ddrs/src/geslabt002_to_itorders.py

67 lines
3.3 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
from pathlib import Path
import re
import pandas
# converts a cnrs geslab type t001 report to a single table
def geslabt002_to_sheet(in_tsv_file_path: Path, out_tsv_file_path: Path):
with open(in_tsv_file_path) as inf, open(out_tsv_file_path, 'wt') as outf:
table_header_has_been_written = False
for line in inf.readlines():
2023-03-06 11:01:49 +01:00
# Entité dépensière : AESJULLIEN AES RENNES METROPOLE MC JULLIEN Crédits reçus : 40,000.00
# Disponible : 24,743.14
#
#
# N° commande Souche Libellé commande Date commande Raison sociale fournisseur Montant consommé sur exercice antérieur Montant consommé sur l'exercice Montant réservé Montant facturé Code origine Nature dépense Statut Cde groupée
is_table_header = re.match(r'^N° com. GESLAB', line) is not None
# for some strange reason, the column 'N° com. GESLAB''s contents are alternatively something like '1952-12-17 12:00:00 AM' and something like '19,855.00'
if is_table_header and not table_header_has_been_written:
outf.write('# %s' % line)
table_header_has_been_written = True
if re.match(r'^[0-9,.]+\t', line):
outf.write(line)
elif re.match(r'^[0-9][0-9][0-9][0-9]-[0-9]+-[0-9]+ [0-9][0-9]:[0-9][0-9]:[0-9][0-9] [AP]M\t', line):
outf.write(line)
else:
print('ignoring line : %s' % line)
def geslabt002_to_itorders(geslabt001_file_path: Path, itorders_file_path: Path):
sheet_file_path = Path('./tmp/commandes-2019-cnrs.tsv')
geslabt002_to_sheet(geslabt001_file_path, sheet_file_path)
df = pandas.read_csv(sheet_file_path, sep='\t')
# delete the colums for which the labve is of the form 'Unnamed: <n>'. They come from the csv export of libre office
unnamed_columns = [column_label for column_label in df.keys() if re.match(r'^Unnamed', column_label) is not None]
print(unnamed_columns)
df = df.drop(columns=unnamed_columns)
print(df.columns)
print(df.keys())
print(df)
PETIT_MATERIEL_INFORMATIQUE = '1100'
EQUIPEMENT_INFORMATIQUE = '2100'
INFORMATIQUE_ACHAT = 'D3--'
it_df = df[(df['Matière'] == PETIT_MATERIEL_INFORMATIQUE) | (df['Matière'] == EQUIPEMENT_INFORMATIQUE) | (df['Matière'] == INFORMATIQUE_ACHAT)]
print(it_df)
# to remove clutter, drop the columns that we don't need
print(it_df.keys())
it_df = it_df.drop(columns=['# N° com. GESLAB']) # this column seems to contain anything but ordering number
it_df = it_df.drop(columns=['N° ligne']) # I don't know the meaning of this column
it_df = it_df.drop(columns=['Code origine']) # I don't know the meaning of this column
it_df = it_df.drop(columns=['Elément analytique']) # I don't know the meaning of this column
it_df = it_df.drop(columns=['S']) # I don't know the meaning of this column
print(it_df[['Facturé ligne', 'Raison sociale fournisseur', 'Libellé ligne']])
it_df.to_csv(itorders_file_path, sep='\t')
def main():
geslabt002_to_itorders(Path('./achats-ipr/2019/cnrs/from_ngicquiaux_20230127/commandes-2019-cnrs-t002.tsv'), Path('./tmp/commandes-it-2019-cnrs-002.tsv'))
main()