slice %d/%d" % (self.next_channel_index, self.hyperstack.num_channels(), self.next_frame_index, self.hyperstack.num_frames(), self.next_slice_index, self.hyperstack.num_slices()))
return image
def get_num_images(self):
return self.hyperstack.num_frames()
class IImageEngine(ABC):
"""
@ -245,6 +285,14 @@ class IImageEngine(ABC):
:rtype IImage:
"""
@abc.abstractmethod
def compute_median(self, image_feeder):
"""Compute for each pixel position the median value at this position in all input images.
:param IImageFeeder image_feeder:
:rtype IImage:
"""
@abc.abstractmethod
def mean_filter(self, image, radius):
"""Each pixel becomes an average of its neighbours within the given radius

View File

@ -7,6 +7,7 @@ from ij import IJ, ImagePlus # pylint: disable=import-error
from ij.measure import ResultsTable # pylint: disable=import-error
from ij.plugin import ImageCalculator # pylint: disable=import-error
from ij.plugin.filter import MaximumFinder # pylint: disable=import-error
from ij.plugin import ZProjector # pylint: disable=import-error
from ijopencv.ij import ImagePlusMatConverter # pylint: disable=import-error
from ijopencv.opencv import MatImagePlusConverter # pylint: disable=import-error
import org.bytedeco.javacpp.opencv_core as opencv_core # pylint: disable=import-error
@ -239,6 +240,21 @@ class IJImageEngine(IImageEngine):
print('max_image', max_image)
return IJImage(self, max_image)
def compute_median(self, image_feeder):
"""Computes for each pixel position the median value at this position in all input images.
:param IImageFeeder image_feeder:
:rtype IJmage:
"""
hyperstack = image_feeder.create_hyperstack()
# https://imagej.nih.gov/ij/developer/api/ij/plugin/ZProjector.html
projector = ZProjector()
median_image = projector.run(hyperstack.hyperstack, 'median')
# imagej_run_image_command(image=hyperstack.hyperstack, command="Z Project...", options="projection=Median")
# # after median computation, the resulting image is expected to be the selected one
# median_image = IJ.getImage() # get the currently selected image
return IJImage(self, median_image)
def mean_filter(self, image, radius):
"""Implement interface method."""
IJ.run(image.ij_image, "Mean...", "radius=%d" % radius)

View File

@ -1,10 +1,10 @@
from catalog import ImageCatalog, Sequence
# from imageengine import Toto
from imageengine import IImageEngine
from imageengine import IImageEngine, Aabb, StackImageFeeder
from imageengine import PixelType
from preprocessing import WhiteEstimator, correct_non_uniform_lighting
from maxima_finder import Match
from template_matcher import TemplateMatcher
class TrapsDetector(object):
@ -15,7 +15,7 @@ class TrapsDetector(object):
"""
self.template_matcher = template_matcher
def compute_traps_mask(self, sequence, channel_id, trap_aabb):
def compute_traps_mask(self, sequence, channel_id, template_trap_aabb):
"""Remove the traps in the input sequence
:param Sequence sequence:
@ -33,11 +33,32 @@ class TrapsDetector(object):
uniform_stack = correct_non_uniform_lighting(sequence, channel_id, white_estimator=WhiteEstimator(open_size=75, close_size=75, average_size=75))
first_image = uniform_stack.get_image(frame_index=0)
trap_image = first_image.get_subimage(trap_aabb)
template_trap_image = first_image.get_subimage(template_trap_aabb)
# ie.save_as_tiff(trap_image, '/home/graffy/Desktop/template.tiff')
matches = self.template_matcher.match_template(first_image, trap_image)
matches = self.template_matcher.match_template(first_image, template_trap_image)
num_traps_per_frame = len(matches)
num_traps = uniform_stack.num_frames() * num_traps_per_frame
ie = IImageEngine.get_instance()
traps_stack = ie.create_hyperstack(width=template_trap_aabb.width, height=template_trap_aabb.height, num_slices=1, num_frames=num_traps, num_channels=1, pixel_type=PixelType.F32)
trap_index = 0
for frame_index in range(uniform_stack.num_frames()):
uniform_frame = uniform_stack.get_image(frame_index=frame_index)
for frame_trap_index in range(num_traps_per_frame):
match = matches[frame_trap_index]
trap_aabb = Aabb(x_min=match.x, y_min=match.y, x_max=match.x + template_trap_aabb.width - 1, y_max=match.y + template_trap_aabb.height - 1)
assert trap_aabb.width == template_trap_aabb.width
trap_image = uniform_frame.get_subimage(trap_aabb)
traps_stack.set_image(frame_index=trap_index, image=trap_image)
trap_index += 1
image_feeder = StackImageFeeder(traps_stack)
clean_trap_image = ie.compute_median(image_feeder)
ie.save_as_tiff(clean_trap_image, './clean_trap_image.tiff')
#non_uniform_stack = sequence.as_stack()
#uniform_stack = IImageEngine.get_instance().divide(non_uniform_stack, white_estimate)
# IImageEngine.get_instance().save_as_tiff(white_estimate, './white_estimate.tiff')

View File

@ -7,13 +7,13 @@
import unittest # unittest2 doesn't exist in fiji
import sys
from lipase.imageengine import IImageEngine, PixelType, Aabb
from lipase.imagej.ijimageengine import IJImageEngine, IJImage
from lipase.preprocessing import WhiteEstimator, correct_non_uniform_lighting
from lipase.maxima_finder import MaximaFinder
from lipase.template_matcher import TemplateMatcher
from lipase.traps_detector import TrapsDetector
from lipase.catalog import ImageCatalog, Sequence
from lipase.imageengine import IImageEngine, PixelType, Aabb # pylint: disable=import-error
from lipase.imagej.ijimageengine import IJImageEngine, IJImage # pylint: disable=import-error
from lipase.preprocessing import WhiteEstimator, correct_non_uniform_lighting # pylint: disable=import-error
from lipase.maxima_finder import MaximaFinder # pylint: disable=import-error
from lipase.template_matcher import TemplateMatcher # pylint: disable=import-error
from lipase.traps_detector import TrapsDetector # pylint: disable=import-error
from lipase.catalog import ImageCatalog, Sequence # pylint: disable=import-error
class TestLipase(unittest.TestCase):
@ -31,19 +31,19 @@ class TestLipase(unittest.TestCase):
print("uninitializing TestLipase instance")
self.catalog = None
def test_estimate_white(self):
sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos2']
white_estimator = WhiteEstimator(open_size=75, close_size=75, average_size=75)
white_estimate = white_estimator.estimate_white([sequence], ['DM300_327-353_fluo'])
# find_white_reference_image(white_estimate, sequence.get_white())
print(white_estimate)
IImageEngine.get_instance().save_as_tiff(white_estimate, './white_estimate.tiff')
# assert False, "hellooooo"
print('end of test_estimate_white')
# def test_estimate_white(self):
# sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos2']
# white_estimator = WhiteEstimator(open_size=75, close_size=75, average_size=75)
# white_estimate = white_estimator.estimate_white([sequence], ['DM300_327-353_fluo'])
# # find_white_reference_image(white_estimate, sequence.get_white())
# print(white_estimate)
# IImageEngine.get_instance().save_as_tiff(white_estimate, './white_estimate.tiff')
# # assert False, "hellooooo"
# print('end of test_estimate_white')
def test_uniform_lighting_correction(self):
non_uniform_sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
uniform_sequence = correct_non_uniform_lighting(non_uniform_sequence, 'DM300_nofilter_vis', white_estimator=WhiteEstimator(open_size=75, close_size=75, average_size=75))
# def test_uniform_lighting_correction(self):
# non_uniform_sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0']
# uniform_sequence = correct_non_uniform_lighting(non_uniform_sequence, 'DM300_nofilter_vis', white_estimator=WhiteEstimator(open_size=75, close_size=75, average_size=75))
def test_traps_detector(self):
# the typical value of peaks is -500 and the value between peaks is below -2500