Compare commits
44 Commits
master
...
feature/ar
Author | SHA1 | Date |
---|---|---|
kmdunseath | 6da19024ad | |
kmdunseath | deb350a520 | |
kmdunseath | f5a2b9779c | |
Sylvain Tricot | 5f19198dec | |
Sylvain Tricot | 893d012c99 | |
Sylvain Tricot | d61408e594 | |
Sylvain Tricot | 3811c4baf0 | |
Sylvain Tricot | 7d9662ae37 | |
Sylvain Tricot | 5b76612c72 | |
kmdunseath | cb0b432041 | |
Sylvain Tricot | 39ba8c3983 | |
Sylvain Tricot | f94426476d | |
Sylvain Tricot | d1e52eae86 | |
Sylvain Tricot | 6f254e688e | |
Sylvain Tricot | 6785e7228a | |
Sylvain Tricot | c455b3bdfa | |
Sylvain Tricot | bbc8a92382 | |
Sylvain Tricot | c0d5e97b35 | |
Sylvain Tricot | adb73f7fd8 | |
Sylvain Tricot | 9787e99d2e | |
Sylvain Tricot | 4b75be2045 | |
Sylvain Tricot | 25fd8114a5 | |
Sylvain Tricot | 39074f75b6 | |
Sylvain Tricot | 6986dde636 | |
Sylvain Tricot | d09ba1b590 | |
Sylvain Tricot | f4f204305e | |
Sylvain Tricot | 2b6a8b6e05 | |
Sylvain Tricot | 9ebf6c6bc3 | |
Sylvain Tricot | 998fdbee88 | |
Sylvain Tricot | b1f34aef6a | |
Sylvain Tricot | 58e9731ffd | |
Sylvain Tricot | 0b889681d1 | |
Sylvain Tricot | f262f96004 | |
Sylvain Tricot | e3c0accbcb | |
Sylvain Tricot | 39eb3dc9d8 | |
Sylvain Tricot | 1dba5cbe47 | |
Sylvain Tricot | ca1fd04163 | |
Sylvain Tricot | a657b1874e | |
Sylvain Tricot | 1fd9509608 | |
Sylvain Tricot | 925d694099 | |
Sylvain Tricot | 7567b920a1 | |
Sylvain Tricot | 369e743197 | |
Sylvain Tricot | ec0fc248ce | |
Sylvain Tricot | 0d6db43597 |
106
Dockerfile
106
Dockerfile
|
@ -1,24 +1,102 @@
|
|||
# Get the base Python image
|
||||
FROM python:latest
|
||||
FROM alpine:edge AS builder
|
||||
|
||||
# Variables
|
||||
ARG branch="devel"
|
||||
ARG login="" password=""
|
||||
ARG folder=/opt/msspec user=msspec
|
||||
|
||||
# Install system dependencies
|
||||
RUN apt-get update && apt-get install -y virtualenv gfortran libgtk-3-dev nano
|
||||
|
||||
# Add a non-privileged user
|
||||
RUN useradd -ms /bin/bash -d /opt/msspec msspec
|
||||
|
||||
# Set the working directory in the container
|
||||
USER msspec
|
||||
RUN mkdir -p /opt/msspec/code
|
||||
WORKDIR /opt/msspec/code
|
||||
# tools
|
||||
RUN apk add bash git make gfortran python3
|
||||
# headers
|
||||
RUN apk add python3-dev lapack-dev musl-dev
|
||||
# python packages
|
||||
RUN apk add py3-virtualenv py3-pip py3-numpy-dev py3-h5py py3-lxml py3-matplotlib py3-numpy py3-pandas py3-cairo py3-scipy py3-setuptools_scm
|
||||
RUN apk add --no-cache -X http://dl-cdn.alpinelinux.org/alpine/edge/testing py3-wxpython
|
||||
RUN pip install ase pint terminaltables ipython
|
||||
# for GUI
|
||||
RUN apk add ttf-droid adwaita-icon-theme
|
||||
RUN apk add build-base
|
||||
|
||||
# Fetch the code
|
||||
RUN git clone https://git.ipr.univ-rennes1.fr/epsi/msspec_python3.git .
|
||||
#COPY --chown=msspec:msspec . .
|
||||
RUN mkdir -p ${folder}/code
|
||||
WORKDIR ${folder}/code
|
||||
RUN git clone --branch ${branch} https://${login}:${password}@git.ipr.univ-rennes1.fr/epsi/msspec_python3.git .
|
||||
|
||||
# Build
|
||||
RUN make pybinding NO_VENV=1 PYTHON=python3 VERBOSE=1
|
||||
RUN make -C src sdist PYTHON=python3 NO_VENV=1 VENV_PATH=${folder}/.local/src/msspec_venv && \
|
||||
pip install src/dist/msspec*tar.gz
|
||||
|
||||
# Add a non-privileged user
|
||||
RUN adduser -D -s /bin/bash -h ${folder} ${user}
|
||||
|
||||
# Set the working directory in the container
|
||||
USER ${user}
|
||||
|
||||
RUN virtualenv --system-site-packages ${folder}/.local/src/msspec_venv
|
||||
RUN make -C src frontend PYTHON=python3 NO_VENV=1 VENV_PATH=${folder}/.local/src/msspec_venv
|
||||
|
||||
|
||||
|
||||
FROM alpine:edge
|
||||
# Variables
|
||||
ARG folder=/opt/msspec user=msspec
|
||||
# Install system dependencies
|
||||
RUN apk add --no-cache -X http://dl-cdn.alpinelinux.org/alpine/edge/testing \
|
||||
# hdf5-hl cairo openblas lapack libxml2 libxslt libzlf wxwidgets-gtk3 openjpeg libimagequant \
|
||||
nano \
|
||||
py3-virtualenv \
|
||||
lapack \
|
||||
bash \
|
||||
# git \
|
||||
# make \
|
||||
# gfortran \
|
||||
python3 \
|
||||
# ttf-droid \
|
||||
ttf-liberation \
|
||||
adwaita-xfce-icon-theme \
|
||||
# python3-dev \
|
||||
# lapack-dev \
|
||||
# musl-dev \
|
||||
# py3-virtualenv \
|
||||
py3-pip \
|
||||
# py3-numpy-dev \
|
||||
py3-h5py \
|
||||
py3-lxml \
|
||||
py3-matplotlib \
|
||||
py3-numpy \
|
||||
py3-pandas \
|
||||
py3-cairo \
|
||||
py3-scipy \
|
||||
py3-setuptools_scm \
|
||||
py3-wxpython \
|
||||
&& pip install \
|
||||
ase \
|
||||
pint \
|
||||
terminaltables \
|
||||
ipython \
|
||||
&& pip cache purge \
|
||||
# Add a non-privileged user
|
||||
&& adduser -D -s /bin/bash -h ${folder} ${user}
|
||||
|
||||
# Set the working directory in the container
|
||||
USER ${user}
|
||||
WORKDIR ${folder}
|
||||
# Install msspec
|
||||
ENV PATH=/opt/msspec/.local/bin:$PATH
|
||||
RUN make install VERBOSE=1
|
||||
#COPY --from=builder ${folder}/.local ${folder}/.local
|
||||
#COPY --from=builder /usr/lib/python3.10/site-packages /usr/lib/python3.10/site-packages
|
||||
|
||||
COPY --from=builder ${folder}/code/src/dist/msspec*tar.gz msspec.tar.gz
|
||||
RUN virtualenv --system-site-packages .local/src/msspec_venv && \
|
||||
. .local/src/msspec_venv/bin/activate && \
|
||||
pip install msspec.tar.gz && \
|
||||
rm -f msspec.tar.gz && \
|
||||
mkdir -p .local/bin
|
||||
|
||||
COPY --from=builder ${folder}/.local/bin/msspec .local/bin/msspec
|
||||
ENV PATH=${folder}/.local/bin:$PATH
|
||||
|
||||
# Run the msspec frontend command on startup
|
||||
ENTRYPOINT ["msspec"]
|
||||
|
|
|
@ -13,9 +13,9 @@ pipeline {
|
|||
}
|
||||
stage('Syncing website...') {
|
||||
steps {
|
||||
// echo 'Syncing website...'
|
||||
echo 'Syncing website only in master branch, not here in devel branch...'
|
||||
// sh 'rm -rf $HOME/www/*'
|
||||
sh 'cp -a ./doc/build/html/* $HOME/www/'
|
||||
// sh 'cp -a ./doc/build/html/* $HOME/www/'
|
||||
}
|
||||
}
|
||||
|
||||
|
|
39
Makefile
39
Makefile
|
@ -1,7 +1,7 @@
|
|||
include src/options.mk
|
||||
|
||||
|
||||
.PHONY: pybinding install devel venv doc clean
|
||||
.PHONY: pybinding install devel venv doc clean _attrdict
|
||||
|
||||
|
||||
pybinding:
|
||||
|
@ -10,20 +10,23 @@ pybinding:
|
|||
|
||||
venv:
|
||||
ifeq ($(NO_VENV),0)
|
||||
@virtualenv --python=$(PYTHON_EXE) --prompt="(msspec-$(VERSION)) " $(VENV_PATH)
|
||||
$(INSIDE_VENV) \
|
||||
wget https://bootstrap.pypa.io/get-pip.py && \
|
||||
python get-pip.py && \
|
||||
pip install --upgrade setuptools && \
|
||||
pip install -r src/pip.freeze && \
|
||||
rm -f get-pip.py
|
||||
# @virtualenv --python=$(PYTHON_EXE) --prompt="(msspec-$(VERSION)) " $(VENV_PATH)
|
||||
$(PYTHON) -m venv $(VENV_PATH)
|
||||
$(INSIDE_VENV) python -m ensurepip --upgrade
|
||||
$(INSIDE_VENV) pip install -r src/pip.freeze
|
||||
endif
|
||||
|
||||
# wget https://bootstrap.pypa.io/get-pip.py && \
|
||||
# python get-pip.py && \
|
||||
# rm -f get-pip.py
|
||||
# pip install --upgrade setuptools && \
|
||||
# pip install -r src/pip.freeze && \
|
||||
|
||||
|
||||
install: venv pybinding wx
|
||||
@+$(INSIDE_VENV) $(MAKE) -C src sdist
|
||||
@+$(INSIDE_VENV) $(MAKE) -C src frontend
|
||||
@+$(INSIDE_VENV) pip install src/dist/msspec-$(VERSION).tar.gz
|
||||
@+$(INSIDE_VENV) pip install --force-reinstall src/dist/msspec-$(VERSION)*.whl
|
||||
@echo "Do not forget to check that $(INSTALL_PREFIX)/bin is set in your \$$PATH"
|
||||
|
||||
|
||||
|
@ -37,20 +40,28 @@ light: venv
|
|||
@$(INSIDE_VENV) pip install src/
|
||||
|
||||
|
||||
_build_wx/wxPython.target:
|
||||
_attrdict:
|
||||
# Check if virtualenv python version > 3.3.0
|
||||
# If so, install the patched version of attrdict used to build the version 4.2.0 of wxPython
|
||||
@$(INSIDE_VENV) if `python -c "import sys; exit(sys.version_info > (3,3))"`; then \
|
||||
pip install --no-cache attrdict; \
|
||||
else \
|
||||
pip install thirdparty/attrdict-2.0.1.tar.gz; \
|
||||
fi
|
||||
|
||||
|
||||
_build_wx/wxPython.target: _attrdict
|
||||
@$(INSIDE_VENV) echo "Building wxPython for your `python --version 2>&1` under Linux $(DISTRO_RELEASE)..."
|
||||
# Create a folder to build wx into
|
||||
@mkdir -p _build_wx
|
||||
@$(INSIDE_VENV) pip install attrdict sip
|
||||
# TODO: attrdict is no longer compatible with collections package. The build will fail
|
||||
# download the wheel or the source if it cannot find a wheel
|
||||
@$(INSIDE_VENV) cd _build_wx && pip download -f https://extras.wxpython.org/wxPython4/extras/linux/gtk3/$(DISTRO_RELEASE) wxPython
|
||||
$(INSIDE_VENV) cd _build_wx && pip download -f https://extras.wxpython.org/wxPython4/extras/linux/gtk3/$(DISTRO_RELEASE) wxPython
|
||||
# Build the source if a tar.gz was downloaded
|
||||
@$(INSIDE_VENV) cd _build_wx && \
|
||||
if [ -e wxPython*.tar.gz ]; then \
|
||||
tar -x --skip-old-files -vzf wxPython*.tar.gz; \
|
||||
cd `ls -d wxPython*/`; \
|
||||
pip install requests; \
|
||||
pip install requests sip; \
|
||||
python build.py dox etg --nodoc sip build bdist_wheel; \
|
||||
ln -sf `readlink -f dist/wxPython*.whl` ../; \
|
||||
fi;
|
||||
|
|
|
@ -18,7 +18,8 @@ for zi, z0 in enumerate(all_z):
|
|||
calc.set_atoms(cluster)
|
||||
|
||||
# Compute
|
||||
data = calc.get_theta_phi_scan(level='1s', kinetic_energy=723, data=data)
|
||||
data = calc.get_theta_phi_scan(level='1s', kinetic_energy=723, data=data,
|
||||
malloc={'NPH_M': 8000})
|
||||
dset = data[-1]
|
||||
dset.title = "{:d}) z = {:.2f} angstroms".format(zi, z0)
|
||||
|
||||
|
|
|
@ -1,6 +0,0 @@
|
|||
recursive-include msspec *.so
|
||||
recursive-include . SConstruct
|
||||
include setup_requirements.txt
|
||||
include requirements.txt
|
||||
include pip.freeze
|
||||
include VERSION
|
13
src/Makefile
13
src/Makefile
|
@ -9,16 +9,15 @@ sdist: dist/msspec-$(VERSION).tar.gz
|
|||
frontend: $(INSTALL_PREFIX)/bin/msspec
|
||||
|
||||
|
||||
dist/msspec-$(VERSION).tar.gz: VERSION
|
||||
dist/msspec-$(VERSION).tar.gz: msspec/VERSION
|
||||
@echo "Creating Python source distribution..."
|
||||
@python setup.py sdist
|
||||
@+$(INSIDE_VENV) pip install build && python -m build
|
||||
|
||||
|
||||
$(INSTALL_PREFIX)/bin/msspec: msspec.sh.template VERSION
|
||||
$(INSTALL_PREFIX)/bin/msspec: msspec.sh.template msspec/VERSION
|
||||
@echo "Installing frontend command..."
|
||||
@mkdir -p $(dir $@)
|
||||
@cat $< | sed -e 's/__VERSION__/$(VERSION)/' -e 's#__VENV_PATH__#$(VENV_PATH)#' > $@
|
||||
#@cat $< | sed 's/__VERSION__/$(VERSION)/' > $@
|
||||
@cat $< | sed -e 's#__VENV_PATH__#$(VENV_PATH)#' > $@
|
||||
@chmod 755 $@
|
||||
|
||||
|
||||
|
@ -26,7 +25,7 @@ pybinding:
|
|||
@echo "Building Python binding for phagen and spec..."
|
||||
@+$(MAKE) -C msspec/phagen/fortran all
|
||||
@+$(MAKE) -C msspec/spec/fortran all
|
||||
@echo "$(VERSION)" > VERSION
|
||||
@echo "$(VERSION)" > msspec/VERSION
|
||||
|
||||
|
||||
results: msspec/results.txt
|
||||
|
@ -54,7 +53,7 @@ clean::
|
|||
# remove previous sdist
|
||||
@rm -rf dist
|
||||
@rm -rf *.egg*
|
||||
@rm -f VERSION
|
||||
@rm -f msspec/VERSION
|
||||
|
||||
|
||||
help:
|
||||
|
|
|
@ -2,12 +2,11 @@
|
|||
|
||||
SCRIPT_PATH="$0"
|
||||
SCRIPT_NAME=$(basename "$SCRIPT_PATH")
|
||||
VERSION="__VERSION__"
|
||||
VENV_PATH="__VENV_PATH__"
|
||||
|
||||
# Check venv path
|
||||
if ! [ -d "$VENV_PATH" ]; then
|
||||
echo "ERROR: Unable to find version $VERSION of msspec!!"
|
||||
echo "ERROR: Unable to find msspec!!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -15,6 +14,10 @@ launch_script() {
|
|||
. "$VENV_PATH/bin/activate" && python "$@"
|
||||
}
|
||||
|
||||
show_version () {
|
||||
. "$VENV_PATH/bin/activate" && python -c "import msspec; print(msspec.__version__)"
|
||||
}
|
||||
|
||||
show_help () {
|
||||
echo "Usage: 1) $SCRIPT_NAME -p [PYTHON OPTIONS] SCRIPT [ARGUMENTS...]"
|
||||
echo " 2) $SCRIPT_NAME [-l FILE | -i | -h]"
|
||||
|
@ -92,7 +95,7 @@ while getopts "hvil:p:eu" option; do
|
|||
;;
|
||||
u) uninstall
|
||||
;;
|
||||
v) echo $VERSION
|
||||
v) show_version
|
||||
;;
|
||||
*|h) show_help
|
||||
;;
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -16,8 +17,8 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/__init__.py
|
||||
# Last modified: ven. 10 avril 2020 17:22:12
|
||||
# Committed by : "Sylvain Tricot <sylvain.tricot@univ-rennes1.fr>"
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
|
||||
import ase
|
||||
|
|
|
@ -1,5 +1,25 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
# vim: set et ts=4 sw=4 fdm=indent mouse=a cc=+1 tw=80:
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
# This file is part of msspec.
|
||||
#
|
||||
# msspec is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
# msspec is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/calcio.py
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
|
||||
"""
|
||||
Module calcio
|
||||
|
@ -910,7 +930,7 @@ class SpecIO(object):
|
|||
if content != old_content:
|
||||
with open(filename, 'w') as fd:
|
||||
fd.write(content)
|
||||
LOGGER.debug(f"Writing Spec input file written in {filename}")
|
||||
LOGGER.debug("Writing Spec input file written in {}".format(filename))
|
||||
modified = True
|
||||
|
||||
return modified
|
||||
|
@ -1255,13 +1275,13 @@ class CompCurveIO(object):
|
|||
data = []
|
||||
for i in range(1, 13):
|
||||
#data.append(np.loadtxt(prefix + f'{i:02d}' + '.txt')[-1])
|
||||
results = np.loadtxt(prefix + f'{i:02d}' + '.txt')
|
||||
results = np.loadtxt(prefix + '{:02d}'.format(i) + '.txt')
|
||||
results = results.reshape((-1, 2))
|
||||
data.append(results[index,1])
|
||||
suffix = 'ren'
|
||||
exp = {'int': None, 'ren': None, 'chi': None, 'cdf': None}
|
||||
exp_ren = np.loadtxt(os.path.join('exp', 'div',
|
||||
f'experiment_{suffix}.txt'))
|
||||
'experiment_{}.txt'.format(suffix)))
|
||||
calc_ren = np.loadtxt(os.path.join('calc', 'div',
|
||||
f'calculation{index:d}_{suffix}.txt'))
|
||||
'calculation{:d}_{}.txt'.format(index,suffix)))
|
||||
return data, exp_ren, calc_ren
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -16,8 +17,8 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/calculator.py
|
||||
# Last modified: ven. 10 avril 2020 17:19:24
|
||||
# Committed by : "Sylvain Tricot <sylvain.tricot@univ-rennes1.fr>"
|
||||
# Last modified: Tue, 25 Oct 2022 16:21:38 +0200
|
||||
# Committed by : Sylvain Tricot <sylvain.tricot@univ-rennes1.fr> 1666707698 +0200
|
||||
|
||||
|
||||
"""
|
||||
|
@ -94,8 +95,10 @@ from msspec.parameters import TMatrixParameters
|
|||
from msspec.phagen.fortran.libphagen import main as do_phagen
|
||||
from msspec.spec.fortran import _eig_mi
|
||||
from msspec.spec.fortran import _eig_pw
|
||||
from msspec.spec.fortran import _eig_ar
|
||||
from msspec.spec.fortran import _phd_mi_noso_nosp_nosym
|
||||
from msspec.spec.fortran import _phd_se_noso_nosp_nosym
|
||||
from msspec.spec.fortran import _phd_ce_noso_nosp_nosym
|
||||
from msspec.spec.fortran import _comp_curves
|
||||
from msspec.utils import get_atom_index
|
||||
|
||||
|
@ -404,6 +407,8 @@ class _MSCALCULATOR(Calculator):
|
|||
do_spec = _phd_se_noso_nosp_nosym.run
|
||||
elif self.global_parameters.algorithm == 'inversion':
|
||||
do_spec = _phd_mi_noso_nosp_nosym.run
|
||||
elif self.global_parameters.algorithm == 'correlation':
|
||||
do_spec = _phd_ce_noso_nosp_nosym.run
|
||||
else:
|
||||
LOGGER.error("\'{}\' spectroscopy with \'{}\' algorithm is not "
|
||||
"an allowed combination.".format(self.global_parameters.spectroscopy,
|
||||
|
@ -414,6 +419,8 @@ class _MSCALCULATOR(Calculator):
|
|||
do_spec = _eig_mi.run
|
||||
elif self.global_parameters.algorithm == 'power':
|
||||
do_spec = _eig_pw.run
|
||||
elif self.global_parameters.algorithm == 'arnoldi':
|
||||
do_spec = _eig_ar.run
|
||||
else:
|
||||
LOGGER.error("\'{}\' spectroscopy with \'{}\' algorithm is not "
|
||||
"an allowed combination.".format(self.global_parameters.spectroscopy,
|
||||
|
@ -745,7 +752,7 @@ class _PED(_MSCALCULATOR):
|
|||
|
||||
view = dset.add_view("E = {:.2f} eV".format(ke), title=title,
|
||||
xlabel=xlabel, ylabel=ylabel,
|
||||
projection='stereo', colorbar=True, autoscale=True)
|
||||
projection='stereo', colorbar=True, autoscale=False)
|
||||
view.select('theta', 'phi', 'cross_section')
|
||||
|
||||
|
||||
|
@ -982,8 +989,8 @@ class _EIG(_MSCALCULATOR):
|
|||
_MSCALCULATOR.__init__(self, spectroscopy='EIG', algorithm=algorithm,
|
||||
polarization=polarization, dichroism=dichroism,
|
||||
spinpol=spinpol, folder=folder, txt=txt)
|
||||
if algorithm not in ('inversion', 'power'):
|
||||
LOGGER.error("Only the 'inversion' or the 'power' algorithms "
|
||||
if algorithm not in ('inversion', 'power', 'arnoldi'):
|
||||
LOGGER.error("Only the 'inversion', 'power' or 'arnoldi' algorithms "
|
||||
"are supported in EIG spectroscopy mode")
|
||||
exit(1)
|
||||
self.iodata = iodata.Data('EIG Simulation')
|
||||
|
@ -1132,7 +1139,7 @@ class RFACTOR(object):
|
|||
for i in range(noif):
|
||||
X, Y = args[2*i], args[2*i+1]
|
||||
fname = os.path.join('calc',
|
||||
f'calculation{self.stack_count:d}.txt')
|
||||
'calculation{:d}.txt'.format(self.stack_count))
|
||||
# And save to the working space
|
||||
np.savetxt(fname, np.transpose([X, Y]))
|
||||
self.stack_count += 1
|
||||
|
@ -1140,7 +1147,7 @@ class RFACTOR(object):
|
|||
# Update the list of input calculation files
|
||||
self._params.calc_filename = []
|
||||
for i in range(self.stack_count):
|
||||
fname = os.path.join('calc', f'calculation{i:d}.txt')
|
||||
fname = os.path.join('calc', 'calculation{:d}.txt'.format(i))
|
||||
self._params.calc_filename.append(fname)
|
||||
|
||||
# Write the input file
|
||||
|
@ -1235,23 +1242,23 @@ class RFACTOR(object):
|
|||
dset_values.x, dset_values.yref = exp_data.T
|
||||
# Append the calculated values
|
||||
ycalc = calc_data[:,1]
|
||||
dset_values.add_columns(**{f"calc{i:d}": ycalc})
|
||||
dset_rfc.add_columns(**{f'variable_set{i:d}': rfc})
|
||||
dset_values.add_columns(**{"calc{:d}".format(i): ycalc})
|
||||
dset_rfc.add_columns(**{'variable_set{:d}'.format(i): rfc})
|
||||
|
||||
# Plot the curves
|
||||
view_values.select('x', 'yref', legend='Reference values')
|
||||
title = ''
|
||||
for k,v in self.best_values.items():
|
||||
title += f'{k}={v} '
|
||||
view_values.select('x', f"calc{self.index:d}",
|
||||
title += '{}={} '.format(k, v)
|
||||
view_values.select('x', "calc{:d}".format(self.index),
|
||||
legend="Best calculated values")
|
||||
view_values.set_plot_options(title=title)
|
||||
|
||||
view_results.select('counts')
|
||||
|
||||
for i in range(self.stack_count):
|
||||
view_rfc.select('rfactor_number', f'variable_set{i:d}',
|
||||
legend=f"variables set #{i:d}")
|
||||
view_rfc.select('rfactor_number', 'variable_set{:d}'.format(i),
|
||||
legend="variables set #{:d}".format(i))
|
||||
# Save the parameters
|
||||
for p in self.get_parameters():
|
||||
bundle = {'group': str(p.group),
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -18,8 +19,8 @@
|
|||
# along with msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/cli.py
|
||||
# Last modified: jeu. 04 juin 2020 16:54:12
|
||||
# Committed by : "Sylvain Tricot <sylvain.tricot@univ-rennes1.fr>"
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
|
||||
import sys
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -18,8 +19,8 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/create_tests_results.py
|
||||
# Last modified: ven. 10 avril 2020 17:29:16
|
||||
# Committed by : "Sylvain Tricot <sylvain.tricot@univ-rennes1.fr>"
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
|
||||
from msspec.tests import create_tests_results
|
||||
|
|
|
@ -1,5 +1,24 @@
|
|||
# -*- encoding: utf-8 -*-
|
||||
# vim: set fdm=indent ts=4 sw=4 sts=4 et ai tw=80 cc=+0 mouse=a nu : #
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
# This file is part of msspec.
|
||||
#
|
||||
# msspec is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
# msspec is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/data/__init__.py
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
|
||||
from .electron_be import electron_be
|
||||
|
|
|
@ -1,4 +1,24 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
# This file is part of msspec.
|
||||
#
|
||||
# msspec is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
# msspec is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/data/electron_be.py
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
"""
|
||||
Module electron_be
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -16,8 +17,8 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/iodata.py
|
||||
# Last modified: ven. 10 avril 2020 17:23:11
|
||||
# Committed by : "Sylvain Tricot <sylvain.tricot@univ-rennes1.fr>"
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
|
||||
"""
|
||||
|
@ -442,24 +443,24 @@ class DataSet(object):
|
|||
for k, v in parameters.items():
|
||||
if k == 'Cluster':
|
||||
continue
|
||||
s += f"# {k}:\n"
|
||||
s += "# {}:\n".format(k)
|
||||
if not(isinstance(v, list)):
|
||||
v = [v,]
|
||||
for p in v:
|
||||
s += f"# {p['name']} = {p['value']} {p['unit']}\n"
|
||||
s += "# {} = {} {}\n".format(p['name'], p['value'], p['unit'])
|
||||
return s
|
||||
|
||||
colnames = self.columns()
|
||||
with open(filename, mode) as fd:
|
||||
# write the date and time of export
|
||||
now = datetime.now()
|
||||
fd.write(f"# Data exported on {now}\n")
|
||||
fd.write("# Data exported on {}\n".format(now))
|
||||
fd.write(rule)
|
||||
|
||||
# Append notes
|
||||
fd.write("# NOTES:\n")
|
||||
for line in self.notes.split('\n'):
|
||||
fd.write(f"# {line}\n")
|
||||
fd.write("# {}\n".format(line))
|
||||
fd.write(rule)
|
||||
|
||||
# Append parameters
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -15,9 +16,9 @@
|
|||
# You should have received a copy of the GNU General Public License
|
||||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/iodata.py
|
||||
# Last modified: ven. 10 avril 2020 17:23:11
|
||||
# Committed by : "Sylvain Tricot <sylvain.tricot@univ-rennes1.fr>"
|
||||
# Source file : src/msspec/iodata_gi.py
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
|
||||
"""
|
||||
|
@ -491,24 +492,24 @@ class DataSet(object):
|
|||
for k, v in parameters.items():
|
||||
if k == 'Cluster':
|
||||
continue
|
||||
s += f"# {k}:\n"
|
||||
s += "# {}:\n".format(k)
|
||||
if not(isinstance(v, list)):
|
||||
v = [v,]
|
||||
for p in v:
|
||||
s += f"# {p['name']} = {p['value']} {p['unit']}\n"
|
||||
s += "# {} = {} {}\n".format(p['name'], p['value'], p['unit'])
|
||||
return s
|
||||
|
||||
colnames = self.columns()
|
||||
with open(filename, mode) as fd:
|
||||
# write the date and time of export
|
||||
now = datetime.now()
|
||||
fd.write(f"# Data exported on {now}\n")
|
||||
fd.write("# Data exported on {}\n".format(now))
|
||||
fd.write(rule)
|
||||
|
||||
# Append notes
|
||||
fd.write("# NOTES:\n")
|
||||
for line in self.notes.split('\n'):
|
||||
fd.write(f"# {line}\n")
|
||||
fd.write("# {}\n".format(line))
|
||||
fd.write(rule)
|
||||
|
||||
# Append parameters
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -15,9 +16,9 @@
|
|||
# You should have received a copy of the GNU General Public License
|
||||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/iodata.py
|
||||
# Last modified: ven. 10 avril 2020 17:23:11
|
||||
# Committed by : "Sylvain Tricot <sylvain.tricot@univ-rennes1.fr>"
|
||||
# Source file : src/msspec/iodata_wx.py
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
|
||||
"""
|
||||
|
@ -437,24 +438,24 @@ class DataSet(object):
|
|||
for k, v in parameters.items():
|
||||
if k == 'Cluster':
|
||||
continue
|
||||
s += f"# {k}:\n"
|
||||
s += "# {}:\n".format(k)
|
||||
if not(isinstance(v, list)):
|
||||
v = [v,]
|
||||
for p in v:
|
||||
s += f"# {p['name']} = {p['value']} {p['unit']}\n"
|
||||
s += "# {} = {} {}\n".format(p['name'], p['value'], p['unit'])
|
||||
return s
|
||||
|
||||
colnames = self.columns()
|
||||
with open(filename, mode) as fd:
|
||||
# write the date and time of export
|
||||
now = datetime.now()
|
||||
fd.write(f"# Data exported on {now}\n")
|
||||
fd.write("# Data exported on {}\n".format(now))
|
||||
fd.write(rule)
|
||||
|
||||
# Append notes
|
||||
fd.write("# NOTES:\n")
|
||||
for line in self.notes.split('\n'):
|
||||
fd.write(f"# {line}\n")
|
||||
fd.write("# {}\n".format(line))
|
||||
fd.write(rule)
|
||||
|
||||
# Append parameters
|
||||
|
|
|
@ -1,6 +1,24 @@
|
|||
# coding: utf8
|
||||
# -*- encoding: future_fstrings -*-
|
||||
# vim: set et sw=4 ts=4 nu tw=79 cc=+1:
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
# This file is part of msspec.
|
||||
#
|
||||
# msspec is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
# msspec is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/looper.py
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
from collections import OrderedDict
|
||||
from functools import partial
|
||||
|
@ -21,7 +39,7 @@ class Variable:
|
|||
self.doc = doc
|
||||
|
||||
def __repr__(self):
|
||||
return f"<Variable(\'{self.name}\')>"
|
||||
return "<Variable(\'{}\')>".format(self.name)
|
||||
|
||||
class Sweep:
|
||||
def __init__(self, key, comments="", unit=None,
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -18,8 +19,8 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/misc.py
|
||||
# Last modified: ven. 10 avril 2020 17:30:42
|
||||
# Committed by : "Sylvain Tricot <sylvain.tricot@univ-rennes1.fr>"
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
|
||||
"""
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -18,8 +19,8 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/parameters.py
|
||||
# Last modified: ven. 10 avril 2020 17:31:50
|
||||
# Committed by : "Sylvain Tricot <sylvain.tricot@univ-rennes1.fr>"
|
||||
# Last modified: Tue, 15 Feb 2022 15:37:28 +0100
|
||||
# Committed by : Sylvain Tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
|
||||
"""
|
||||
|
@ -769,7 +770,8 @@ class GlobalParameters(BaseParameters):
|
|||
Parameter('algorithm', types=str, allowed_values=('expansion',
|
||||
'inversion',
|
||||
'correlation',
|
||||
'power'),
|
||||
'power',
|
||||
'arnoldi'),
|
||||
default='expansion', doc="""
|
||||
You can choose the algorithm used for the computation of the scattering path operator.
|
||||
|
||||
|
@ -777,6 +779,7 @@ class GlobalParameters(BaseParameters):
|
|||
- '**expansion**', for the Rehr-Albers series expansion
|
||||
- '**correlation**', for the correlation-expansion algorithm
|
||||
- '**power**', for the power method approximation scheme (only for spectroscopy='EIG')
|
||||
- '**arnoldi**', for computing multiple eigenvalues using Arnoldi iteration (only for spectroscopy='EIG')
|
||||
|
||||
The series expansion algorithm is well suited for high energy since the number of terms
|
||||
required decreases as the energy increases. The exact solution is obtained by the matrix inversion
|
||||
|
@ -838,6 +841,17 @@ class GlobalParameters(BaseParameters):
|
|||
self.phagen_parameters.calctype = phagen_calctype
|
||||
self.spec_parameters.calctype_spectro = spec_calctype
|
||||
|
||||
def bind_polarization(self, p):
|
||||
if p.value is None:
|
||||
ipol = 0
|
||||
elif p.value == 'linear_qOz':
|
||||
ipol = 1
|
||||
elif p.value == 'linear_xOy':
|
||||
ipol = -1
|
||||
elif p.value == 'circular':
|
||||
ipol = 2
|
||||
self.spec_parameters.calctype_ipol = ipol
|
||||
|
||||
def bind_spinpol(self, p):
|
||||
if p.value == True:
|
||||
LOGGER.error('Spin polarization is not yet enabled in the Python version.')
|
||||
|
@ -2012,20 +2026,20 @@ class CompCurveGeneralParameters(BaseParameters):
|
|||
value = p.allowed_values.index(p.value)
|
||||
self.compcurve_parameters.general_norm = value
|
||||
LOGGER.info("Curve Comparison: Normalization mode set to "
|
||||
f"\"{p.value}\"")
|
||||
"\"{}\"".format(p.value))
|
||||
|
||||
def bind_rescale(self, p):
|
||||
self.compcurve_parameters.general_iscale = int(p.value)
|
||||
state = "deactivated"
|
||||
if p.value:
|
||||
state = "activated"
|
||||
LOGGER.info(f"Curve Comparison: Rescaling of data {state}")
|
||||
LOGGER.info("Curve Comparison: Rescaling of data {}".format(state))
|
||||
|
||||
def bind_function(self, p):
|
||||
value = p.allowed_values.index(p.value)
|
||||
self.compcurve_parameters.general_icur = value
|
||||
LOGGER.info("Curve Comparison: Type of data used for comparison "
|
||||
f"set to \"{p.value}\"")
|
||||
"set to \"{}\"".format(p.value))
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
.PHONY: all phd_se phd_mi eig_mi eig_pw comp_curve clean
|
||||
.PHONY: all phd_se phd_mi phd_ce eig_mi eig_pw eig_ar comp_curve clean
|
||||
|
||||
all: phd_se phd_mi eig_mi eig_pw comp_curve
|
||||
all: phd_se phd_mi phd_ce eig_mi eig_pw eig_ar comp_curve
|
||||
|
||||
phd_se:
|
||||
@+$(MAKE) -f phd_se_noso_nosp_nosym.mk all
|
||||
|
@ -8,18 +8,26 @@ phd_se:
|
|||
phd_mi:
|
||||
@+$(MAKE) -f phd_mi_noso_nosp_nosym.mk all
|
||||
|
||||
phd_ce:
|
||||
@+$(MAKE) -f phd_ce_noso_nosp_nosym.mk all
|
||||
|
||||
eig_mi:
|
||||
@+$(MAKE) -f eig_mi.mk all
|
||||
|
||||
eig_pw:
|
||||
@+$(MAKE) -f eig_pw.mk all
|
||||
|
||||
eig_ar:
|
||||
@+$(MAKE) -f eig_ar.mk all
|
||||
|
||||
comp_curve:
|
||||
@+$(MAKE) -f comp_curve.mk all
|
||||
|
||||
clean::
|
||||
@+$(MAKE) -f phd_se_noso_nosp_nosym.mk $@
|
||||
@+$(MAKE) -f phd_mi_noso_nosp_nosym.mk $@
|
||||
@+$(MAKE) -f phd_ce_noso_nosp_nosym.mk $@
|
||||
@+$(MAKE) -f eig_mi.mk $@
|
||||
@+$(MAKE) -f eig_pw.mk $@
|
||||
@+$(MAKE) -f eig_ar.mk $@
|
||||
@+$(MAKE) -f comp_curve.mk $@
|
||||
|
|
|
@ -0,0 +1,250 @@
|
|||
!==============================================================================!
|
||||
module arnoldi_mod
|
||||
!==============================================================================!
|
||||
implicit none
|
||||
private
|
||||
!
|
||||
integer, parameter :: sp = kind(1.0)
|
||||
integer, parameter :: dp = kind(1.0d0)
|
||||
integer, parameter :: zp = kind((0.0d0,0.0d0))
|
||||
!
|
||||
complex(zp), parameter :: one = complex(1.0d0, 0.0d0)
|
||||
complex(zp), parameter :: zero = complex(0.0d0, 0.0d0)
|
||||
!
|
||||
! Public procedures
|
||||
!
|
||||
public :: arnoldi_iteration
|
||||
!
|
||||
! Private data
|
||||
!
|
||||
! ARPACK's debug common block
|
||||
!
|
||||
integer :: logfil = 6, ndigit = -3, mcaupd = 1
|
||||
integer :: mgetv0 = 0, msaupd = 0, msaup2 = 0, msaitr = 0, mseigt = 0, &
|
||||
msapps = 0, msgets = 0, mseupd = 0, mnaupd = 0, mnaup2 = 0, &
|
||||
mnaitr = 0, mneigh = 0, mnapps = 0, mngets = 0, mneupd = 0, &
|
||||
mcaup2 = 0, mcaitr = 0, mceigh = 0, mcapps = 0, mcgets = 0, &
|
||||
mceupd = 0
|
||||
!
|
||||
common /debug/ logfil, ndigit, mgetv0, msaupd, msaup2, msaitr, mseigt, &
|
||||
msapps, msgets, mseupd, mnaupd, mnaup2, mnaitr, mneigh, &
|
||||
mnapps, mngets, mneupd, mcaupd, mcaup2, mcaitr, mceigh, &
|
||||
mcapps, mcgets, mceupd
|
||||
!==============================================================================!
|
||||
contains
|
||||
!==============================================================================!
|
||||
! Public procedures
|
||||
!==============================================================================!
|
||||
subroutine arnoldi_iteration (ndim, a, nev, d)
|
||||
!
|
||||
! Use ARPACK routines to find a few eigenvalues (lambda) and corresponding
|
||||
! eigenvectors (x) for the standard eigenvalue problem:
|
||||
!
|
||||
! A*x = lambda*x
|
||||
!
|
||||
! where A is a general NDIM by NDIM complex matrix
|
||||
!
|
||||
! This subroutine is based on an ARPACK test program adapted by Logan Boudet
|
||||
! as part of his M1 project in Rennes in 2022.
|
||||
!
|
||||
integer, intent(in) :: ndim
|
||||
complex(zp), intent(in) :: a(:,:)
|
||||
integer, intent(inout) :: nev ! number of eigenvalues required
|
||||
complex(zp), intent(out) :: d(:) ! vector of required eigenvalues
|
||||
!
|
||||
! Local data
|
||||
!
|
||||
character(1), parameter :: bmat = "I" ! standarg eigenvalue problem
|
||||
character(2), parameter :: which = "LM" ! find NEV eigenvalues of
|
||||
! ! largest magnitude
|
||||
!
|
||||
integer :: ido, ierr, info, j, lworkl, nconv, ncv
|
||||
integer :: iparam(11)
|
||||
integer :: ipntr(14)
|
||||
real(dp) :: tol
|
||||
complex(zp) :: sigma
|
||||
logical :: rvec
|
||||
!
|
||||
real(dp), allocatable :: rd(:,:)
|
||||
real(dp), allocatable :: rwork(:)
|
||||
complex(zp), allocatable :: ax(:)
|
||||
complex(zp), allocatable :: resid(:)
|
||||
complex(zp), allocatable :: v(:,:)
|
||||
complex(zp), allocatable :: workd(:)
|
||||
complex(zp), allocatable :: workev(:)
|
||||
complex(zp), allocatable :: workl(:)
|
||||
logical, allocatable :: select(:)
|
||||
!
|
||||
! External BLAS/LAPACK functions used
|
||||
!
|
||||
real(dp), external :: dznrm2, dlapy2
|
||||
!
|
||||
!
|
||||
write(6,*)
|
||||
write(6,*) "----------------- BEGIN OF ARNOLDI ITERATION -----------------"
|
||||
!
|
||||
! NCV is is the largest number of basis vectors that will be used in the
|
||||
! Implicitly Restarted Arnoldi Process. Work per major iteration is
|
||||
! proportional to NDIM*NCV*NCV.
|
||||
!
|
||||
! Note: we must have NCV >= NEV + 2, and preferably NCV >= 2*NEV
|
||||
!
|
||||
! ncv = max(ceiling(1.125*nev + 15), nev+3)
|
||||
ncv = 2*nev
|
||||
!
|
||||
iparam(11) = 0
|
||||
ipntr(14) = 0
|
||||
!
|
||||
! stopping criteria; machine precision is used if tol <= 0
|
||||
!
|
||||
tol = 0.0_dp
|
||||
!
|
||||
! Algorithm mode
|
||||
!
|
||||
iparam(1) = 1 ! exact shift strategy
|
||||
iparam(3) = 300 ! maximum number of iterations
|
||||
iparam(7) = 1 ! use mode1 of ZNAUPD
|
||||
!
|
||||
lworkl = ncv*(3*ncv + 5)
|
||||
allocate(rwork(ncv))
|
||||
allocate(resid(ndim), v(ndim,ncv))
|
||||
allocate(workd(3*ndim), workev(2*ncv), workl(lworkl))
|
||||
allocate(select(ncv))
|
||||
!
|
||||
! IDO is the reverse communication parameter used to determine action to be taken
|
||||
! on return from ZNAUPD. Its initial value must be 0.
|
||||
!
|
||||
ido = 0
|
||||
!
|
||||
! On entry, INFO == 0 instructs ZNAUPD to use a random starting vector.
|
||||
! To specify a particular starting vector, set INFO to a non-zero value.
|
||||
! The required startng vector should then be supplied in RESID.
|
||||
!
|
||||
info = 0
|
||||
!
|
||||
! Main reverse communication loop
|
||||
!
|
||||
do
|
||||
call znaupd(ido, bmat, ndim, which, nev, tol, resid, ncv, v, ndim, &
|
||||
iparam, ipntr, workd, workl, lworkl, rwork, info)
|
||||
|
||||
if (abs(ido) /= 1) exit
|
||||
!
|
||||
! Matrix-vector multiplication y = A*x
|
||||
! Initial vector x is stored starting at workd(ipntr(1))
|
||||
! The result y should be stored in workd(ipntr(2))
|
||||
!
|
||||
call matvec(a, ndim, ndim, workd(ipntr(1)), workd(ipntr(2)))
|
||||
!
|
||||
end do
|
||||
!
|
||||
if (info < 0) then
|
||||
write(6,*)
|
||||
write(6,*) "Error: znaupd returned info = ", info
|
||||
write(6,*) "Check the documentation of znaupd for more information"
|
||||
write(6,*)
|
||||
stop
|
||||
end if
|
||||
!
|
||||
! No fatal errors, post-process with ZNEUPD to extract computed eigenvalues.
|
||||
! Eigenvectors may be also computed by setting RVEC = .TRUE.)
|
||||
!
|
||||
if (info == 1) then
|
||||
write(6,*)
|
||||
write(6,*) "Maximum number of iterations reached."
|
||||
write(6,*)
|
||||
else if (info == 3) then
|
||||
write(6,*)
|
||||
write(6,*) "No shifts could be applied during implicit Arnoldi update"
|
||||
write(6,*) "Try increasing NCV."
|
||||
write(6,*)
|
||||
end if
|
||||
!
|
||||
rvec = .false.
|
||||
!
|
||||
call zneupd(rvec, 'A', select, d, v, ndim, sigma, workev, bmat, ndim, &
|
||||
which, nev, tol, resid, ncv, v, ndim, iparam, ipntr, workd, &
|
||||
workl, lworkl, rwork, ierr)
|
||||
!
|
||||
if (ierr /= 0) then
|
||||
write(6,*)
|
||||
write(6,*) "Error: zneupd returned ierr = ", ierr
|
||||
write(6,*) "Check the documentation of zneupd for more information"
|
||||
write(6,*)
|
||||
stop
|
||||
end if
|
||||
!
|
||||
! Eigenvalues are returned in the one dimensional array D and if RVEC == .TRUE.
|
||||
! the corresponding eigenvectors are returned in the first NCONV == IPARAM(5)
|
||||
! columns of the two dimensional array V
|
||||
!
|
||||
nconv = iparam(5)
|
||||
!
|
||||
if (rvec) then
|
||||
!
|
||||
! Compute the residual norm || A*x - lambda*x || for the NCONV accurately
|
||||
! computed eigenvalues and eigenvectors
|
||||
!
|
||||
allocate(rd(ncv,3), ax(ndim))
|
||||
!
|
||||
do j = 1, nconv
|
||||
call matvec(a, ndim, ndim, v(:,j), ax)
|
||||
call zaxpy(ndim, -d(j), v(:,j), 1, ax, 1)
|
||||
rd(j,1) = real(d(j), dp)
|
||||
rd(j,2) = aimag(d(j))
|
||||
rd(j,3) = dznrm2(ndim, ax, 1) / dlapy2(rd(j,1), rd(j,2))
|
||||
end do
|
||||
!
|
||||
call dmout(6, nconv, 3, rd, 2*nev, -6, &
|
||||
"Ritz values (Real, Imag) and relative residuals")
|
||||
!
|
||||
deallocate(rd, ax)
|
||||
!
|
||||
end if
|
||||
!
|
||||
write(6,*)
|
||||
write(6,*) "SUMMARY"
|
||||
write(6,*) "======="
|
||||
write(6,*)
|
||||
write(6,*) "Size of the matrix is ", ndim
|
||||
write(6,*) "The number of Ritz values requested is ", nev
|
||||
write(6,*) "The number of Arnoldi vectors generated (NCV) is ", ncv
|
||||
write(6,*) "Portion of the spectrum: ", which
|
||||
write(6,*) "The number of converged Ritz values is ", nconv
|
||||
write(6,*) "The number of implicit Arnoldi update iterations taken is ", iparam(3)
|
||||
write(6,*) "The number of OP*x is ", iparam(9)
|
||||
write(6,*) "The convergence criterion is ", tol
|
||||
write(6,*)
|
||||
!
|
||||
nev = nconv
|
||||
!
|
||||
write(6,*) "------------------ END OF ARNOLDI ITERATION ------------------"
|
||||
!
|
||||
deallocate(rwork)
|
||||
deallocate(resid, v)
|
||||
deallocate(workd, workev, workl)
|
||||
deallocate(select)
|
||||
!
|
||||
return
|
||||
end subroutine arnoldi_iteration
|
||||
!==============================================================================!
|
||||
! Private procedures
|
||||
!==============================================================================!
|
||||
subroutine matvec (a, n, lda, x, y)
|
||||
!
|
||||
! Compute the matrix-vector product a*x, storing the result in y
|
||||
!
|
||||
complex(zp), intent(in) :: a(:,:)
|
||||
integer, intent(in) :: n
|
||||
integer, intent(in) :: lda
|
||||
complex(zp), intent(in) :: x(*)
|
||||
complex(zp), intent(out) :: y(*)
|
||||
!
|
||||
!
|
||||
call zgemv('n', n, n, one, a, lda, x, 1, zero, y, 1)
|
||||
!
|
||||
return
|
||||
end subroutine matvec
|
||||
!==============================================================================!
|
||||
end module arnoldi_mod
|
||||
!==============================================================================!
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,291 @@
|
|||
!==============================================================================!
|
||||
subroutine eig_mat_ar (je, e_kin)
|
||||
!==============================================================================!
|
||||
! This subroutine stores the G_o T kernel matrix and computes a subset of the
|
||||
! the eigenvalues with largest magnitude using Arnoldi iteration methods from
|
||||
! ARPACK
|
||||
!
|
||||
use dim_mod, only: n_gaunt, nl_m
|
||||
use coor_mod, only: natyp, ncorr, n_prot, sym_at
|
||||
use outfiles_mod, only: outfile2
|
||||
use outunits_mod, only: iuo1, iuo2
|
||||
use trans_mod, only: lmax, vk, tl
|
||||
!
|
||||
use arnoldi_mod, only: arnoldi_iteration
|
||||
!
|
||||
implicit none
|
||||
!
|
||||
integer, parameter :: sp = kind(1.0)
|
||||
integer, parameter :: dp = kind(1.0d0)
|
||||
integer, parameter :: cp = kind((0.0,0.0))
|
||||
integer, parameter :: zp = kind((0.0d0,0.0d0))
|
||||
!
|
||||
! Subroutine arguments
|
||||
!
|
||||
integer, intent(in) :: je
|
||||
real(sp), intent(in) :: e_kin
|
||||
!
|
||||
! Local data
|
||||
!
|
||||
integer, parameter :: ibess = 3
|
||||
integer, parameter :: nprint = 10
|
||||
real(dp), parameter :: pi = acos(-1.0_dp)
|
||||
real(dp), parameter :: small = 0.0001_dp
|
||||
complex(zp), parameter :: ic = complex(0.0d0,1.0d0)
|
||||
complex(zp), parameter :: zeroc = complex(0.0d0,0.0d0)
|
||||
complex(zp), parameter :: four_pi_i = 4.0_dp*pi*ic
|
||||
!
|
||||
integer :: jatl, jlin, jtyp, jnum, lj, lmj, mj, nbtypj
|
||||
integer :: katl, klin, ktyp, knum, lk, lmk, mk, nbtypk
|
||||
integer :: j, jp, l, lin, l_max, l_min, m
|
||||
integer :: ndim, n_dot, n_eig, nev, nfin, nltwo, npr, n_xmax
|
||||
real(sp) :: eig, xj, yj, zj, xmax_l
|
||||
real(dp) :: attkj, xkj, ykj, zkj, rkj, zdkj, krkj
|
||||
complex(zp) :: expkj, sum_l, tlk
|
||||
!
|
||||
integer, save :: iout2, iout3
|
||||
!
|
||||
real(sp), allocatable :: w1(:), w2(:)
|
||||
real(dp), allocatable :: gnt(:)
|
||||
complex(zp), allocatable :: hl1(:), sm(:,:), ylm(:,:), w(:)
|
||||
character(:), allocatable :: outfile, path
|
||||
!
|
||||
!
|
||||
if (je == 1) then
|
||||
!
|
||||
! Name of second output file where eigenvalues will be written
|
||||
!
|
||||
n_dot = index(outfile2, '.')
|
||||
outfile = outfile2(1:n_dot)//'egv'
|
||||
path = outfile2(1:n_dot)//'pth'
|
||||
open(newunit=iout2, file=outfile, status='unknown')
|
||||
open(newunit=iout3, file=path, status='unknown')
|
||||
!
|
||||
end if
|
||||
!
|
||||
! Construction of the multiple scattering kernel matrix G_o T.
|
||||
! Elements are stored using a linear index LINJ representing (J,LJ)
|
||||
!
|
||||
! First compute Go T array dimension
|
||||
!
|
||||
jlin = 0
|
||||
do jtyp = 1, n_prot
|
||||
nbtypj = natyp(jtyp)
|
||||
lmj = lmax(jtyp,je)
|
||||
do jnum = 1, nbtypj
|
||||
do lj = 0, lmj
|
||||
do mj = -lj, lj
|
||||
jlin = jlin + 1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!
|
||||
ndim = jlin
|
||||
write(6,*) "GoT matrix SM has dimension ", ndim
|
||||
!
|
||||
allocate(sm(ndim,ndim))
|
||||
sm = zeroc
|
||||
!
|
||||
nltwo = 2*nl_m
|
||||
allocate(ylm(0:nltwo, -nltwo:nltwo))
|
||||
ylm = zeroc
|
||||
!
|
||||
allocate(hl1(0:nltwo))
|
||||
hl1 = zeroc
|
||||
!
|
||||
allocate(gnt(0:n_gaunt))
|
||||
gnt = 0.0_dp
|
||||
!
|
||||
jlin = 0
|
||||
do jtyp = 1, n_prot
|
||||
nbtypj = natyp(jtyp)
|
||||
lmj = lmax(jtyp,je)
|
||||
do jnum = 1, nbtypj
|
||||
jatl = ncorr(jnum,jtyp)
|
||||
xj = sym_at(1,jatl)
|
||||
yj = sym_at(2,jatl)
|
||||
zj = sym_at(3,jatl)
|
||||
do lj = 0, lmj
|
||||
do mj = -lj, lj
|
||||
jlin = jlin + 1
|
||||
!
|
||||
klin=0
|
||||
do ktyp = 1, n_prot
|
||||
nbtypk = natyp(ktyp)
|
||||
lmk = lmax(ktyp,je)
|
||||
do knum = 1, nbtypk
|
||||
katl = ncorr(knum,ktyp)
|
||||
!
|
||||
if (katl /= jatl) then
|
||||
xkj = real(sym_at(1,katl) - xj, dp)
|
||||
ykj = real(sym_at(2,katl) - yj, dp)
|
||||
zkj = real(sym_at(3,katl) - zj, dp)
|
||||
rkj = sqrt(xkj*xkj + ykj*ykj + zkj*zkj)
|
||||
krkj = real(vk(je), dp)*rkj
|
||||
attkj = exp(-aimag(cmplx(vk(je)))*rkj)
|
||||
expkj = (xkj + ic*ykj)/rkj
|
||||
zdkj = zkj/rkj
|
||||
call sph_har2(2*nl_m, zdkj, expkj, ylm, lmj+lmk)
|
||||
call besphe2(lmj+lmk+1, ibess, krkj, hl1)
|
||||
end if
|
||||
!
|
||||
do lk = 0,lmk
|
||||
l_min = abs(lk-lj)
|
||||
l_max = lk + lj
|
||||
tlk = cmplx(tl(lk,1,ktyp,je))
|
||||
do mk = -lk, lk
|
||||
klin = klin + 1
|
||||
!
|
||||
sm(klin,jlin) = zeroc
|
||||
sum_l = zeroc
|
||||
if (katl /= jatl) then
|
||||
call gaunt2(lk, mk, lj, mj, gnt)
|
||||
do l = l_min, l_max, 2
|
||||
m = mj - mk
|
||||
if (abs(m) <= l) then
|
||||
sum_l = sum_l + (ic**l)*hl1(l)*ylm(l,m)*gnt(l)
|
||||
end if
|
||||
end do
|
||||
sum_l = sum_l*attkj*four_pi_i
|
||||
else
|
||||
sum_l = zeroc
|
||||
end if
|
||||
!
|
||||
sm(klin,jlin) = tlk*sum_l
|
||||
!
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!
|
||||
deallocate(ylm, hl1, gnt)
|
||||
!
|
||||
! Compute subset of eigenvalues of SM using ARPACK
|
||||
!
|
||||
! NEV is the number of eigenvalues required, set to 2% of NDIM
|
||||
!
|
||||
nev = ceiling(0.02*ndim)
|
||||
allocate(w(nev))
|
||||
!
|
||||
call arnoldi_iteration(ndim, sm, nev, w)
|
||||
!
|
||||
deallocate(sm)
|
||||
!
|
||||
! Save results to filestream for easy access from python
|
||||
!
|
||||
call save_eigenvalues(w, nev, e_kin)
|
||||
!
|
||||
! Write results to OUTFILE on unit IOUT2
|
||||
!
|
||||
write(iout2,75)
|
||||
write(iout2,110)
|
||||
write(iout2,80) e_kin
|
||||
write(iout2,110)
|
||||
write(iout2,75)
|
||||
write(iout2,105)
|
||||
write(iout2,75)
|
||||
!
|
||||
allocate(w1(nev), w2(nev))
|
||||
!
|
||||
n_eig = 0
|
||||
xmax_l = 0.0
|
||||
n_xmax = 0
|
||||
do lin = 1, nev
|
||||
eig = real(abs(w(lin)))
|
||||
write(iout2,100) real(w(lin)), aimag(w(lin)), eig
|
||||
if ((eig-xmax_l) > 0.0001) n_xmax = lin
|
||||
xmax_l = max(xmax_l, eig)
|
||||
w1(lin) = eig
|
||||
if (eig > 1.000) then
|
||||
n_eig = n_eig + 1
|
||||
end if
|
||||
end do
|
||||
!
|
||||
write(iout2,75)
|
||||
write(iout2,85) xmax_l
|
||||
write(iout2,90) n_xmax
|
||||
write(iout2,95) w(n_xmax)
|
||||
write(iout2,75)
|
||||
!
|
||||
! Summarize results in main output file
|
||||
!
|
||||
call ordre(nev, w1, nfin, w2)
|
||||
!
|
||||
write(iuo1,5)
|
||||
write(iuo1,10)
|
||||
write(iuo1,10)
|
||||
write(iuo1,15) w2(1)
|
||||
write(iuo1,20) w2(nfin)
|
||||
write(iuo1,10)
|
||||
write(iuo1,10)
|
||||
!
|
||||
if (n_eig >= 1) then
|
||||
if (n_eig == 1) then
|
||||
write(iuo1,25) ndim
|
||||
else
|
||||
write(iuo1,30) n_eig, ndim
|
||||
end if
|
||||
end if
|
||||
!
|
||||
write(iuo1,65) n_xmax
|
||||
write(iuo1,70) w(n_xmax)
|
||||
write(iuo1,10)
|
||||
write(iout3,100) real(w(n_xmax)), aimag(w(n_xmax))
|
||||
!
|
||||
npr = nprint/5
|
||||
write(iuo1,10)
|
||||
write(iuo1,10)
|
||||
write(iuo1,35) 5*npr
|
||||
write(iuo1,10)
|
||||
do jp = 0, npr-1
|
||||
j = 5*jp
|
||||
write(iuo1,40) w2(j+1), w2(j+2), w2(j+3), w2(j+4), w2(j+5)
|
||||
enddo
|
||||
write(iuo1,10)
|
||||
write(iuo1,10)
|
||||
write(iuo1,45) w2(1)
|
||||
write(iuo2,*) e_kin, w2(1)
|
||||
if (n_eig == 0) then
|
||||
write(iuo1,50)
|
||||
else
|
||||
write(iuo1,55)
|
||||
end if
|
||||
write(iuo1,10)
|
||||
write(iuo1,10)
|
||||
write(iuo1,60)
|
||||
!
|
||||
deallocate(w, w1, w2)
|
||||
!
|
||||
return
|
||||
!
|
||||
5 format(/,11X,'----------------- EIGENVALUE ANALYSIS ','-----------------')
|
||||
10 format(11X,'-',54X,'-')
|
||||
15 format(11X,'-',14X,'MAXIMUM MODULUS : ',F9.6,13X,'-')
|
||||
20 format(11X,'-',14X,'MINIMUM MODULUS : ',F9.6,13X,'-')
|
||||
25 format(11X,'-',6X,'1 EIGENVALUE IS > 1 OF A TOTAL OF ',I8,6X,'-')
|
||||
30 format(11X,'-',4X,I5,' EIGENVALUES ARE > 1 OF A TOTAL OF ',I8,2X,'-')
|
||||
35 format(11X,'-',11X,'THE ',I3,' LARGEST EIGENVALUES ARE :',11X,'-')
|
||||
40 format(11X,'-',6X,F7.4,2X,F7.4,2X,F7.4,2X,F7.4,2X,F7.4,5X,'-')
|
||||
45 format(11X,'-',4X,'SPECTRAL RADIUS OF THE KERNEL MATRIX : ',F8.5,3X,'-')
|
||||
50 format(11X,'-',5X,'---> THE MULTIPLE SCATTERING SERIES ','CONVERGES',4X,'-')
|
||||
55 format(11X,'-',10X,'---> NO CONVERGENCE OF THE MULTIPLE',9X,'-',/,11X,'-', &
|
||||
18X,'SCATTERING SERIES',19X,'-')
|
||||
60 format(11X,'----------------------------------------','----------------',/)
|
||||
65 format(11X,'-',5X,' LABEL OF LARGEST EIGENVALUE : ',I5,8X,'-')
|
||||
70 format(11X,'-',5X,' LARGEST EIGENVALUE : ','(',F6.3,',',F6.3,')',8X,'-')
|
||||
75 format(' ')
|
||||
80 format(' KINETIC ENERGY : ',F7.2,' eV')
|
||||
85 format(' LARGEST MODULUS OF EIGENVALUE : ',F6.3)
|
||||
90 format(' LABEL OF LARGEST EIGENVALUE : ',I5)
|
||||
95 format(' LARGEST EIGENVALUE : (',F6.3,',',F6.3,')')
|
||||
100 format(5X,F9.5,2X,F9.5,2X,F9.5)
|
||||
105 format(7X,'EIGENVALUES :',3X,'MODULUS :')
|
||||
110 format(2X,'-------------------------------')
|
||||
!==============================================================================!
|
||||
end subroutine eig_mat_ar
|
||||
!==============================================================================!
|
|
@ -0,0 +1,103 @@
|
|||
C
|
||||
C=======================================================================
|
||||
C
|
||||
SUBROUTINE EIGDIF_AR
|
||||
C
|
||||
C This subroutine computes some of the eigenvalues of the
|
||||
C multiple scattering matrix using Arnoldi iteration as
|
||||
C implemented in ARPACK.
|
||||
C
|
||||
C Last modified : 21 June 2023
|
||||
C
|
||||
C INCLUDE 'spec.inc'
|
||||
USE DIM_MOD
|
||||
USE CONVTYP_MOD
|
||||
USE COOR_MOD, NTCLU => NATCLU, NTP => NATYP
|
||||
USE DEBWAL_MOD
|
||||
USE EIGEN_MOD, NE => NE_EIG, E0 => E0_EIG, EFIN => EFIN_EIG
|
||||
USE OUTFILES_MOD
|
||||
USE OUTUNITS_MOD
|
||||
USE RESEAU_MOD
|
||||
USE TESTS_MOD
|
||||
USE TRANS_MOD
|
||||
USE VALIN_MOD, E1 => E0, PHLUM => PHILUM
|
||||
C
|
||||
COMPLEX IC,ONEC
|
||||
COMPLEX TLT(0:NT_M,4,NATM,NE_M)
|
||||
C
|
||||
C
|
||||
DATA CONV /0.512314/
|
||||
C
|
||||
IC=(0.,1.)
|
||||
ONEC=(1.,0.)
|
||||
C
|
||||
OPEN(UNIT=IUO2, FILE=OUTFILE2, STATUS='UNKNOWN')
|
||||
C
|
||||
C Loop over the energies
|
||||
C
|
||||
DO JE=1,NE
|
||||
IF(NE.GT.1) THEN
|
||||
ECIN=E0+FLOAT(JE-1)*(EFIN-E0)/FLOAT(NE-1)
|
||||
ELSEIF(NE.EQ.1) THEN
|
||||
ECIN=E0
|
||||
ENDIF
|
||||
CALL LPM(ECIN,XLPM,*6)
|
||||
XLPM1=XLPM/A
|
||||
IF(IPRINT.GT.0) WRITE(IUO1,56) A,XLPM1
|
||||
IF(ITL.EQ.0) THEN
|
||||
VK(JE)=SQRT(ECIN+VINT)*CONV*A*ONEC
|
||||
VK2(JE)=CABS(VK(JE)*VK(JE))
|
||||
ENDIF
|
||||
GAMMA=1./(2.*XLPM1)
|
||||
IF(IPOTC.EQ.0) THEN
|
||||
VK(JE)=VK(JE)+IC*GAMMA
|
||||
ENDIF
|
||||
IF(I_MFP.EQ.0) THEN
|
||||
VK(JE)=CMPLX(REAL(VK(JE)))
|
||||
VK2(JE)=CABS(VK(JE)*VK(JE))
|
||||
ENDIF
|
||||
IF(I_VIB.EQ.1) THEN
|
||||
IF(IDCM.GE.1) WRITE(IUO1,22)
|
||||
DO JAT=1,N_PROT
|
||||
IF(IDCM.EQ.0) THEN
|
||||
XK2UJ2=VK2(JE)*UJ2(JAT)
|
||||
ELSE
|
||||
XK2UJ2=VK2(JE)*UJ_SQ(JAT)
|
||||
WRITE(IUO1,23) JAT,UJ_SQ(JAT)*A*A
|
||||
ENDIF
|
||||
CALL DWSPH(JAT,JE,XK2UJ2,TLT,I_VIB)
|
||||
DO LAT=0,LMAX(JAT,JE)
|
||||
TL(LAT,1,JAT,JE)=TLT(LAT,1,JAT,JE)
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDIF
|
||||
C
|
||||
C Eigenvalue calculation
|
||||
C
|
||||
ckmd IF(I_PWM.EQ.0) THEN
|
||||
ckmd CALL EIG_MAT_MS(JE,ECIN)
|
||||
ckmd ELSE
|
||||
ckmd CALL SPEC_RAD_POWER(JE,ECIN)
|
||||
ckmd ENDIF
|
||||
C
|
||||
call eig_mat_ar(je, ecin)
|
||||
C
|
||||
C
|
||||
C End of the loop on the energy
|
||||
C
|
||||
ENDDO
|
||||
GOTO 7
|
||||
C
|
||||
6 WRITE(IUO1,55)
|
||||
C
|
||||
22 FORMAT(16X,'INTERNAL CALCULATION OF MEAN SQUARE DISPLACEMENTS',/,
|
||||
&25X,' BY DEBYE UNCORRELATED MODEL:',/)
|
||||
23 FORMAT(21X,'ATOM TYPE ',I5,' MSD = ',F8.6,' ANG**2')
|
||||
55 FORMAT(///,12X,' <<<<<<<<<< THIS VALUE OF ILPM IS NOT',
|
||||
&'AVAILABLE >>>>>>>>>>')
|
||||
56 FORMAT(4X,'LATTICE PARAMETER A = ',F6.3,' ANGSTROEMS',4X,
|
||||
*'MEAN FREE PATH = ',F6.3,' * A',//)
|
||||
C
|
||||
7 RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,22 @@
|
|||
SUBROUTINE RUN(NATP_M_, NATCLU_M_, NAT_EQ_M_, N_CL_L_M_,
|
||||
& NE_M_, NL_M_, LI_M_, NEMET_M_, NO_ST_M_, NDIF_M_, NSO_M_,
|
||||
& NTEMP_M_, NODES_EX_M_, NSPIN_M_, NTH_M_, NPH_M_, NDIM_M_,
|
||||
& N_TILT_M_, N_ORD_M_, NPATH_M_, NGR_M_)
|
||||
|
||||
USE DIM_MOD
|
||||
IMPLICIT INTEGER (A-Z)
|
||||
CF2PY INTEGER, INTENT(IN,COPY) :: NATP_M_, NATCLU_M_, NAT_EQ_M_, N_CL_L_M_
|
||||
CF2PY INTEGER, INTENT(IN,COPY) :: NE_M_, NL_M_, LI_M_, NEMET_M_, NO_ST_M_, NDIF_M_, NSO_M_
|
||||
CF2PY INTEGER, INTENT(IN,COPY) :: NTEMP_M_, NODES_EX_M_, NSPIN_M_, NTH_M_, NPH_M_, NDIM_M_
|
||||
CF2PY INTEGER, INTENT(IN,COPY) :: N_TILT_M_, N_ORD_M_, NPATH_M_, NGR_M_
|
||||
|
||||
CALL ALLOCATION(NATP_M_, NATCLU_M_, NAT_EQ_M_, N_CL_L_M_,
|
||||
& NE_M_, NL_M_, LI_M_, NEMET_M_, NO_ST_M_, NDIF_M_, NSO_M_,
|
||||
& NTEMP_M_, NODES_EX_M_, NSPIN_M_, NTH_M_, NPH_M_, NDIM_M_,
|
||||
& N_TILT_M_, N_ORD_M_, NPATH_M_, NGR_M_)
|
||||
|
||||
CALL DO_MAIN()
|
||||
CALL CLOSE_ALL_FILES()
|
||||
|
||||
END SUBROUTINE
|
||||
|
|
@ -178,6 +178,10 @@ CKMD WRITE(IUO1,*) ' '
|
|||
CKMD WRITE(IUO1,*) ' ---> WORK(1),INFO =',WORK(1),INFO
|
||||
CKMD WRITE(IUO1,*) ' '
|
||||
CKMD ENDIF
|
||||
C
|
||||
CKMD Save eigenvalues to unformatted stream file eigenvalues.dat
|
||||
C
|
||||
call save_eigenvalues(w, jlin, e_kin)
|
||||
C
|
||||
N_EIG=0
|
||||
C
|
||||
|
|
|
@ -0,0 +1,37 @@
|
|||
c
|
||||
c=======================================================================
|
||||
c
|
||||
subroutine save_eigenvalues (evalues, n, ke)
|
||||
c
|
||||
implicit none
|
||||
c
|
||||
integer, intent(in) :: n
|
||||
real, intent(in) :: ke
|
||||
complex*16, intent(in) :: evalues(n)
|
||||
c
|
||||
c Local variables
|
||||
c
|
||||
integer :: io
|
||||
logical :: exists
|
||||
c
|
||||
c
|
||||
inquire(file='eigenvalues.dat', exist=exists)
|
||||
c
|
||||
if (exists) then
|
||||
open(newunit=io, file='eigenvalues.dat', status='old',
|
||||
+ form='unformatted', access='stream', action='write',
|
||||
+ position='append')
|
||||
else
|
||||
open(newunit=io, file='eigenvalues.dat', status='new',
|
||||
+ form='unformatted', access='stream', action='write')
|
||||
end if
|
||||
c
|
||||
write(io) ke, n, evalues(1:n)
|
||||
c
|
||||
close(io)
|
||||
c
|
||||
return
|
||||
end subroutine save_eigenvalues
|
||||
c
|
||||
c=======================================================================
|
||||
c
|
|
@ -0,0 +1,14 @@
|
|||
memalloc_src := memalloc/dim_mod.f memalloc/modules.f memalloc/allocation.f
|
||||
cluster_gen_src := $(wildcard cluster_gen/*.f)
|
||||
common_sub_src := $(wildcard common_sub/*.f)
|
||||
renormalization_src := $(wildcard renormalization/*.f)
|
||||
#eig_common_src := $(wildcard eig/common/*.f)
|
||||
eig_common_src := $(filter-out eig/common/lapack_eig.f, $(wildcard eig/common/*.f))
|
||||
eig_ar_src := $(wildcard eig/ar/*.f)
|
||||
eig_ar_src_f90 := $(wildcard eig/ar/*.f90)
|
||||
|
||||
SRCS = $(memalloc_src) $(cluster_gen_src) $(common_sub_src) $(renormalization_src) $(eig_common_src) $(eig_ar_src_f90) $(eig_ar_src)
|
||||
MAIN_F = eig/ar/main.f
|
||||
SO = _eig_ar.so
|
||||
|
||||
include ../../../options.mk
|
|
@ -2,7 +2,8 @@ memalloc_src := memalloc/dim_mod.f memalloc/modules.f memalloc/all
|
|||
cluster_gen_src := $(wildcard cluster_gen/*.f)
|
||||
common_sub_src := $(wildcard common_sub/*.f)
|
||||
renormalization_src := $(wildcard renormalization/*.f)
|
||||
eig_common_src := $(wildcard eig/common/*.f)
|
||||
#eig_common_src := $(wildcard eig/common/*.f)
|
||||
eig_common_src := $(filter-out eig/common/lapack_eig.f, $(wildcard eig/common/*.f))
|
||||
eig_mi_src := $(wildcard eig/mi/*.f)
|
||||
|
||||
SRCS = $(memalloc_src) $(cluster_gen_src) $(common_sub_src) $(renormalization_src) $(eig_common_src) $(eig_mi_src)
|
||||
|
|
|
@ -25,6 +25,9 @@
|
|||
USE OUTUNITS_MOD
|
||||
USE PARCAL_MOD
|
||||
USE PARCAL_A_MOD
|
||||
USE CORREXP_MOD
|
||||
USE GAUNT_C_MOD
|
||||
USE Q_ARRAY_MOD
|
||||
USE RELADS_MOD
|
||||
USE RELAX_MOD
|
||||
USE RESEAU_MOD
|
||||
|
@ -136,6 +139,7 @@
|
|||
CALL ALLOC_OUTUNITS()
|
||||
CALL ALLOC_PARCAL()
|
||||
CALL ALLOC_PARCAL_A()
|
||||
CALL ALLOC_Q_ARRAY()
|
||||
CALL ALLOC_RELADS()
|
||||
CALL ALLOC_RELAX()
|
||||
CALL ALLOC_RENORM()
|
||||
|
@ -173,6 +177,7 @@
|
|||
CALL ALLOC_C_G()
|
||||
CALL ALLOC_C_G_A()
|
||||
CALL ALLOC_C_G_M()
|
||||
CALL ALLOC_CORREXP()
|
||||
CALL ALLOC_DEXPFAC2()
|
||||
CALL ALLOC_DFACTSQ()
|
||||
CALL ALLOC_EIGEN()
|
||||
|
@ -186,6 +191,7 @@
|
|||
CALL ALLOC_SPECTRUM()
|
||||
CALL ALLOC_DIRECT()
|
||||
CALL ALLOC_DIRECT_A()
|
||||
CALL ALLOC_GAUNT_C()
|
||||
CALL ALLOC_PATH()
|
||||
CALL ALLOC_ROT()
|
||||
CALL ALLOC_ROT_CUB()
|
||||
|
|
|
@ -34,6 +34,7 @@ C ===============================================================
|
|||
INTEGER NCG_M
|
||||
INTEGER N_BESS, N_GAUNT
|
||||
INTEGER NLTWO
|
||||
INTEGER NLMM
|
||||
C ===============================================================
|
||||
CONTAINS
|
||||
SUBROUTINE INIT_DIM()
|
||||
|
@ -60,9 +61,10 @@ C ===============================================================
|
|||
|
||||
C N_BESS=100*NL_M
|
||||
C N_GAUNT=5*NL_M
|
||||
N_BESS=200*NL_M
|
||||
N_BESS=300*NL_M
|
||||
N_GAUNT=10*NL_M
|
||||
|
||||
NLTWO=2*NL_M
|
||||
NLMM=LINMAX*NGR_M
|
||||
END SUBROUTINE INIT_DIM
|
||||
END MODULE DIM_MOD
|
||||
|
|
|
@ -192,6 +192,20 @@ C=======================================================================
|
|||
END SUBROUTINE ALLOC_COOR
|
||||
END MODULE COOR_MOD
|
||||
|
||||
C=======================================================================
|
||||
MODULE CORREXP_MOD
|
||||
IMPLICIT NONE
|
||||
COMPLEX*16, ALLOCATABLE, DIMENSION(:,:) :: A
|
||||
CONTAINS
|
||||
SUBROUTINE ALLOC_CORREXP()
|
||||
USE DIM_MOD
|
||||
IF (ALLOCATED(A)) THEN
|
||||
DEALLOCATE(A)
|
||||
ENDIF
|
||||
ALLOCATE(A(NLMM,NLMM))
|
||||
END SUBROUTINE ALLOC_CORREXP
|
||||
END MODULE CORREXP_MOD
|
||||
|
||||
C=======================================================================
|
||||
MODULE DEBWAL_MOD
|
||||
IMPLICIT NONE
|
||||
|
@ -417,6 +431,20 @@ C=======================================================================
|
|||
END SUBROUTINE ALLOC_PARCAL_A
|
||||
END MODULE PARCAL_A_MOD
|
||||
|
||||
C=======================================================================
|
||||
MODULE Q_ARRAY_MOD
|
||||
IMPLICIT NONE
|
||||
REAL, ALLOCATABLE, DIMENSION(:) :: Q
|
||||
CONTAINS
|
||||
SUBROUTINE ALLOC_Q_ARRAY()
|
||||
USE DIM_MOD
|
||||
IF (ALLOCATED(Q)) THEN
|
||||
DEALLOCATE(Q)
|
||||
ENDIF
|
||||
ALLOCATE(Q(NGR_M))
|
||||
END SUBROUTINE ALLOC_Q_ARRAY
|
||||
END MODULE Q_ARRAY_MOD
|
||||
|
||||
C=======================================================================
|
||||
MODULE RELADS_MOD
|
||||
IMPLICIT NONE
|
||||
|
@ -778,6 +806,20 @@ C=======================================================================
|
|||
END SUBROUTINE ALLOC_DEXPFAC
|
||||
END MODULE DEXPFAC_MOD
|
||||
|
||||
C=======================================================================
|
||||
MODULE GAUNT_C_MOD
|
||||
IMPLICIT NONE
|
||||
REAL*8, ALLOCATABLE, DIMENSION(:,:,:) :: GNT
|
||||
CONTAINS
|
||||
SUBROUTINE ALLOC_GAUNT_C()
|
||||
USE DIM_MOD
|
||||
IF (ALLOCATED(GNT)) THEN
|
||||
DEALLOCATE(GNT)
|
||||
ENDIF
|
||||
ALLOCATE(GNT(0:N_GAUNT,LINMAX,LINMAX))
|
||||
END SUBROUTINE ALLOC_GAUNT_C
|
||||
END MODULE GAUNT_C_MOD
|
||||
|
||||
C=======================================================================
|
||||
MODULE LOGAMAD_MOD
|
||||
IMPLICIT NONE
|
||||
|
|
|
@ -0,0 +1,11 @@
|
|||
memalloc_src := memalloc/dim_mod.f memalloc/modules.f memalloc/allocation.f
|
||||
cluster_gen_src := $(wildcard cluster_gen/*.f)
|
||||
common_sub_src := $(wildcard common_sub/*.f)
|
||||
renormalization_src := $(wildcard renormalization/*.f)
|
||||
phd_ce_noso_nosp_nosym_src := $(filter-out phd_ce_noso_nosp_nosym/lapack_axb.f, $(wildcard phd_ce_noso_nosp_nosym/*.f))
|
||||
|
||||
SRCS = $(memalloc_src) $(cluster_gen_src) $(common_sub_src) $(renormalization_src) $(phd_ce_noso_nosp_nosym_src)
|
||||
MAIN_F = phd_ce_noso_nosp_nosym/main.f
|
||||
SO = _phd_ce_noso_nosp_nosym.so
|
||||
|
||||
include ../../../options.mk
|
|
@ -0,0 +1,41 @@
|
|||
C
|
||||
C======================================================================
|
||||
C
|
||||
SUBROUTINE CMNGR(NAT,NGR,CMN)
|
||||
C
|
||||
C input : NAT,NGR
|
||||
C output : CMN
|
||||
C
|
||||
C This subroutine calculate C(NAT-N,M-N) where,
|
||||
C 1<=M<=NGR<=NAT,1<=N<=M
|
||||
C C(NAT-N,M-N) is stored as CMN(N,M)
|
||||
C
|
||||
C H.-F. Zhao 2007
|
||||
C
|
||||
USE DIM_MOD
|
||||
C
|
||||
INTEGER NAT,NGR
|
||||
C
|
||||
REAL CMN(NGR_M,NGR_M)
|
||||
C
|
||||
IF(NGR.GT.NAT) THEN
|
||||
WRITE(6,*) 'NGR is larger than NAT, which is wrong'
|
||||
STOP
|
||||
ENDIF
|
||||
C
|
||||
DO M=1,NGR
|
||||
DO N=1,NGR
|
||||
CMN(N,M)=0.
|
||||
ENDDO
|
||||
CMN(M,M)=1.
|
||||
ENDDO
|
||||
C
|
||||
DO M=1,NGR
|
||||
DO N=M-1,1,-1
|
||||
CMN(N,M)=CMN(N+1,M)*FLOAT(NAT-N)/FLOAT(M-N)
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,46 @@
|
|||
C
|
||||
C======================================================================
|
||||
C
|
||||
SUBROUTINE COEFPQ(NAT,NGR)
|
||||
C
|
||||
C This subroutine computes the P(n,m) and Q(n) coefficients
|
||||
C involved in the correlation expansion formulation
|
||||
C
|
||||
C Reference : equations (2.15) and (2.16) of
|
||||
C H. Zhao, D. Sebilleau and Z. Wu,
|
||||
C J. Phys.: Condens. Matter 20, 275241 (2008)
|
||||
C
|
||||
C H.-F. Zhao 2007
|
||||
C
|
||||
USE DIM_MOD
|
||||
USE Q_ARRAY_MOD
|
||||
C
|
||||
INTEGER NAT,NGR
|
||||
C
|
||||
REAL CMN(NGR_M,NGR_M),P(NGR_M,NGR_M)
|
||||
C
|
||||
C
|
||||
IF(NGR.GT.NAT) THEN
|
||||
WRITE(6,*) 'NGR is larger than NAT, which is wrong'
|
||||
STOP
|
||||
ENDIF
|
||||
C
|
||||
CALL CMNGR(NAT,NGR,CMN)
|
||||
C
|
||||
DO N=1,NGR
|
||||
P(N,N)=1.
|
||||
Q(N)=P(N,N)
|
||||
DO M=N+1,NGR
|
||||
P(N,M)=0.
|
||||
DO I=N,M-1
|
||||
P(N,M)=P(N,M)-P(N,I)*CMN(I,M)
|
||||
ENDDO
|
||||
Q(N)=Q(N)+P(N,M)
|
||||
C
|
||||
ENDDO
|
||||
C
|
||||
ENDDO
|
||||
C
|
||||
RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,47 @@
|
|||
C
|
||||
C======================================================================
|
||||
C
|
||||
SUBROUTINE COREXP_SAVM(JE,IGR,NGR,NLM,ITYPE,IGS,TAU)
|
||||
C
|
||||
C This subroutine call the correlation matrices calculations
|
||||
C for a given order IGR
|
||||
C
|
||||
C H.-F. Zhao : 2007
|
||||
C
|
||||
USE DIM_MOD
|
||||
USE COOR_MOD
|
||||
USE Q_ARRAY_MOD
|
||||
USE TRANS_MOD
|
||||
C
|
||||
INTEGER NLM(NGR_M),ITYPE(NGR_M),IGS(NGR_M)
|
||||
C
|
||||
REAL QI
|
||||
C
|
||||
COMPLEX*16 TAU(LINMAX,LINFMAX,NATCLU_M)
|
||||
C
|
||||
C
|
||||
DO ITYP=1,N_PROT
|
||||
NBTYP=NATYP(ITYP)
|
||||
NLM(IGR)=LMAX(ITYP,JE)
|
||||
ITYPE(IGR)=ITYP
|
||||
DO NUM=1,NBTYP
|
||||
IGS(IGR)=NCORR(NUM,ITYP)
|
||||
C
|
||||
IF(IGS(IGR).GT.IGS(IGR-1)) THEN
|
||||
QI=Q(IGR)
|
||||
CALL MPIS(IGR,NLM,ITYPE,IGS,JE,QI,TAU)
|
||||
C
|
||||
IGR=IGR+1
|
||||
IF(IGR.LE.NGR) THEN
|
||||
CALL COREXP_SAVM1(JE,IGR,NGR,NLM,ITYPE,IGS,TAU)
|
||||
ENDIF
|
||||
IGR=IGR-1
|
||||
C
|
||||
ENDIF
|
||||
C
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,19 @@
|
|||
C
|
||||
C======================================================================
|
||||
C
|
||||
SUBROUTINE COREXP_SAVM1(JE,IGR,NGR,NLM,ITYPE,IGS,TAU)
|
||||
C
|
||||
C This subroutine allows a recursive use of COREXP_SAVM
|
||||
C
|
||||
C H.-F. Zhao : 2007
|
||||
C
|
||||
USE DIM_MOD
|
||||
C
|
||||
INTEGER NLM(NGR_M),ITYPE(NGR_M),IGS(NGR_M)
|
||||
COMPLEX*16 TAU(LINMAX,LINFMAX,NATCLU_M)
|
||||
C
|
||||
CALL COREXP_SAVM(JE,IGR,NGR,NLM,ITYPE,IGS,TAU)
|
||||
C
|
||||
RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,121 @@
|
|||
C
|
||||
C=======================================================================
|
||||
C
|
||||
SUBROUTINE COUMAT(ITL,MI,LF,MF,DELTA,RADIAL,MATRIX)
|
||||
C
|
||||
C This routine calculates the spin-independent PhD optical matrix
|
||||
C elements for dipolar excitations. It is stored in
|
||||
C MATRIX(JDIR,JPOL)
|
||||
C
|
||||
C Here, the conventions are :
|
||||
C
|
||||
C IPOL=1 : linearly polarized light
|
||||
C IPOL=2 : circularly polarized light
|
||||
C
|
||||
C JPOL=1 : +/x polarization for circular/linear light
|
||||
C JPOL=2 : -/y polarization for circular/linear light
|
||||
C
|
||||
C When IDICHR=0, JDIR = 1,2 and 3 correspond respectively to the x,y
|
||||
C and z directions for the linear polarization. But for IDICHR=1,
|
||||
C these basis directions are those of the position of the light.
|
||||
C
|
||||
C Last modified : 8 Dec 2008
|
||||
C
|
||||
USE DIM_MOD
|
||||
C
|
||||
USE INIT_L_MOD , L2 => NNL, L3 => LF1, L4 => LF2, L5 => ISTEP_LF
|
||||
USE SPIN_MOD , I1 => ISPIN, N1 => NSPIN, N2 => NSPIN2, I2 => ISFLI
|
||||
&P, I8 => IR_DIA, N3 => NSTEP
|
||||
USE TYPCAL_MOD , I3 => IPHI, I4 => IE, I5 => ITHETA, I6 => IFTHET,
|
||||
& I7 => IMOD, I9 => I_CP, I10 => I_EXT
|
||||
C
|
||||
COMPLEX MATRIX(3,2),SUM_1,SUM_2,DELTA,YLM(3,-1:1),RADIAL
|
||||
COMPLEX ONEC,IC,IL,COEF,PROD
|
||||
C
|
||||
REAL RLM(1-NL_M:NL_M-1,1-NL_M:NL_M-1,0:NL_M-1),GNT(0:N_GAUNT)
|
||||
REAL THETA(3),PHI(3)
|
||||
C
|
||||
DATA PI4S3,C_LIN,SQR2 /4.188790,1.447202,1.414214/
|
||||
DATA PIS2 /1.570796/
|
||||
C
|
||||
ONEC=(1.,0.)
|
||||
IC=(0.,1.)
|
||||
C
|
||||
IF(INITL.EQ.0) GOTO 2
|
||||
C
|
||||
M=MF-MI
|
||||
C
|
||||
IF(MOD(LF,4).EQ.0) THEN
|
||||
IL=ONEC
|
||||
ELSEIF(MOD(LF,4).EQ.1) THEN
|
||||
IL=IC
|
||||
ELSEIF(MOD(LF,4).EQ.2) THEN
|
||||
IL=-ONEC
|
||||
ELSEIF(MOD(LF,4).EQ.3) THEN
|
||||
IL=-IC
|
||||
ENDIF
|
||||
C
|
||||
CALL GAUNT(LI,MI,LF,MF,GNT)
|
||||
C
|
||||
IF(ITL.EQ.0) THEN
|
||||
c COEF=CEXP(IC*DELTA)*CONJG(IL)
|
||||
COEF=CEXP(IC*DELTA)*IL
|
||||
ELSE
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
c COEF=PI4S3*CONJG(IL)
|
||||
COEF=PI4S3*IL
|
||||
ELSE
|
||||
c COEF=C_LIN*CONJG(IL)
|
||||
COEF=C_LIN*IL
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
PROD=COEF*RADIAL*GNT(1)
|
||||
C
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
YLM(1,-1)=(0.345494,0.)
|
||||
YLM(1,0)=(0.,0.)
|
||||
YLM(1,1)=(-0.345494,0.)
|
||||
YLM(2,-1)=(0.,-0.345494)
|
||||
YLM(2,0)=(0.,0.)
|
||||
YLM(2,1)=(0.,-0.345494)
|
||||
YLM(3,-1)=(0.,0.)
|
||||
YLM(3,0)=(0.488602,0.)
|
||||
YLM(3,1)=(0.,0.)
|
||||
C
|
||||
DO JDIR=1,3
|
||||
MATRIX(JDIR,1)=PROD*CONJG(YLM(JDIR,M))
|
||||
ENDDO
|
||||
C
|
||||
ELSEIF(IDICHR.GE.1) THEN
|
||||
C
|
||||
THETA(1)=PIS2
|
||||
PHI(1)=0.
|
||||
THETA(2)=PIS2
|
||||
PHI(2)=PIS2
|
||||
THETA(3)=0.
|
||||
PHI(3)=0.
|
||||
C
|
||||
DO JDIR=1,3
|
||||
CALL DJMN(THETA(JDIR),RLM,1)
|
||||
SUM_1=RLM(-1,M,1)*PROD*CEXP((0.,-1.)*M*PHI(JDIR))
|
||||
SUM_2=RLM(1,M,1)*PROD*CEXP((0.,-1.)*M*PHI(JDIR))
|
||||
IF(IPOL.EQ.2) THEN
|
||||
MATRIX(JDIR,1)=SQR2*SUM_1
|
||||
MATRIX(JDIR,2)=SQR2*SUM_2
|
||||
ELSEIF(ABS(IPOL).EQ.1) THEN
|
||||
MATRIX(JDIR,1)=(SUM_2-SUM_1)
|
||||
MATRIX(JDIR,2)=(SUM_2+SUM_1)*IC
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDIF
|
||||
GOTO 1
|
||||
C
|
||||
2 DO JDIR=1,3
|
||||
MATRIX(JDIR,1)=ONEC
|
||||
MATRIX(JDIR,2)=ONEC
|
||||
ENDDO
|
||||
C
|
||||
1 RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,85 @@
|
|||
C
|
||||
C=======================================================================
|
||||
C
|
||||
SUBROUTINE DWSPH(JTYP,JE,X,TLT,ISPEED)
|
||||
C
|
||||
C This routine recomputes the T-matrix elements taking into account the
|
||||
C mean square displacements.
|
||||
C
|
||||
C When the argument X is tiny, no vibrations are taken into account
|
||||
C
|
||||
C Last modified : 25 Apr 2013
|
||||
C
|
||||
USE DIM_MOD
|
||||
C
|
||||
USE TRANS_MOD
|
||||
C
|
||||
DIMENSION GNT(0:N_GAUNT)
|
||||
C
|
||||
COMPLEX TLT(0:NT_M,4,NATM,NE_M),SL1,ZEROC
|
||||
C
|
||||
COMPLEX*16 FFL(0:2*NL_M)
|
||||
C
|
||||
DATA PI4,EPS /12.566371,1.0E-10/
|
||||
C
|
||||
ZEROC=(0.,0.)
|
||||
C
|
||||
IF(X.GT.EPS) THEN
|
||||
C
|
||||
C Standard case: vibrations
|
||||
C
|
||||
IF(ISPEED.LT.0) THEN
|
||||
NSUM_LB=ABS(ISPEED)
|
||||
ENDIF
|
||||
C
|
||||
COEF=PI4*EXP(-X)
|
||||
NL2=2*LMAX(JTYP,JE)+2
|
||||
IBESP=5
|
||||
MG1=0
|
||||
MG2=0
|
||||
C
|
||||
CALL BESPHE(NL2,IBESP,X,FFL)
|
||||
C
|
||||
DO L=0,LMAX(JTYP,JE)
|
||||
XL=FLOAT(L+L+1)
|
||||
SL1=ZEROC
|
||||
C
|
||||
DO L1=0,LMAX(JTYP,JE)
|
||||
XL1=FLOAT(L1+L1+1)
|
||||
CALL GAUNT(L,MG1,L1,MG2,GNT)
|
||||
L2MIN=ABS(L1-L)
|
||||
IF(ISPEED.GE.0) THEN
|
||||
L2MAX=L1+L
|
||||
ELSEIF(ISPEED.LT.0) THEN
|
||||
L2MAX=L2MIN+2*(NSUM_LB-1)
|
||||
ENDIF
|
||||
SL2=0.
|
||||
C
|
||||
DO L2=L2MIN,L2MAX,2
|
||||
XL2=FLOAT(L2+L2+1)
|
||||
C=SQRT(XL1*XL2/(PI4*XL))
|
||||
SL2=SL2+C*GNT(L2)*REAL(DREAL(FFL(L2)))
|
||||
ENDDO
|
||||
C
|
||||
SL1=SL1+SL2*TL(L1,1,JTYP,JE)
|
||||
ENDDO
|
||||
C
|
||||
TLT(L,1,JTYP,JE)=COEF*SL1
|
||||
C
|
||||
ENDDO
|
||||
C
|
||||
ELSE
|
||||
C
|
||||
C Argument X tiny: no vibrations
|
||||
C
|
||||
DO L=0,LMAX(JTYP,JE)
|
||||
C
|
||||
TLT(L,1,JTYP,JE)=TL(L,1,JTYP,JE)
|
||||
C
|
||||
ENDDO
|
||||
C
|
||||
ENDIF
|
||||
C
|
||||
RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,26 @@
|
|||
C
|
||||
C=======================================================================
|
||||
C
|
||||
SUBROUTINE FACDIF(COSTH,JAT,JE,FTHETA)
|
||||
C
|
||||
C This routine computes the plane wave scattering factor
|
||||
C
|
||||
USE DIM_MOD
|
||||
C
|
||||
USE TRANS_MOD
|
||||
C
|
||||
DIMENSION PL(0:100)
|
||||
C
|
||||
COMPLEX FTHETA
|
||||
C
|
||||
FTHETA=(0.,0.)
|
||||
NL=LMAX(JAT,JE)+1
|
||||
CALL POLLEG(NL,COSTH,PL)
|
||||
DO 20 L=0,NL-1
|
||||
FTHETA=FTHETA+(2*L+1)*TL(L,1,JAT,JE)*PL(L)
|
||||
20 CONTINUE
|
||||
FTHETA=FTHETA/VK(JE)
|
||||
C
|
||||
RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,113 @@
|
|||
C
|
||||
C=======================================================================
|
||||
C
|
||||
SUBROUTINE FACDIF1(VKE,RJ,RJK,THRJ,PHIRJ,BETA,GAMMA,L,M,FSPH,JAT,J
|
||||
&E,*)
|
||||
C
|
||||
C This routine computes a spherical wave scattering factor
|
||||
C
|
||||
C Last modified : 03/04/2006
|
||||
C
|
||||
USE DIM_MOD
|
||||
USE APPROX_MOD
|
||||
USE EXPFAC_MOD
|
||||
USE TRANS_MOD
|
||||
USE TYPCAL_MOD , I2 => IPHI, I3 => IE, I4 => ITHETA, I5 => IMOD, I
|
||||
&6 => IPOL, I7 => I_CP, I8 => I_EXT, I9 => I_TEST
|
||||
C
|
||||
DIMENSION PLMM(0:100,0:100)
|
||||
DIMENSION D(1-NL_M:NL_M-1,1-NL_M:NL_M-1,0:NL_M-1)
|
||||
C
|
||||
COMPLEX HLM(0:NO_ST_M,0:NL_M-1),HLN(0:NO_ST_M,0:NL_M-1),FSPH,RHOJ
|
||||
COMPLEX HLM1,HLM2,HLM3,HLM4,ALMU,BLMU,SLP,SNU,SMU,VKE
|
||||
COMPLEX RHOJK
|
||||
C
|
||||
C
|
||||
DATA PI/3.141593/
|
||||
C
|
||||
A=1.
|
||||
INTER=0
|
||||
IF(ITL.EQ.1) VKE=VK(JE)
|
||||
RHOJ=VKE*RJ
|
||||
RHOJK=VKE*RJK
|
||||
HLM1=(1.,0.)
|
||||
HLM2=(1.,0.)
|
||||
HLM3=(1.,0.)
|
||||
HLM4=(1.,0.)
|
||||
IEM=1
|
||||
CSTH=COS(BETA)
|
||||
IF((IFTHET.EQ.0).OR.(THRJ.LT.0.0001)) THEN
|
||||
INTER=1
|
||||
BLMU=SQRT(4.*PI/FLOAT(2*L+1))*CEXP((0.,-1.)*M*(PHIRJ-PI))
|
||||
ENDIF
|
||||
CALL PLM(CSTH,PLMM,LMAX(JAT,JE))
|
||||
IF(ISPHER.EQ.0) NO1=0
|
||||
IF(ISPHER.EQ.1) THEN
|
||||
IF(NO.EQ.8) THEN
|
||||
NO1=LMAX(JAT,JE)+1
|
||||
ELSE
|
||||
NO1=NO
|
||||
ENDIF
|
||||
CALL POLHAN(ISPHER,NO1,LMAX(JAT,JE),RHOJ,HLM)
|
||||
IF(IEM.EQ.0) THEN
|
||||
HLM4=HLM(0,L)
|
||||
ENDIF
|
||||
IF(RJK.GT.0.0001) THEN
|
||||
NDUM=0
|
||||
CALL POLHAN(ISPHER,NDUM,LMAX(JAT,JE),RHOJK,HLN)
|
||||
ENDIF
|
||||
CALL DJMN(THRJ,D,L)
|
||||
A1=ABS(D(0,M,L))
|
||||
IF(((A1.LT.0.0001).AND.(IFTHET.EQ.1)).AND.(INTER.EQ.0)) RETURN 1
|
||||
&
|
||||
ENDIF
|
||||
MUMAX=MIN0(L,NO1)
|
||||
SMU=(0.,0.)
|
||||
DO 10 MU=0,MUMAX
|
||||
IF(MOD(MU,2).EQ.0) THEN
|
||||
B=1.
|
||||
ELSE
|
||||
B=-1.
|
||||
IF(SIN(BETA).LT.0.) THEN
|
||||
A=-1.
|
||||
ENDIF
|
||||
ENDIF
|
||||
IF(ISPHER.LE.1) THEN
|
||||
ALMU=(1.,0.)
|
||||
C=1.
|
||||
ENDIF
|
||||
IF(ISPHER.EQ.0) GOTO 40
|
||||
IF(INTER.EQ.0) BLMU=CMPLX(D(M,0,L))
|
||||
IF(MU.GT.0) THEN
|
||||
C=B*FLOAT(L+L+1)/EXPF(MU,L)
|
||||
ALMU=(D(M,MU,L)*CEXP((0.,-1.)*MU*GAMMA)+B*
|
||||
* CEXP((0.,1.)*MU*GAMMA)*D(M,-MU,L))/BLMU
|
||||
ELSE
|
||||
C=1.
|
||||
ALMU=CMPLX(D(M,0,L))/BLMU
|
||||
ENDIF
|
||||
40 SNU=(0.,0.)
|
||||
NU1=INT(0.5*(NO1-MU)+0.0001)
|
||||
NUMAX=MIN0(NU1,L-MU)
|
||||
DO 20 NU=0,NUMAX
|
||||
SLP=(0.,0.)
|
||||
LPMIN=MAX0(MU,NU)
|
||||
DO 30 LP=LPMIN,LMAX(JAT,JE)
|
||||
IF(ISPHER.EQ.1) THEN
|
||||
HLM1=HLM(NU,LP)
|
||||
IF(RJK.GT.0.0001) HLM3=HLN(0,LP)
|
||||
ENDIF
|
||||
SLP=SLP+FLOAT(2*LP+1)*TL(LP,1,JAT,JE)*HLM1*PLMM(LP,MU)*HLM3
|
||||
30 CONTINUE
|
||||
IF(ISPHER.EQ.1) THEN
|
||||
HLM2=HLM(MU+NU,L)
|
||||
ENDIF
|
||||
SNU=SNU+SLP*HLM2
|
||||
20 CONTINUE
|
||||
SMU=SMU+SNU*C*ALMU*A*B
|
||||
10 CONTINUE
|
||||
FSPH=SMU/(VKE*HLM4)
|
||||
C
|
||||
RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,126 @@
|
|||
C
|
||||
C=======================================================================
|
||||
C
|
||||
SUBROUTINE GAUNT_ST(LMAX_T)
|
||||
C
|
||||
C This subroutine calculates the Gaunt coefficient G(L2,L3|L1)
|
||||
C using a downward recursion scheme due to Schulten and Gordon
|
||||
C for the Wigner's 3j symbols. The result is stored as GNT(L3),
|
||||
C making use of the selection rule M3 = M1 - M2.
|
||||
C
|
||||
C Ref. : K. Schulten and R. G. Gordon, J. Math. Phys. 16, 1961 (1975)
|
||||
C
|
||||
C This is the double precision version where the values are stored
|
||||
C
|
||||
C Last modified : 14 May 2009
|
||||
C
|
||||
C
|
||||
USE DIM_MOD
|
||||
USE LOGAMAD_MOD
|
||||
USE GAUNT_C_MOD
|
||||
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
||||
C
|
||||
INTEGER LMAX_T
|
||||
C
|
||||
REAL*8 F(0:N_GAUNT),G(0:N_GAUNT),A(0:N_GAUNT),A1(0:N_GAUNT)
|
||||
REAL*8 B(0:N_GAUNT)
|
||||
C
|
||||
DATA PI4/12.566370614359D0/
|
||||
C
|
||||
DO L1=0,LMAX_T
|
||||
IL1=L1*L1+L1+1
|
||||
DO M1=-L1,L1
|
||||
IND1=IL1+M1
|
||||
LM1=L1+M1
|
||||
KM1=L1-M1
|
||||
DO L2=0,LMAX_T
|
||||
IL2=L2*L2+L2+1
|
||||
C
|
||||
IF(MOD(M1,2).EQ.0) THEN
|
||||
COEF=DSQRT(DFLOAT((L1+L1+1)*(L2+L2+1))/PI4)
|
||||
ELSE
|
||||
COEF=-DSQRT(DFLOAT((L1+L1+1)*(L2+L2+1))/PI4)
|
||||
ENDIF
|
||||
C
|
||||
L12=L1+L2
|
||||
K12=L1-L2
|
||||
L12_1=L12+L12+1
|
||||
L12_2=L12*L12
|
||||
L12_21=L12*L12+L12+L12+1
|
||||
K12_2=K12*K12
|
||||
C
|
||||
F(L12+1)=0.D0
|
||||
G(L12+1)=0.D0
|
||||
A(L12+1)=0.D0
|
||||
A1(L12+1)=0.D0
|
||||
A1(L12)=2.D0*DSQRT(DFLOAT(L1*L2*L12_1*L12_2))
|
||||
D1=GLD(L2+L2+1,1)-GLD(L12_1+1,1)
|
||||
D5=0.5D0*(GLD(L1+L1+1,1)+GLD(L2+L2+1,1)-GLD(L12_1+1,1))
|
||||
D6=GLD(L12+1,1)-GLD(L1+1,1)-GLD(L2+1,1)
|
||||
C
|
||||
IF(MOD(K12,2).EQ.0) THEN
|
||||
G(L12)=DEXP(D5+D6)
|
||||
ELSE
|
||||
G(L12)=-DEXP(D5+D6)
|
||||
ENDIF
|
||||
C
|
||||
DO M2=-L2,L2
|
||||
IND2=IL2+M2
|
||||
C
|
||||
M3=M1-M2
|
||||
LM2=L2+M2
|
||||
KM2=L2-M2
|
||||
C
|
||||
DO J=1,N_GAUNT
|
||||
GNT(J,IND2,IND1)=0.D0
|
||||
ENDDO
|
||||
C
|
||||
IF((ABS(M1).GT.L1).OR.(ABS(M2).GT.L2)) GOTO 10
|
||||
C
|
||||
D2=GLD(L1+L1+1,1)-GLD(LM2+1,1)
|
||||
D3=GLD(L12+M3+1,1)-GLD(KM2+1,1)
|
||||
D4=GLD(L12-M3+1,1)-GLD(LM1+1,1)-GLD(KM1+1,1)
|
||||
C
|
||||
IF(MOD(KM1-KM2,2).EQ.0) THEN
|
||||
F(L12)=DSQRT(DEXP(D1+D2+D3+D4))
|
||||
ELSE
|
||||
F(L12)=-DSQRT(DEXP(D1+D2+D3+D4))
|
||||
ENDIF
|
||||
C
|
||||
A(L12)=2.D0*DSQRT(DFLOAT(L1*L2*L12_1*(L12_2-M3*M3)))
|
||||
B(L12)=-DFLOAT(L12_1*((L2*L2-L1*L1-K12)*M3+L12*(L12+1)
|
||||
1 *(M2+M1)))
|
||||
C
|
||||
IF(ABS(M3).LE.L12) THEN
|
||||
GNT(L12,IND2,IND1)=COEF*F(L12)*G(L12)*
|
||||
1 DSQRT(DFLOAT(L12_1))
|
||||
ENDIF
|
||||
C
|
||||
JMIN=MAX0(ABS(K12),ABS(M3))
|
||||
C
|
||||
DO J=L12-1,JMIN,-1
|
||||
J1=J+1
|
||||
J2=J+2
|
||||
JJ=J*J
|
||||
A1(J)=DSQRT(DFLOAT(JJ*(JJ-K12_2)*(L12_21-JJ)))
|
||||
A(J)=DSQRT(DFLOAT((JJ-K12_2)*(L12_21-JJ)*(JJ-M3*M3)))
|
||||
B(J)=-DFLOAT((J+J1)*(L2*(L2+1)*M3-L1*(L1+1)*M3+J*J1*
|
||||
1 (M2+M1)))
|
||||
F(J)=-(DFLOAT(J1)*A(J2)*F(J2)+B(J1)*F(J1))/(DFLOAT(J2)*
|
||||
1 A(J1))
|
||||
G(J)=-(DFLOAT(J1)*A1(J2)*G(J2))/(DFLOAT(J2)*A1(J1))
|
||||
C
|
||||
IF(ABS(M3).LE.J) THEN
|
||||
GNT(J,IND2,IND1)=COEF*F(J)*G(J)*DSQRT(DFLOAT(J+J1))
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
10 RETURN
|
||||
C
|
||||
END
|
||||
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,21 @@
|
|||
SUBROUTINE RUN(NATP_M_, NATCLU_M_, NAT_EQ_M_, N_CL_L_M_,
|
||||
& NE_M_, NL_M_, LI_M_, NEMET_M_, NO_ST_M_, NDIF_M_, NSO_M_,
|
||||
& NTEMP_M_, NODES_EX_M_, NSPIN_M_, NTH_M_, NPH_M_, NDIM_M_,
|
||||
& N_TILT_M_, N_ORD_M_, NPATH_M_, NGR_M_)
|
||||
|
||||
USE DIM_MOD
|
||||
IMPLICIT INTEGER (A-Z)
|
||||
CF2PY INTEGER, INTENT(IN,COPY) :: NATP_M_, NATCLU_M_, NAT_EQ_M_, N_CL_L_M_
|
||||
CF2PY INTEGER, INTENT(IN,COPY) :: NE_M_, NL_M_, LI_M_, NEMET_M_, NO_ST_M_, NDIF_M_, NSO_M_
|
||||
CF2PY INTEGER, INTENT(IN,COPY) :: NTEMP_M_, NODES_EX_M_, NSPIN_M_, NTH_M_, NPH_M_, NDIM_M_
|
||||
CF2PY INTEGER, INTENT(IN,COPY) :: N_TILT_M_, N_ORD_M_, NPATH_M_, NGR_M_
|
||||
|
||||
CALL ALLOCATION(NATP_M_, NATCLU_M_, NAT_EQ_M_, N_CL_L_M_,
|
||||
& NE_M_, NL_M_, LI_M_, NEMET_M_, NO_ST_M_, NDIF_M_, NSO_M_,
|
||||
& NTEMP_M_, NODES_EX_M_, NSPIN_M_, NTH_M_, NPH_M_, NDIM_M_,
|
||||
& N_TILT_M_, N_ORD_M_, NPATH_M_, NGR_M_)
|
||||
|
||||
CALL MAIN_PHD_NS_CE()
|
||||
CALL CLOSE_ALL_FILES()
|
||||
|
||||
END SUBROUTINE RUN
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,280 @@
|
|||
C
|
||||
C
|
||||
C======================================================================
|
||||
C
|
||||
SUBROUTINE MPIS(N,NLM,ITYP,IGS,JE,QI,TAU)
|
||||
C
|
||||
C
|
||||
C This subroutine construct the correlation matrices and uses
|
||||
C LU decomposition method to do the matrix inversion.
|
||||
C The inverse matrix which is the contribution of a small atom group
|
||||
C is kept for further use.
|
||||
C
|
||||
C H. -F. Zhao : 2007
|
||||
C
|
||||
C Last modified (DS) : 13 May 2009
|
||||
C
|
||||
USE DIM_MOD
|
||||
USE COOR_MOD
|
||||
USE INIT_L_MOD
|
||||
USE GAUNT_C_MOD
|
||||
USE TRANS_MOD
|
||||
USE CORREXP_MOD
|
||||
C
|
||||
INTEGER NLM(NGR_M),ITYP(NGR_M),IGS(NGR_M)
|
||||
COMPLEX*16 TAU(LINMAX,LINFMAX,NATCLU_M)
|
||||
C
|
||||
REAL QI
|
||||
C
|
||||
COMPLEX*16 ZEROC,ONEC,IC
|
||||
C
|
||||
COMPLEX*16 ATTL(0:NT_M,NATM)
|
||||
COMPLEX*16 EXPJN,ATTJN
|
||||
COMPLEX*16 YLM(0:NLTWO,-NLTWO:NLTWO)
|
||||
COMPLEX*16 HL1(0:NLTWO)
|
||||
COMPLEX*16 SUM_L,SUM_L2
|
||||
COMPLEX*16 SUM_L_A,SUM_L2_A,SUM_L_B,SUM_L2_B
|
||||
C
|
||||
REAL*8 FOURPI
|
||||
REAL*8 XJN,YJN,ZJN,RJN,KRJN,ZDJN
|
||||
REAL*8 IM_VK,RE_VK
|
||||
C
|
||||
INTEGER IPIV(NLMM),ONE_L,IN1
|
||||
C
|
||||
COMPLEX*16 FOURPI_IC,IC_L,IC_REF,TEMP,TEMP1,TEMP2,CN1
|
||||
COMPLEX*16 AINV(NLMM,NLMM),IN(NLMM,LINFMAX)
|
||||
C
|
||||
DATA FOURPI /12.566370614359D0/
|
||||
C
|
||||
ZEROC=(0.D0,0.D0)
|
||||
ONEC=(1.D0,0.D0)
|
||||
IC=(0.D0,1.D0)
|
||||
IBESS=3
|
||||
FOURPI_IC=-IC*FOURPI
|
||||
C
|
||||
LM0=LMAX(1,JE)
|
||||
LM0=MIN(LM0,LF2)
|
||||
NRHS=(LM0+1)*(LM0+1)
|
||||
INDJ=0
|
||||
C
|
||||
NM=0
|
||||
DO I=1,N-1
|
||||
J=NLM(I)+1
|
||||
NM=NM+J*J
|
||||
ENDDO
|
||||
L=NLM(N)
|
||||
LNMAX=L
|
||||
L=(L+1)*(L+1)
|
||||
NM1=NM+1
|
||||
NML=NM+L
|
||||
NTYP=ITYP(N)
|
||||
C
|
||||
DO L=0,LNMAX
|
||||
ATTL(L,N)=DCMPLX(TL(L,1,NTYP,JE))
|
||||
ENDDO
|
||||
IM_VK=-DIMAG(DCMPLX(VK(JE)))
|
||||
RE_VK=DBLE(VK(JE))
|
||||
C
|
||||
C set up matrix blocks C((N-1)*1) and D(1*(N-1))
|
||||
C
|
||||
I=IGS(N)
|
||||
XN=SYM_AT(1,I)
|
||||
YN=SYM_AT(2,I)
|
||||
ZN=SYM_AT(3,I)
|
||||
C
|
||||
DO J=1,N-1
|
||||
JATL=IGS(J)
|
||||
LJMAX=NLM(J)
|
||||
JTYP=ITYP(J)
|
||||
J1=J-1
|
||||
C
|
||||
XJN=DBLE(SYM_AT(1,JATL)-XN)
|
||||
YJN=DBLE(SYM_AT(2,JATL)-YN)
|
||||
ZJN=DBLE(SYM_AT(3,JATL)-ZN)
|
||||
RJN=DSQRT(XJN*XJN+YJN*YJN+ZJN*ZJN)
|
||||
KRJN=RE_VK*RJN
|
||||
ATTJN=FOURPI_IC*DEXP(IM_VK*RJN)
|
||||
EXPJN=(XJN+IC*YJN)/RJN
|
||||
ZDJN=ZJN/RJN
|
||||
CALL SPH_HAR2(2*NL_M,ZDJN,EXPJN,YLM,LNMAX+LJMAX)
|
||||
CALL BESPHE2(LNMAX+LJMAX+1,IBESS,KRJN,HL1)
|
||||
DO L=0,LJMAX
|
||||
ATTL(L,J)=ATTJN*DCMPLX(TL(L,1,JTYP,JE))
|
||||
ENDDO
|
||||
C
|
||||
II=NM
|
||||
IN1=-1
|
||||
CN1=IC
|
||||
JJ=0
|
||||
C
|
||||
DO LN=0,LNMAX
|
||||
ILN=LN*LN+LN+1
|
||||
IN1=-IN1
|
||||
CN1=-CN1*IC
|
||||
C
|
||||
DO MLN=-LN,LN
|
||||
INDN=ILN+MLN
|
||||
II=II+1
|
||||
JJ0=J1*INDJ
|
||||
ONE_L=-IN1
|
||||
IC_REF=-CN1*IC
|
||||
C
|
||||
DO LJ=0,LJMAX
|
||||
ILJ=LJ*LJ+LJ+1
|
||||
L_MIN=ABS(LJ-LN)
|
||||
L_MAX=LJ+LN
|
||||
ONE_L=-ONE_L
|
||||
IC_REF=IC_REF*IC
|
||||
C
|
||||
C Case MLJ equal to zero
|
||||
C
|
||||
JJ1=JJ0+ILJ
|
||||
IF(LJ.GE.LN) THEN
|
||||
IC_L=-IC_REF
|
||||
ELSE
|
||||
IC_L=-ONEC/IC_REF
|
||||
ENDIF
|
||||
C
|
||||
SUM_L=ZEROC
|
||||
SUM_L2=ZEROC
|
||||
C
|
||||
DO L=L_MIN,L_MAX,2
|
||||
IC_L=-IC_L
|
||||
IF(ABS(MLN).LE.L) THEN
|
||||
TEMP=IC_L*HL1(L)*GNT(L,ILJ,INDN)
|
||||
SUM_L=SUM_L+YLM(L,MLN)*TEMP
|
||||
SUM_L2=SUM_L2+DCONJG(YLM(L,MLN))*TEMP
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
IF(ONE_L.EQ.-1) SUM_L2=-SUM_L2
|
||||
A(JJ1,II)=ATTL(LJ,J)*SUM_L
|
||||
A(II,JJ1)=ATTJN*ATTL(LN,N)*SUM_L2
|
||||
C
|
||||
C
|
||||
C Case MLJ not equal to zero
|
||||
C
|
||||
DO MLJ=1,LJ
|
||||
INDJ=ILJ+MLJ
|
||||
INDJN=ILJ-MLJ
|
||||
JJ1=JJ0+INDJ
|
||||
JJ1N=JJ0+INDJN
|
||||
MA=MLN-MLJ
|
||||
MB=MLN+MLJ
|
||||
IF(LJ.GE.LN) THEN
|
||||
IC_L=-IC_REF
|
||||
ELSE
|
||||
IC_L=-ONEC/IC_REF
|
||||
ENDIF
|
||||
C
|
||||
SUM_L_A=ZEROC
|
||||
SUM_L2_A=ZEROC
|
||||
SUM_L_B=ZEROC
|
||||
SUM_L2_B=ZEROC
|
||||
C
|
||||
DO L=L_MIN,L_MAX,2
|
||||
IC_L=-IC_L
|
||||
IF(ABS(MA).LE.L) THEN
|
||||
TEMP1=IC_L*HL1(L)*GNT(L,INDJ,INDN)
|
||||
SUM_L_A=SUM_L_A+YLM(L,MA)*TEMP1
|
||||
SUM_L2_A=SUM_L2_A+DCONJG(YLM(L,MA))*TEMP1
|
||||
ENDIF
|
||||
IF(ABS(MB).LE.L) THEN
|
||||
TEMP2=IC_L*HL1(L)*GNT(L,INDJN,INDN)
|
||||
SUM_L_B=SUM_L_B+YLM(L,MB)*TEMP2
|
||||
SUM_L2_B=SUM_L2_B+DCONJG(YLM(L,MB))*TEMP2
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
IF(ONE_L.EQ.-1) THEN
|
||||
SUM_L2_A=-SUM_L2_A
|
||||
SUM_L2_B=-SUM_L2_B
|
||||
ENDIF
|
||||
A(JJ1,II)=ATTL(LJ,J)*SUM_L_A
|
||||
A(II,JJ1)=ATTJN*ATTL(LN,N)*SUM_L2_A
|
||||
A(JJ1N,II)=ATTL(LJ,J)*SUM_L_B
|
||||
A(II,JJ1N)=ATTJN*ATTL(LN,N)*SUM_L2_B
|
||||
ENDDO
|
||||
C
|
||||
C
|
||||
ENDDO
|
||||
JJ=JJ0+INDJ
|
||||
C
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
JJ=JJ-INDN
|
||||
C
|
||||
ENDDO
|
||||
C
|
||||
C add B to A
|
||||
C
|
||||
DO I=NM1,NML
|
||||
DO J=NM1,NML
|
||||
IF(J.EQ.I) THEN
|
||||
A(J,I)=ONEC
|
||||
ELSE
|
||||
A(J,I)=ZEROC
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
C construct AINV
|
||||
C
|
||||
DO I=1,NML
|
||||
DO J=1,NML
|
||||
AINV(J,I)=A(J,I)
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
C
|
||||
C matrix inversion(ax=b)
|
||||
C
|
||||
CALL ZGETRF(NML,NML,AINV,NLMM,IPIV,INFO1)
|
||||
IF(INFO1.NE.0) THEN
|
||||
WRITE(6,*) ' ---> INFO1 =',INFO1
|
||||
ELSE
|
||||
C
|
||||
DO I=1,NRHS
|
||||
DO J=1,NML
|
||||
IF(J.EQ.I) THEN
|
||||
IN(J,I)=(1.D0,0.D0)
|
||||
ELSE
|
||||
IN(J,I)=(0.D0,0.D0)
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
CALL ZGETRS('N',NML,NRHS,AINV,NLMM,IPIV,IN,NLMM,INFO)
|
||||
IF(INFO.NE.0) THEN
|
||||
WRITE(6,*) ' ---> INFO =',INFO
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
C sum of tau
|
||||
C
|
||||
KLIN=0
|
||||
DO K=1,N
|
||||
KATL=IGS(K)
|
||||
LMK=NLM(K)
|
||||
INDKM=(LMK+1)*(LMK+1)
|
||||
C
|
||||
DO INDJ=1,NRHS
|
||||
C
|
||||
DO INDK=1,INDKM
|
||||
KLIN=KLIN+1
|
||||
C
|
||||
TAU(INDK,INDJ,KATL)=TAU(INDK,INDJ,KATL)
|
||||
1 +DBLE(QI)*IN(KLIN,INDJ)
|
||||
C
|
||||
ENDDO
|
||||
KLIN=KLIN-INDKM
|
||||
C
|
||||
ENDDO
|
||||
KLIN=KLIN+INDKM
|
||||
C
|
||||
ENDDO
|
||||
C
|
||||
RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,165 @@
|
|||
C
|
||||
C
|
||||
C======================================================================
|
||||
C
|
||||
SUBROUTINE MS_COR(JE,TAU)
|
||||
C
|
||||
C
|
||||
C This subroutine calculates the scattering path operator by
|
||||
C the correlation expansion method.
|
||||
C
|
||||
C The scattering path operator matrix of each small atom group
|
||||
C is obtained by using LU decomposition method.
|
||||
C
|
||||
C The running time of matrix inversion subroutine used in this program
|
||||
C scales with N^3, the memory occupied scales with N^2. We advise user to
|
||||
C use full MS method to get the scattering path operator, i.e. directly
|
||||
C with matrix inversion method if NGR is larger than 3. If NGR is less
|
||||
C than 4 (i.e <=3) this subroutine will gain time.
|
||||
C
|
||||
C This subroutine never gain memory comparing to the subrourine INV_MAT_MS
|
||||
C as I use three large matrices stored in common, each matrix is larger or
|
||||
C as large as the matrix used in INV_MAT_MS.
|
||||
C
|
||||
C As I don't find a good way to solve the group problem, where all the contribution
|
||||
C of group IGR<=NGR are collected and each small contribution has to be stored
|
||||
C for the further larger-atom-group contribution, it's better that users change the
|
||||
C parameter NGR_M which is set in included file 'spec.inc' to be NGR or NGR+1
|
||||
C where NGR is the cut-off.user insterested. this subrouitne works for NGR is less
|
||||
C than 6(<=5), if users want to calculate larger NGR, they should modify the code here
|
||||
C to make them workable, the code is marked by 'C' in each lines (about 300 lines
|
||||
C below here), users just release them until to the desired cut-off, the maximum is
|
||||
C 9, however, users can enlarge it if they want to. Warning ! NGR_M set in
|
||||
C included file should be larger than NGR and the figure listed below, don't forget
|
||||
C to compile the code after modification.
|
||||
C
|
||||
C Users can modify the code to make it less memory-occupied, however, no matter they
|
||||
C do, the memories that used are more than full MS method used, so the only advantage
|
||||
C that this code has is to gain time when NGR<=3, with command 'common' used here,
|
||||
C the code will run faster.
|
||||
C
|
||||
C H.-F. Zhao : 2007
|
||||
C
|
||||
C (Photoelectron case)
|
||||
C
|
||||
C Last modified : 31 Jan 2008
|
||||
C
|
||||
C
|
||||
C
|
||||
USE DIM_MOD
|
||||
USE COOR_MOD
|
||||
USE INIT_L_MOD
|
||||
USE TRANS_MOD
|
||||
USE APPROX_MOD
|
||||
USE CORREXP_MOD
|
||||
USE Q_ARRAY_MOD
|
||||
C
|
||||
COMPLEX*16 TAU1(LINMAX,LINFMAX,NATCLU_M),ONEC,ZEROC
|
||||
C
|
||||
INTEGER NLM(NGR_M),ITYP(NGR_M),IGS(NGR_M)
|
||||
C
|
||||
COMPLEX TAU(LINMAX,LINFMAX,NATCLU_M),TLJ
|
||||
C
|
||||
C
|
||||
ONEC=(1.D0,0.D0)
|
||||
ZEROC=(0.D0,0.D0)
|
||||
C
|
||||
LM0=LMAX(1,JE)
|
||||
LM0=MIN(LM0,LF2)
|
||||
NRHS=(LM0+1)*(LM0+1)
|
||||
C
|
||||
NGR_MAX=NGR_M
|
||||
NGR=NDIF
|
||||
C
|
||||
IF(NGR_M.GT.NATCLU) THEN
|
||||
WRITE(6,*) ' ---> NGR_M should be smaller than NATCLU'
|
||||
WRITE(6,*) ' ---> it is reduced to NATCLU=',NATCLU
|
||||
NGR_MAX=NATCLU
|
||||
ENDIF
|
||||
C
|
||||
IF(NGR.LT.1) THEN
|
||||
WRITE(6,*) ' ---> NGR < 1, no expansion is done'
|
||||
STOP
|
||||
ELSE
|
||||
IF(NGR.GT.NGR_MAX) THEN
|
||||
WRITE(6,*) ' ---> NGR is too large, reduce to NGR_M=',
|
||||
& NGR_MAX
|
||||
NGR=NGR_MAX
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
C Case NGR = 1
|
||||
C
|
||||
IF(NGR.EQ.1) THEN
|
||||
DO LJ=0,LM0
|
||||
ILJ=LJ*LJ+LJ+1
|
||||
TLJ=TL(LJ,1,1,JE)
|
||||
DO MJ=-LJ,LJ
|
||||
INDJ=ILJ+MJ
|
||||
TAU(INDJ,INDJ,1)=TLJ
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
GOTO 100
|
||||
ENDIF
|
||||
C
|
||||
C NGR >=2 case
|
||||
C
|
||||
C
|
||||
DO INDJ=1,NRHS
|
||||
TAU1(INDJ,INDJ,1)=DBLE(Q(1))*ONEC
|
||||
ENDDO
|
||||
C
|
||||
C Constructs the group matrix and inverses it
|
||||
C
|
||||
IGR=1
|
||||
LMJ=LMAX(1,JE)
|
||||
NLM(IGR)=LMJ
|
||||
INDJM=(LMJ+1)*(LMJ+1)
|
||||
ITYP(IGR)=1
|
||||
IGS(IGR)=1
|
||||
C
|
||||
DO I=1,INDJM
|
||||
DO J=1,INDJM
|
||||
IF (J.EQ.I) THEN
|
||||
A(J,I)=ONEC
|
||||
ELSE
|
||||
A(J,I)=ZEROC
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
IGR=IGR+1
|
||||
CALL COREXP_SAVM(JE,IGR,NGR,NLM,ITYP,IGS,TAU1)
|
||||
IGR=IGR-1
|
||||
C
|
||||
C TAU=TAU*tj
|
||||
C
|
||||
DO KTYP=1,N_PROT
|
||||
NBTYPK=NATYP(KTYP)
|
||||
LMK=LMAX(KTYP,JE)
|
||||
INDKM=(LMK+1)*(LMK+1)
|
||||
DO KNUM=1,NBTYPK
|
||||
KATL=NCORR(KNUM,KTYP)
|
||||
C
|
||||
DO LJ=0,LM0
|
||||
ILJ=LJ*LJ+LJ+1
|
||||
TLJ=TL(LJ,1,1,JE)
|
||||
DO MJ=-LJ,LJ
|
||||
INDJ=ILJ+MJ
|
||||
C
|
||||
DO INDK=1,INDKM
|
||||
TAU(INDK,INDJ,KATL)=CMPLX(TAU1(INDK,INDJ,KATL))*TLJ
|
||||
ENDDO
|
||||
C
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
100 CONTINUE
|
||||
C
|
||||
RETURN
|
||||
C
|
||||
END
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,106 @@
|
|||
C
|
||||
C=======================================================================
|
||||
C
|
||||
SUBROUTINE PLOTFD(A,LMX,ITL,NL,NAT,NE)
|
||||
C
|
||||
C This routine prepares the output for a plot of the scattering factor
|
||||
C
|
||||
USE DIM_MOD
|
||||
C
|
||||
USE APPROX_MOD
|
||||
USE FDIF_MOD
|
||||
USE INIT_L_MOD , L => LI, I2 => INITL, I3 => NNL, I4 => LF1, I5 =>
|
||||
& LF2, I10 => ISTEP_LF
|
||||
USE INIT_J_MOD
|
||||
USE OUTFILES_MOD
|
||||
USE OUTUNITS_MOD
|
||||
USE PARCAL_MOD , N3 => NPHI, N4 => NE, N5 => NTHETA, N6 => NEPS
|
||||
USE TYPCAL_MOD , I7 => IFTHET, I8 => IMOD, I9 => IPOL, I12 => I_CP
|
||||
&, I13 => I_EXT, I14 => I_TEST
|
||||
USE VALIN_MOD , U1 => THLUM, U2 => PHILUM, U3 => ELUM, N7 => NONVO
|
||||
&L
|
||||
USE VALFIN_MOD
|
||||
C
|
||||
C
|
||||
C
|
||||
DIMENSION LMX(NATM,NE_M)
|
||||
C
|
||||
COMPLEX FSPH,VKE
|
||||
C
|
||||
C
|
||||
C
|
||||
DATA PI,CONV/3.141593,0.512314/
|
||||
C
|
||||
OPEN(UNIT=IUO3, FILE=OUTFILE3, STATUS='UNKNOWN')
|
||||
IF(ISPHER.EQ.0) THEN
|
||||
L=0
|
||||
LMAX=0
|
||||
ELSE
|
||||
LMAX=L
|
||||
ENDIF
|
||||
PHITOT=360.
|
||||
THTOT=360.*ITHETA*(1-IPHI)+180.*ITHETA*IPHI
|
||||
NPHI=(NFTHET+1)*IPHI+(1-IPHI)
|
||||
NTHT=(NFTHET+1)*ITHETA*(1-IPHI)+(NFTHET/2+1)*ITHETA*IPHI+
|
||||
* (1-ITHETA)
|
||||
NE=NFTHET*IE + (1-IE)
|
||||
WRITE(IUO3,1) ISPHER,NL,NAT,L,NTHT,NPHI,NE,E0,EFIN
|
||||
DO 10 JT=1,NTHT
|
||||
DTHETA=THETA1+FLOAT(JT-1)*THTOT/FLOAT(MAX0(NTHT-1,1))
|
||||
RTHETA=DTHETA*PI/180.
|
||||
TEST=SIN(RTHETA)
|
||||
IF(TEST.GE.0.) THEN
|
||||
POZ=PI
|
||||
EPS=1.
|
||||
ELSE
|
||||
POZ=0.
|
||||
EPS=-1.
|
||||
ENDIF
|
||||
BETA=RTHETA*EPS
|
||||
IF(ABS(TEST).LT.0.0001) THEN
|
||||
NPHIM=1
|
||||
ELSE
|
||||
NPHIM=NPHI
|
||||
ENDIF
|
||||
DO 20 JP=1,NPHIM
|
||||
DPHI=PHI1+FLOAT(JP-1)*PHITOT/FLOAT(MAX0(NPHI-1,1))
|
||||
RPHI=DPHI*PI/180.
|
||||
GAMMA=POZ-RPHI
|
||||
DO 30 JE=1,NE
|
||||
IF(NE.EQ.1) THEN
|
||||
ECIN=E0
|
||||
ELSE
|
||||
ECIN=E0+FLOAT(JE-1)*(EFIN-E0)/FLOAT(NE-1)
|
||||
ENDIF
|
||||
IF(ITL.EQ.0) VKE=SQRT(ECIN-ABS(VINT))*CONV*A*(1.,0.)
|
||||
DO 40 JAT=1,NAT
|
||||
IF(L.GT.LMX(JAT,JE)) GOTO 90
|
||||
DO 50 M=-LMAX,LMAX
|
||||
CALL FACDIF1(VKE,R1,R2,THETA0,PHI0,BETA,GAMMA,L,M,FSPH,J
|
||||
&AT,JE,*60)
|
||||
GOTO 70
|
||||
60 WRITE(IUO1,80)
|
||||
STOP
|
||||
70 REFTH=REAL(FSPH)
|
||||
XIMFTH=AIMAG(FSPH)
|
||||
WRITE(IUO3,5) JE,JAT,L,M,REFTH,XIMFTH,DTHETA,DPHI,ECIN
|
||||
50 CONTINUE
|
||||
GOTO 40
|
||||
90 WRITE(IUO1,100) JAT
|
||||
STOP
|
||||
40 CONTINUE
|
||||
30 CONTINUE
|
||||
20 CONTINUE
|
||||
10 CONTINUE
|
||||
CLOSE(IUO3)
|
||||
1 FORMAT(5X,I1,2X,I2,2X,I4,2X,I2,2X,I3,2X,I3,2X,I3,2X,F8.2,2X,F8.2)
|
||||
5 FORMAT(1X,I3,1X,I4,1X,I2,1X,I3,1X,F6.3,1X,F6.3,1X,F6.2,1X,F6.2,1X,
|
||||
&F8.2)
|
||||
80 FORMAT(15X,'<<<<< WRONG VALUE OF THETA0 : THE DENOMINATOR ','IS Z
|
||||
&ERO >>>>>')
|
||||
100 FORMAT(15X,'<<<<< THE VALUE OF L EST IS TOO LARGE FOR ATOM',' : '
|
||||
&,I2,' >>>>>')
|
||||
C
|
||||
RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,769 @@
|
|||
C
|
||||
C=======================================================================
|
||||
C
|
||||
SUBROUTINE TREAT_PHD(ISOM,NFICHLEC,JFICH,NP)
|
||||
C
|
||||
C This routine sums up the calculations corresponding to different
|
||||
C absorbers or different planes when this has to be done
|
||||
C (parameter ISOM in the input data file).
|
||||
C
|
||||
C Last modified : 24 Jan 2013
|
||||
C
|
||||
USE DIM_MOD
|
||||
USE OUTUNITS_MOD
|
||||
USE TYPEXP_MOD , DUMMY => SPECTRO
|
||||
USE VALIN_MOD
|
||||
USE VALFIN_MOD
|
||||
C
|
||||
PARAMETER(N_HEAD=5000,N_FILES=1000)
|
||||
C
|
||||
CHARACTER*3 SPECTRO
|
||||
C
|
||||
CHARACTER*13 OUTDATA
|
||||
CHARACTER*72 HEAD(N_HEAD,N_FILES)
|
||||
C
|
||||
REAL TAB(NDIM_M,4)
|
||||
REAL ECIN(NE_M),DTHETA(NTH_M),DPHI(NPH_M)
|
||||
C
|
||||
C
|
||||
DATA JVOL,JTOT/0,-1/
|
||||
C
|
||||
REWIND IUO2
|
||||
C
|
||||
C Reading and storing the headers:
|
||||
C
|
||||
NHEAD=0
|
||||
DO JLINE=1,N_HEAD
|
||||
READ(IUO2,888) HEAD(JLINE,JFICH)
|
||||
NHEAD=NHEAD+1
|
||||
IF(HEAD(JLINE,JFICH)(1:6).EQ.' ') GOTO 333
|
||||
ENDDO
|
||||
C
|
||||
333 CONTINUE
|
||||
C
|
||||
READ(IUO2,15) SPECTRO,OUTDATA
|
||||
READ(IUO2,9) ISPIN,IDICHR,I_SO,ISFLIP,ICHKDIR,IPHI,ITHETA,IE,IPH_1
|
||||
&,I_EXT
|
||||
C
|
||||
IF(I_EXT.EQ.2) THEN
|
||||
IPH_1=0
|
||||
ENDIF
|
||||
C
|
||||
IF(ISOM.EQ.0) THEN
|
||||
C
|
||||
C........ ISOM = 0 : case of independent input files .................
|
||||
C
|
||||
READ(IUO2,1) NPLAN,NEMET,NTHETA,NPHI,NE
|
||||
C
|
||||
IF(IPH_1.EQ.1) THEN
|
||||
N_FIXED=NPHI
|
||||
FIX0=PHI0
|
||||
FIX1=PHI1
|
||||
N_SCAN=NTHETA
|
||||
ELSE
|
||||
N_FIXED=NTHETA
|
||||
FIX0=THETA0
|
||||
FIX1=THETA1
|
||||
IF(STEREO.EQ.'YES') THEN
|
||||
NPHI=INT((PHI1-PHI0)*FLOAT(NTHETA-1)/(THETA1-THETA0)+0.0001)
|
||||
&+1
|
||||
IF(NTHETA*NPHI.GT.NPH_M) GOTO 37
|
||||
ENDIF
|
||||
N_SCAN=NPHI
|
||||
ENDIF
|
||||
C
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
N_SCAN=2*N_SCAN
|
||||
ENDIF
|
||||
C
|
||||
IF((I_EXT.EQ.0).OR.(I_EXT.EQ.1)) THEN
|
||||
NDP=NEMET*NTHETA*NPHI*NE
|
||||
ELSEIF(I_EXT.EQ.-1) THEN
|
||||
NDP=NEMET*NTHETA*NPHI*NE*2
|
||||
ELSEIF(I_EXT.EQ.2) THEN
|
||||
NDP=NEMET*NTHETA*NE
|
||||
N_FIXED=NTHETA
|
||||
N_SCAN=NPHI
|
||||
IF((N_FIXED.GT.NTH_M).OR.(N_FIXED.GT.NPH_M)) GOTO 35
|
||||
ENDIF
|
||||
C
|
||||
NTT=NPLAN*NDP
|
||||
IF(NTT.GT.NDIM_M) GOTO 5
|
||||
C
|
||||
DO JPLAN=1,NPLAN
|
||||
DO JEMET=1,NEMET
|
||||
DO JE=1,NE
|
||||
C
|
||||
DO J_FIXED=1,N_FIXED
|
||||
IF(N_FIXED.GT.1) THEN
|
||||
XINCRF=FLOAT(J_FIXED-1)*(FIX1-FIX0)/FLOAT(N_FIXED-1)
|
||||
ELSEIF(N_FIXED.EQ.1) THEN
|
||||
XINCRF=0.
|
||||
ENDIF
|
||||
IF(IPH_1.EQ.1) THEN
|
||||
JPHI=J_FIXED
|
||||
ELSE
|
||||
THETA=THETA0+XINCRF
|
||||
JTHETA=J_FIXED
|
||||
IF((ABS(THETA).GT.90.).AND.(I_EXT.NE.2)) GOTO 11
|
||||
ENDIF
|
||||
IF(STEREO.EQ.' NO') THEN
|
||||
N_SCAN_R=N_SCAN
|
||||
ELSE
|
||||
RTHETA=THETA*0.017453
|
||||
FIX_STEP=(FIX1-FIX0)/FLOAT(N_FIXED-1)
|
||||
N_SCAN_R=INT((PHI1-PHI0)*SIN(RTHETA)/FIX_STEP+0.0001)+1
|
||||
ENDIF
|
||||
C
|
||||
DO J_SCAN=1,N_SCAN_R
|
||||
IF(IPH_1.EQ.1) THEN
|
||||
JTHETA=J_SCAN
|
||||
ELSE
|
||||
JPHI=J_SCAN
|
||||
ENDIF
|
||||
C
|
||||
JLIN=(JPLAN-1)*NDP + (JEMET-1)*NE*N_FIXED*N_SCAN + (JE-1)*N
|
||||
&_FIXED*N_SCAN +(JTHETA-1)*NPHI + JPHI
|
||||
C
|
||||
IF(I_EXT.LE.0) THEN
|
||||
IF(STEREO.EQ.' NO') THEN
|
||||
JPHI2=JPHI
|
||||
ELSE
|
||||
JPHI2=(JTHETA-1)*NPHI+JPHI
|
||||
ENDIF
|
||||
ELSE
|
||||
JPHI2=JTHETA
|
||||
ENDIF
|
||||
C
|
||||
READ(IUO2,2) JPL
|
||||
IF(JPLAN.EQ.JPL) THEN
|
||||
BACKSPACE IUO2
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
READ(IUO2,2) JPL,JEM,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE
|
||||
&),TAB(JLIN,1),TAB(JLIN,2)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
READ(IUO2,25) TAB(JLIN2,1),TAB(JLIN2,2)
|
||||
ENDIF
|
||||
ELSE
|
||||
READ(IUO2,22) JPL,JEM,DTHETA(JTHETA),DPHI(JPHI2),ECIN(J
|
||||
&E),TAB(JLIN,1),TAB(JLIN,2),TAB(JLIN,3),TAB(JLIN,4)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
READ(IUO2,22) JPL,JEM,DTHETA(JTHETA),DPHI(JPHI2),ECIN
|
||||
&(JE),TAB(JLIN2,1),TAB(JLIN2,2),TAB(JLIN2,3),TAB(JLIN2,4)
|
||||
ENDIF
|
||||
ENDIF
|
||||
ELSE
|
||||
BACKSPACE IUO2
|
||||
DO JL=JLIN,JPLAN*NDP
|
||||
TAB(JL,1)=0.0
|
||||
TAB(JL,2)=0.0
|
||||
TAB(JL,3)=0.0
|
||||
TAB(JL,4)=0.0
|
||||
ENDDO
|
||||
GOTO 10
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDDO
|
||||
11 CONTINUE
|
||||
ENDDO
|
||||
ENDDO
|
||||
10 CONTINUE
|
||||
ENDDO
|
||||
C
|
||||
REWIND IUO2
|
||||
C
|
||||
C Skipping the NHEAD lines of headers before rewriting:
|
||||
C
|
||||
DO JLINE=1,NHEAD
|
||||
READ(IUO2,888) HEAD(JLINE,JFICH)
|
||||
ENDDO
|
||||
C
|
||||
WRITE(IUO2,15) SPECTRO,OUTDATA
|
||||
WRITE(IUO2,9) ISPIN,IDICHR,I_SO,ISFLIP,ICHKDIR,IPHI,ITHETA,IE
|
||||
WRITE(IUO2,8) NPHI,NTHETA,NE,NPLAN,ISOM
|
||||
C
|
||||
DO JE=1,NE
|
||||
DO JTHETA=1,NTHETA
|
||||
IF(STEREO.EQ.' NO') THEN
|
||||
NPHI_R=NPHI
|
||||
ELSE
|
||||
RTHETA=DTHETA(JTHETA)*0.017453
|
||||
FIX_STEP=(THETA1-THETA0)/FLOAT(NTHETA-1)
|
||||
NPHI_R=INT((PHI1-PHI0)*SIN(RTHETA)/FIX_STEP+0.0001)+1
|
||||
NPHI=INT((PHI1-PHI0)/FIX_STEP+0.0001)+1
|
||||
ENDIF
|
||||
DO JPHI=1,NPHI_R
|
||||
TOTDIF_1=0.
|
||||
TOTDIR_1=0.
|
||||
VOLDIF_1=0.
|
||||
VOLDIR_1=0.
|
||||
TOTDIF_2=0.
|
||||
TOTDIR_2=0.
|
||||
VOLDIF_2=0.
|
||||
VOLDIR_2=0.
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
TOTDIF2_1=0.
|
||||
TOTDIR2_1=0.
|
||||
VOLDIF2_1=0.
|
||||
VOLDIR2_1=0.
|
||||
TOTDIF2_2=0.
|
||||
TOTDIR2_2=0.
|
||||
VOLDIF2_2=0.
|
||||
VOLDIR2_2=0.
|
||||
ENDIF
|
||||
C
|
||||
DO JPLAN=1,NPLAN
|
||||
C
|
||||
SF_1=0.
|
||||
SR_1=0.
|
||||
SF_2=0.
|
||||
SR_2=0.
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
SF2_1=0.
|
||||
SR2_1=0.
|
||||
SF2_2=0.
|
||||
SR2_2=0.
|
||||
ENDIF
|
||||
C
|
||||
DO JEMET=1,NEMET
|
||||
JLIN=(JPLAN-1)*NDP + (JEMET-1)*NE*NTHETA*NPHI + (JE-1)*NTHE
|
||||
&TA*NPHI +(JTHETA-1)*NPHI + JPHI
|
||||
SF_1=SF_1+TAB(JLIN,2)
|
||||
SR_1=SR_1+TAB(JLIN,1)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
SF2_1=SF2_1+TAB(JLIN2,2)
|
||||
SR2_1=SR2_1+TAB(JLIN2,1)
|
||||
ENDIF
|
||||
IF(IDICHR.GE.1) THEN
|
||||
SF_2=SF_2+TAB(JLIN,4)
|
||||
SR_2=SR_2+TAB(JLIN,3)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
SF2_2=SF2_2+TAB(JLIN2,4)
|
||||
SR2_2=SR2_2+TAB(JLIN2,3)
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDDO
|
||||
IF(I_EXT.LE.0) THEN
|
||||
IF(STEREO.EQ.' NO') THEN
|
||||
JPHI2=JPHI
|
||||
ELSE
|
||||
JPHI2=(JTHETA-1)*NPHI+JPHI
|
||||
ENDIF
|
||||
ELSE
|
||||
JPHI2=JTHETA
|
||||
ENDIF
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
WRITE(IUO2,3) JPLAN,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),SR
|
||||
&_1,SF_1
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,3) JPLAN,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),
|
||||
&SR2_1,SF2_1
|
||||
ENDIF
|
||||
ELSE
|
||||
WRITE(IUO2,23) JPLAN,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),S
|
||||
&R_1,SF_1,SR_2,SF_2
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,23) JPLAN,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE)
|
||||
&,SR2_1,SF2_1,SR2_2,SF2_2
|
||||
ENDIF
|
||||
ENDIF
|
||||
IF(JPLAN.GT.NONVOL(JFICH)) THEN
|
||||
VOLDIF_1=VOLDIF_1+SF_1
|
||||
VOLDIR_1=VOLDIR_1+SR_1
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
VOLDIF2_1=VOLDIF2_1+SF2_1
|
||||
VOLDIR2_1=VOLDIR2_1+SR2_1
|
||||
ENDIF
|
||||
IF(IDICHR.GE.1) THEN
|
||||
VOLDIF_2=VOLDIF_2+SF_2
|
||||
VOLDIR_2=VOLDIR_1+SR_2
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
VOLDIF2_2=VOLDIF2_2+SF2_2
|
||||
VOLDIR2_2=VOLDIR2_1+SR2_2
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDIF
|
||||
TOTDIF_1=TOTDIF_1+SF_1
|
||||
TOTDIR_1=TOTDIR_1+SR_1
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
TOTDIF2_1=TOTDIF2_1+SF2_1
|
||||
TOTDIR2_1=TOTDIR2_1+SR2_1
|
||||
ENDIF
|
||||
IF(IDICHR.GE.1) THEN
|
||||
TOTDIF_2=TOTDIF_2+SF_2
|
||||
TOTDIR_2=TOTDIR_2+SR_2
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
TOTDIF2_2=TOTDIF2_2+SF2_2
|
||||
TOTDIR2_2=TOTDIR2_2+SR2_2
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDDO
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
WRITE(IUO2,3) JVOL,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),VOLD
|
||||
&IR_1,VOLDIF_1
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,3) JVOL,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),VO
|
||||
&LDIR2_1,VOLDIF2_1
|
||||
ENDIF
|
||||
WRITE(IUO2,3) JTOT,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),TOTD
|
||||
&IR_1,TOTDIF_1
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,3) JTOT,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),TO
|
||||
&TDIR2_1,TOTDIF2_1
|
||||
ENDIF
|
||||
ELSE
|
||||
WRITE(IUO2,23) JVOL,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),VOL
|
||||
&DIR_1,VOLDIF_1,VOLDIR_2,VOLDIF_2
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,23) JVOL,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),V
|
||||
&OLDIR2_1,VOLDIF2_1,VOLDIR2_2,VOLDIF2_2
|
||||
ENDIF
|
||||
WRITE(IUO2,23) JTOT,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),TOT
|
||||
&DIR_1,TOTDIF_1,TOTDIR_2,TOTDIF_2
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,23) JTOT,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),T
|
||||
&OTDIR2_1,TOTDIF2_1,TOTDIR2_2,TOTDIF2_2
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
ELSE
|
||||
C
|
||||
C........ ISOM not= 0 : multiple input files to be summed up ..........
|
||||
C
|
||||
READ(IUO2,7) NTHETA,NPHI,NE
|
||||
C
|
||||
IF(IPH_1.EQ.1) THEN
|
||||
N_FIXED=NPHI
|
||||
FIX0=PHI0
|
||||
FIX1=PHI1
|
||||
N_SCAN=NTHETA
|
||||
ELSE
|
||||
N_FIXED=NTHETA
|
||||
FIX0=THETA0
|
||||
FIX1=THETA1
|
||||
IF(STEREO.EQ.'YES') THEN
|
||||
NPHI=INT((PHI1-PHI0)*FLOAT(NTHETA-1)/(THETA1-THETA0)+0.0001)
|
||||
&+1
|
||||
IF(NTHETA*NPHI.GT.NPH_M) GOTO 37
|
||||
ENDIF
|
||||
N_SCAN=NPHI
|
||||
ENDIF
|
||||
C
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
N_SCAN=2*N_SCAN
|
||||
ENDIF
|
||||
C
|
||||
IF((I_EXT.EQ.0).OR.(I_EXT.EQ.1)) THEN
|
||||
NDP=NTHETA*NPHI*NE
|
||||
ELSEIF(I_EXT.EQ.-1) THEN
|
||||
NDP=NTHETA*NPHI*NE*2
|
||||
ELSEIF(I_EXT.EQ.2) THEN
|
||||
NDP=NTHETA*NE
|
||||
N_FIXED=NTHETA
|
||||
N_SCAN=NPHI
|
||||
IF((N_FIXED.GT.NTH_M).OR.(N_FIXED.GT.NPH_M)) GOTO 35
|
||||
ENDIF
|
||||
C
|
||||
NTT=NFICHLEC*NDP
|
||||
IF(NTT.GT.NDIM_M) GOTO 5
|
||||
C
|
||||
IF(ISOM.EQ.1) THEN
|
||||
NPLAN=NP
|
||||
NF=NP
|
||||
ELSEIF(ISOM.EQ.2) THEN
|
||||
NEMET=NFICHLEC
|
||||
NF=NFICHLEC
|
||||
NPLAN=1
|
||||
ENDIF
|
||||
C
|
||||
DO JF=1,NF
|
||||
C
|
||||
C Reading the headers for each file:
|
||||
C
|
||||
IF(JF.GT.1) THEN
|
||||
DO JLINE=1,NHEAD
|
||||
READ(IUO2,888) HEAD(JLINE,JF)
|
||||
ENDDO
|
||||
ENDIF
|
||||
C
|
||||
DO JE=1,NE
|
||||
C
|
||||
DO J_FIXED=1,N_FIXED
|
||||
IF(N_FIXED.GT.1) THEN
|
||||
XINCRF=FLOAT(J_FIXED-1)*(FIX1-FIX0)/FLOAT(N_FIXED-1)
|
||||
ELSEIF(N_FIXED.EQ.1) THEN
|
||||
XINCRF=0.
|
||||
ENDIF
|
||||
IF(IPH_1.EQ.1) THEN
|
||||
JPHI=J_FIXED
|
||||
ELSE
|
||||
THETA=THETA0+XINCRF
|
||||
JTHETA=J_FIXED
|
||||
IF((ABS(THETA).GT.90.).AND.(I_EXT.NE.2)) GOTO 12
|
||||
ENDIF
|
||||
IF(STEREO.EQ.' NO') THEN
|
||||
N_SCAN_R=N_SCAN
|
||||
ELSE
|
||||
RTHETA=THETA*0.017453
|
||||
FIX_STEP=(FIX1-FIX0)/FLOAT(N_FIXED-1)
|
||||
N_SCAN_R=INT((PHI1-PHI0)*SIN(RTHETA)/FIX_STEP+0.0001)+1
|
||||
ENDIF
|
||||
C
|
||||
DO J_SCAN=1,N_SCAN_R
|
||||
IF(IPH_1.EQ.1) THEN
|
||||
JTHETA=J_SCAN
|
||||
ELSE
|
||||
JPHI=J_SCAN
|
||||
ENDIF
|
||||
C
|
||||
JLIN=(JF-1)*NDP + (JE-1)*N_FIXED*N_SCAN +(JTHETA-1)*NPHI +
|
||||
&JPHI
|
||||
IF(I_EXT.LE.0) THEN
|
||||
IF(STEREO.EQ.' NO') THEN
|
||||
JPHI2=JPHI
|
||||
ELSE
|
||||
JPHI2=(JTHETA-1)*NPHI+JPHI
|
||||
ENDIF
|
||||
ELSE
|
||||
JPHI2=JTHETA
|
||||
ENDIF
|
||||
C
|
||||
IF(ISOM.EQ.1) THEN
|
||||
READ(IUO2,2) JPL
|
||||
IF(JF.EQ.JPL) THEN
|
||||
BACKSPACE IUO2
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
READ(IUO2,2) JPL,JEM,DTHETA(JTHETA),DPHI(JPHI2),ECIN(
|
||||
&JE),TAB(JLIN,1),TAB(JLIN,2)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
READ(IUO2,25) TAB(JLIN2,1),TAB(JLIN2,2)
|
||||
ENDIF
|
||||
ELSE
|
||||
READ(IUO2,22) JPL,JEM,DTHETA(JTHETA),DPHI(JPHI2),ECIN
|
||||
&(JE),TAB(JLIN,1),TAB(JLIN,2),TAB(JLIN,3),TAB(JLIN,4)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
READ(IUO2,22) JPL,JEM,DTHETA(JTHETA),DPHI(JPHI2),EC
|
||||
&IN(JE),TAB(JLIN2,1),TAB(JLIN2,2),TAB(JLIN2,3),TAB(JLIN2,4)
|
||||
ENDIF
|
||||
ENDIF
|
||||
ELSE
|
||||
BACKSPACE IUO2
|
||||
DO JLINE=1,NHEAD
|
||||
BACKSPACE IUO2
|
||||
ENDDO
|
||||
DO JL=JLIN,JF*NDP
|
||||
TAB(JL,1)=0.0
|
||||
TAB(JL,2)=0.0
|
||||
TAB(JL,3)=0.0
|
||||
TAB(JL,4)=0.0
|
||||
ENDDO
|
||||
GOTO 13
|
||||
ENDIF
|
||||
ELSEIF(ISOM.EQ.2) THEN
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
READ(IUO2,2) JPL,JEM,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE
|
||||
&),TAB(JLIN,1),TAB(JLIN,2)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
READ(IUO2,25) TAB(JLIN2,1),TAB(JLIN2,2)
|
||||
ENDIF
|
||||
ELSE
|
||||
READ(IUO2,22) JPL,JEM,DTHETA(JTHETA),DPHI(JPHI2),ECIN(J
|
||||
&E),TAB(JLIN,1),TAB(JLIN,2),TAB(JLIN,3),TAB(JLIN,4)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
READ(IUO2,22) JPL,JEM,DTHETA(JTHETA),DPHI(JPHI2),ECIN
|
||||
&(JE),TAB(JLIN2,1),TAB(JLIN2,2),TAB(JLIN2,3),TAB(JLIN2,4)
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDDO
|
||||
12 CONTINUE
|
||||
ENDDO
|
||||
ENDDO
|
||||
13 CONTINUE
|
||||
ENDDO
|
||||
C
|
||||
REWIND IUO2
|
||||
C
|
||||
C Writing the headers:
|
||||
C
|
||||
DO JLINE=1,2
|
||||
WRITE(IUO2,888) HEAD(JLINE,1)
|
||||
ENDDO
|
||||
DO JF=1,NFICHLEC
|
||||
DO JLINE=3,6
|
||||
WRITE(IUO2,888) HEAD(JLINE,JF)
|
||||
ENDDO
|
||||
WRITE(IUO2,888) HEAD(2,JF)
|
||||
ENDDO
|
||||
DO JLINE=7,NHEAD
|
||||
WRITE(IUO2,888) HEAD(JLINE,1)
|
||||
ENDDO
|
||||
C
|
||||
WRITE(IUO2,15) SPECTRO,OUTDATA
|
||||
WRITE(IUO2,9) ISPIN,IDICHR,I_SO,ISFLIP,ICHKDIR,IPHI,ITHETA,IE
|
||||
WRITE(IUO2,8) NPHI,NTHETA,NE,NPLAN,ISOM
|
||||
C
|
||||
IF(ISOM.EQ.1) THEN
|
||||
C
|
||||
DO JE=1,NE
|
||||
C
|
||||
DO JTHETA=1,NTHETA
|
||||
IF(STEREO.EQ.' NO') THEN
|
||||
NPHI_R=NPHI
|
||||
ELSE
|
||||
RTHETA=DTHETA(JTHETA)*0.017453
|
||||
FIX_STEP=(THETA1-THETA0)/FLOAT(NTHETA-1)
|
||||
NPHI_R=INT((PHI1-PHI0)*SIN(RTHETA)/FIX_STEP+0.0001)+1
|
||||
NPHI=INT((PHI1-PHI0)/FIX_STEP+0.0001)+1
|
||||
ENDIF
|
||||
DO JPHI=1,NPHI_R
|
||||
C
|
||||
TOTDIF_1=0.
|
||||
TOTDIR_1=0.
|
||||
VOLDIF_1=0.
|
||||
VOLDIR_1=0.
|
||||
TOTDIF_2=0.
|
||||
TOTDIR_2=0.
|
||||
VOLDIF_2=0.
|
||||
VOLDIR_2=0.
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
TOTDIF2_1=0.
|
||||
TOTDIR2_1=0.
|
||||
VOLDIF2_1=0.
|
||||
VOLDIR2_1=0.
|
||||
TOTDIF2_2=0.
|
||||
TOTDIR2_2=0.
|
||||
VOLDIF2_2=0.
|
||||
VOLDIR2_2=0.
|
||||
ENDIF
|
||||
C
|
||||
DO JPLAN=1,NPLAN
|
||||
JF=JPLAN
|
||||
C
|
||||
JLIN=(JF-1)*NDP + (JE-1)*NTHETA*NPHI +(JTHETA-1)*NPHI + JP
|
||||
&HI
|
||||
C
|
||||
SR_1=TAB(JLIN,1)
|
||||
SF_1=TAB(JLIN,2)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
SF2_1=TAB(JLIN2,2)
|
||||
SR2_1=TAB(JLIN2,1)
|
||||
ENDIF
|
||||
IF(I_EXT.LE.0) THEN
|
||||
IF(STEREO.EQ.' NO') THEN
|
||||
JPHI2=JPHI
|
||||
ELSE
|
||||
JPHI2=(JTHETA-1)*NPHI+JPHI
|
||||
ENDIF
|
||||
ELSE
|
||||
JPHI2=JTHETA
|
||||
ENDIF
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
WRITE(IUO2,3) JPLAN,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),
|
||||
&SR_1,SF_1
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,3) JPLAN,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE
|
||||
&),SR2_1,SF2_1
|
||||
ENDIF
|
||||
ELSE
|
||||
SR_2=TAB(JLIN,3)
|
||||
SF_2=TAB(JLIN,4)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
SF2_2=TAB(JLIN2,4)
|
||||
SR2_2=TAB(JLIN2,3)
|
||||
ENDIF
|
||||
WRITE(IUO2,23) JPLAN,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE)
|
||||
&,SR_1,SF_1,SR_2,SF_2
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,23) JPLAN,DTHETA(JTHETA),DPHI(JPHI2),ECIN(J
|
||||
&E),SR2_1,SF2_1,SR2_2,SF2_2
|
||||
ENDIF
|
||||
ENDIF
|
||||
IF(NONVOL(JPLAN).EQ.0) THEN
|
||||
VOLDIF_1=VOLDIF_1+SF_1
|
||||
VOLDIR_1=VOLDIR_1+SR_1
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
VOLDIF2_1=VOLDIF2_1+SF2_1
|
||||
VOLDIR2_1=VOLDIR2_1+SR2_1
|
||||
ENDIF
|
||||
IF(IDICHR.GE.1) THEN
|
||||
VOLDIF_2=VOLDIF_2+SF_2
|
||||
VOLDIR_2=VOLDIR_2+SR_2
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
VOLDIF2_2=VOLDIF2_2+SF2_2
|
||||
VOLDIR2_2=VOLDIR2_1+SR2_2
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDIF
|
||||
TOTDIF_1=TOTDIF_1+SF_1
|
||||
TOTDIR_1=TOTDIR_1+SR_1
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
TOTDIF2_1=TOTDIF2_1+SF2_1
|
||||
TOTDIR2_1=TOTDIR2_1+SR2_1
|
||||
ENDIF
|
||||
IF(IDICHR.GE.1) THEN
|
||||
TOTDIF_2=TOTDIF_2+SF_2
|
||||
TOTDIR_2=TOTDIR_2+SR_2
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
TOTDIF2_2=TOTDIF2_2+SF2_2
|
||||
TOTDIR2_2=TOTDIR2_2+SR2_2
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
WRITE(IUO2,3) JVOL,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),VO
|
||||
&LDIR_1,VOLDIF_1
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,3) JVOL,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),
|
||||
&VOLDIR2_1,VOLDIF2_1
|
||||
ENDIF
|
||||
WRITE(IUO2,3) JTOT,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),TO
|
||||
&TDIR_1,TOTDIF_1
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,3) JTOT,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),
|
||||
&TOTDIR2_1,TOTDIF2_1
|
||||
ENDIF
|
||||
ELSE
|
||||
WRITE(IUO2,23) JVOL,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),V
|
||||
&OLDIR_1,VOLDIF_1,VOLDIR_2,VOLDIF_2
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,23) JVOL,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE)
|
||||
&,VOLDIR2_1,VOLDIF2_1,VOLDIR2_2,VOLDIF2_2
|
||||
ENDIF
|
||||
WRITE(IUO2,23) JTOT,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),T
|
||||
&OTDIR_1,TOTDIF_1,TOTDIR_2,TOTDIF_2
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,23) JTOT,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE)
|
||||
&,TOTDIR2_1,TOTDIF2_1,TOTDIR2_2,TOTDIF2_2
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ELSEIF(ISOM.EQ.2) THEN
|
||||
DO JE=1,NE
|
||||
C
|
||||
DO JTHETA=1,NTHETA
|
||||
IF(STEREO.EQ.' NO') THEN
|
||||
NPHI_R=NPHI
|
||||
ELSE
|
||||
RTHETA=DTHETA(JTHETA)*0.017453
|
||||
FIX_STEP=(THETA1-THETA0)/FLOAT(NTHETA-1)
|
||||
NPHI_R=INT((PHI1-PHI0)*SIN(RTHETA)/FIX_STEP+0.0001)+1
|
||||
NPHI=INT((PHI1-PHI0)/FIX_STEP+0.0001)+1
|
||||
ENDIF
|
||||
DO JPHI=1,NPHI_R
|
||||
C
|
||||
SF_1=0.
|
||||
SR_1=0.
|
||||
SF_2=0.
|
||||
SR_2=0.
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
SF2_1=0.
|
||||
SR2_1=0.
|
||||
SF2_2=0.
|
||||
SR2_2=0.
|
||||
ENDIF
|
||||
C
|
||||
DO JEMET=1,NEMET
|
||||
JF=JEMET
|
||||
C
|
||||
JLIN=(JF-1)*NDP + (JE-1)*NTHETA*NPHI +(JTHETA-1)*NPHI + J
|
||||
&PHI
|
||||
C
|
||||
SF_1=SF_1+TAB(JLIN,2)
|
||||
SR_1=SR_1+TAB(JLIN,1)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
SF2_1=SF2_1+TAB(JLIN2,2)
|
||||
SR2_1=SR2_1+TAB(JLIN2,1)
|
||||
ENDIF
|
||||
IF(IDICHR.GE.1) THEN
|
||||
SF_2=SF_2+TAB(JLIN,4)
|
||||
SR_2=SR_2+TAB(JLIN,3)
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
JLIN2=NTT+JLIN
|
||||
SF2_2=SF2_2+TAB(JLIN2,4)
|
||||
SR2_2=SR2_2+TAB(JLIN2,3)
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDDO
|
||||
IF(I_EXT.LE.0) THEN
|
||||
IF(STEREO.EQ.' NO') THEN
|
||||
JPHI2=JPHI
|
||||
ELSE
|
||||
JPHI2=(JTHETA-1)*NPHI+JPHI
|
||||
ENDIF
|
||||
ELSE
|
||||
JPHI2=JTHETA
|
||||
ENDIF
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
WRITE(IUO2,3) JPL,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),SR
|
||||
&_1,SF_1
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,3) JPLAN,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE
|
||||
&),SR2_1,SF2_1
|
||||
ENDIF
|
||||
ELSE
|
||||
WRITE(IUO2,23) JPL,DTHETA(JTHETA),DPHI(JPHI2),ECIN(JE),S
|
||||
&R_1,SF_1,SR_2,SF_2
|
||||
IF(I_EXT.EQ.-1) THEN
|
||||
WRITE(IUO2,23) JPLAN,DTHETA(JTHETA),DPHI(JPHI2),ECIN(J
|
||||
&E),SR2_1,SF2_1,SR2_2,SF2_2
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
GOTO 6
|
||||
C
|
||||
5 WRITE(IUO1,4)
|
||||
STOP
|
||||
35 WRITE(IUO1,36) N_FIXED
|
||||
STOP
|
||||
37 WRITE(IUO1,38) NTHETA*NPHI
|
||||
STOP
|
||||
C
|
||||
1 FORMAT(2X,I3,2X,I2,2X,I4,2X,I4,2X,I4)
|
||||
2 FORMAT(2X,I3,2X,I2,2X,F6.2,2X,F6.2,2X,F8.2,2X,E12.6,2X,E12.6)
|
||||
3 FORMAT(2X,I3,2X,F6.2,2X,F6.2,2X,F8.2,2X,E12.6,2X,E12.6)
|
||||
4 FORMAT(//,8X,'<<<<<<<<<< DIMENSION OF THE ARRAYS TOO SMALL ','IN
|
||||
&THE TREAT_PHD SUBROUTINE - INCREASE NDIM_M ','>>>>>>>>>>')
|
||||
7 FORMAT(I4,2X,I4,2X,I4)
|
||||
8 FORMAT(I4,2X,I4,2X,I4,2X,I3,2X,I1)
|
||||
9 FORMAT(9(2X,I1),2X,I2)
|
||||
15 FORMAT(2X,A3,11X,A13)
|
||||
22 FORMAT(2X,I3,2X,I2,2X,F6.2,2X,F6.2,2X,F8.2,2X,E12.6,2X,E12.6,2X,E1
|
||||
&2.6,2X,E12.6)
|
||||
23 FORMAT(2X,I3,2X,F6.2,2X,F6.2,2X,F8.2,2X,E12.6,2X,E12.6,2X,E12.6,2X
|
||||
&,E12.6)
|
||||
25 FORMAT(37X,E12.6,2X,E12.6)
|
||||
36 FORMAT(//,4X,'<<<<<<<<<< DIMENSION OF NTH_M OR NPH_M TOO SMALL ',
|
||||
&'IN THE INCLUDE FILE >>>>>>>>>>',/,4X,'<<<<<<<<<<
|
||||
&SHOULD BE AT LEAST ',I6,' >>>>>>>>>>')
|
||||
38 FORMAT(//,8X,'<<<<<<<<<< DIMENSION OF NPH_M TOO SMALL ','IN THE I
|
||||
&NCLUDE FILE >>>>>>>>>>',/,8X,'<<<<<<<<<< SHOULD BE AT
|
||||
&LEAST ',I6,' >>>>>>>>>>')
|
||||
888 FORMAT(A72)
|
||||
C
|
||||
6 RETURN
|
||||
C
|
||||
END
|
|
@ -0,0 +1,335 @@
|
|||
C
|
||||
C=======================================================================
|
||||
C
|
||||
SUBROUTINE WEIGHT_SUM(ISOM,I_EXT,I_EXT_A,JEL)
|
||||
C
|
||||
C This subroutine performs a weighted sum of the results
|
||||
C corresponding to different directions of the detector.
|
||||
C The directions and weights are read from an external input file
|
||||
C
|
||||
C JEL is the electron undetected (i.e. for which the outgoing
|
||||
C directions are integrated over the unit sphere). It is always
|
||||
C 1 for one electron spectroscopies (PHD). For APECS, It can be
|
||||
C 1 (photoelectron) or 2 (Auger electron) or even 0 (no electron
|
||||
C detected)
|
||||
C
|
||||
C Last modified : 31 Jan 2007
|
||||
C
|
||||
USE DIM_MOD
|
||||
USE INFILES_MOD
|
||||
USE INUNITS_MOD
|
||||
USE OUTUNITS_MOD
|
||||
C
|
||||
C
|
||||
PARAMETER(N_MAX=5810,NPM=20)
|
||||
C
|
||||
REAL*4 W(N_MAX),W_A(N_MAX),ECIN(NE_M)
|
||||
REAL*4 DTHETA(N_MAX),DPHI(N_MAX),DTHETAA(N_MAX),DPHIA(N_MAX)
|
||||
REAL*4 SR_1,SF_1,SR_2,SF_2
|
||||
REAL*4 SUMR_1(NPM,NE_M,N_MAX),SUMR_2(NPM,NE_M,N_MAX)
|
||||
REAL*4 SUMF_1(NPM,NE_M,N_MAX),SUMF_2(NPM,NE_M,N_MAX)
|
||||
C
|
||||
CHARACTER*3 SPECTRO,SPECTRO2
|
||||
CHARACTER*5 LIKE
|
||||
CHARACTER*13 OUTDATA
|
||||
C
|
||||
C
|
||||
C
|
||||
C
|
||||
DATA JVOL,JTOT/0,-1/
|
||||
DATA LIKE /'-like'/
|
||||
C
|
||||
REWIND IUO2
|
||||
C
|
||||
READ(IUO2,15) SPECTRO,OUTDATA
|
||||
IF(SPECTRO.NE.'APC') THEN
|
||||
READ(IUO2,9) ISPIN,IDICHR,I_SO,ISFLIP,ICHKDIR,IPHI,ITHETA,IE
|
||||
READ(IUO2,8) NPHI,NTHETA,NE,NPLAN,ISOM
|
||||
SPECTRO2='XAS'
|
||||
ELSE
|
||||
READ(IUO2,9) ISPIN,IDICHR,I_SO,ISFLIP,ICHKDIR,IPHI,ITHETA,IE
|
||||
READ(IUO2,9) ISPIN_A,IDICHR_A,I_SO_A,ISFLIP_A,ICHKDIR_A,IPHI_A,I
|
||||
&THETA_A,IE_A
|
||||
READ(IUO2,8) NPHI,NTHETA,NE,NPLAN,ISOM
|
||||
READ(IUO2,8) NPHI_A,NTHETA_A
|
||||
IF(JEL.EQ.1) THEN
|
||||
SPECTRO2='AED'
|
||||
ELSEIF(JEL.EQ.2) THEN
|
||||
SPECTRO2='PHD'
|
||||
ELSEIF(JEL.EQ.0) THEN
|
||||
SPECTRO2='XAS'
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
IF(NPLAN.GT.NPM) THEN
|
||||
WRITE(IUO1,4) NPLAN+2
|
||||
STOP
|
||||
ENDIF
|
||||
C
|
||||
C Reading the number of angular points
|
||||
C
|
||||
IF(SPECTRO.NE.'APC') THEN
|
||||
OPEN(UNIT=IUI6, FILE=INFILE6, STATUS='OLD')
|
||||
READ(IUI6,1) N_POINTS
|
||||
READ(IUI6,5) I_DIM,N_DUM1,N_DUM2
|
||||
N_POINTS_A=1
|
||||
ELSE
|
||||
IF(JEL.EQ.1) THEN
|
||||
OPEN(UNIT=IUI6, FILE=INFILE6, STATUS='OLD')
|
||||
READ(IUI6,1) N_POINTS
|
||||
READ(IUI6,5) I_DIM,N_DUM1,N_DUM2
|
||||
IF(I_EXT_A.EQ.0) THEN
|
||||
N_POINTS_A=NTHETA_A*NPHI_A
|
||||
ELSE
|
||||
OPEN(UNIT=IUI9, FILE=INFILE9, STATUS='OLD')
|
||||
READ(IUI9,1) N_POINTS_A
|
||||
READ(IUI9,5) I_DIM,N_DUM1,N_DUM2
|
||||
ENDIF
|
||||
NTHETA0=NTHETA_A
|
||||
NPHI0=NPHI_A
|
||||
ELSEIF(JEL.EQ.2) THEN
|
||||
OPEN(UNIT=IUI9, FILE=INFILE9, STATUS='OLD')
|
||||
READ(IUI9,1) N_POINTS_A
|
||||
READ(IUI9,5) I_DIM,N_DUM1,N_DUM2
|
||||
IF(I_EXT.EQ.0) THEN
|
||||
N_POINTS=NTHETA*NPHI
|
||||
ELSE
|
||||
OPEN(UNIT=IUI6, FILE=INFILE6, STATUS='OLD')
|
||||
READ(IUI6,1) N_POINTS
|
||||
READ(IUI6,5) I_DIM,N_DUM1,N_DUM2
|
||||
ENDIF
|
||||
NTHETA0=NTHETA
|
||||
NPHI0=NPHI
|
||||
ELSEIF(JEL.EQ.0) THEN
|
||||
OPEN(UNIT=IUI6, FILE=INFILE6, STATUS='OLD')
|
||||
OPEN(UNIT=IUI9, FILE=INFILE9, STATUS='OLD')
|
||||
READ(IUI6,1) N_POINTS
|
||||
READ(IUI9,1) N_POINTS_A
|
||||
READ(IUI6,5) I_DIM,N_DUM1,N_DUM2
|
||||
READ(IUI9,5) I_DIM,N_DUM1,N_DUM2
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
IF(SPECTRO.NE.'APC') THEN
|
||||
NANGLE=1
|
||||
ELSE
|
||||
IF(JEL.EQ.1) THEN
|
||||
NANGLE=N_POINTS_A
|
||||
ELSEIF(JEL.EQ.2) THEN
|
||||
NANGLE=N_POINTS
|
||||
ELSEIF(JEL.EQ.0) THEN
|
||||
NANGLE=1
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
C Initialization of the arrays
|
||||
C
|
||||
DO JE=1,NE
|
||||
DO JANGLE=1,NANGLE
|
||||
DO JPLAN=1,NPLAN+2
|
||||
SUMR_1(JPLAN,JE,JANGLE)=0.
|
||||
SUMF_1(JPLAN,JE,JANGLE)=0.
|
||||
IF(IDICHR.GT.0) THEN
|
||||
SUMR_2(JPLAN,JE,JANGLE)=0.
|
||||
SUMF_2(JPLAN,JE,JANGLE)=0.
|
||||
ENDIF
|
||||
ENDDO
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
C Reading of the data to be angle integrated
|
||||
C
|
||||
DO JE=1,NE
|
||||
C
|
||||
DO JANGLE=1,N_POINTS
|
||||
IF(I_EXT.NE.0) READ(IUI6,2) TH,PH,W(JANGLE)
|
||||
DO JANGLE_A=1,N_POINTS_A
|
||||
IF((I_EXT_A.NE.0).AND.(JANGLE.EQ.1)) THEN
|
||||
READ(IUI9,2) THA,PHA,W_A(JANGLE_A)
|
||||
ENDIF
|
||||
C
|
||||
DO JPLAN=1,NPLAN+2
|
||||
C
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
IF(SPECTRO.NE.'APC') THEN
|
||||
READ(IUO2,3) JDUM,DTHETA(JANGLE),DPHI(JANGLE),ECIN(JE)
|
||||
&,SR_1,SF_1
|
||||
ELSE
|
||||
READ(IUO2,13) JDUM,DTHETA(JANGLE),DPHI(JANGLE),ECIN(JE
|
||||
&),DTHETAA(JANGLE_A),DPHIA(JANGLE_A),SR_1,SF_1
|
||||
ENDIF
|
||||
ELSE
|
||||
IF(SPECTRO.NE.'APC') THEN
|
||||
READ(IUO2,23) JDUM,DTHETA(JANGLE),DPHI(JANGLE),ECIN(JE
|
||||
&),SR_1,SF_1,SR_2,SF_2
|
||||
ELSE
|
||||
READ(IUO2,24) JDUM,DTHETA(JANGLE),DPHI(JANGLE),ECIN(JE
|
||||
&),DTHETAA(JANGLE_A),DPHIA(JANGLE_A),SR_1,SF_1,SR_2,SF_2
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
IF(JEL.EQ.1) THEN
|
||||
SUMR_1(JPLAN,JE,JANGLE_A)=SUMR_1(JPLAN,JE,JANGLE_A)+SR_1
|
||||
&*W(JANGLE)
|
||||
SUMF_1(JPLAN,JE,JANGLE_A)=SUMF_1(JPLAN,JE,JANGLE_A)+SF_1
|
||||
&*W(JANGLE)
|
||||
ELSEIF(JEL.EQ.2) THEN
|
||||
SUMR_1(JPLAN,JE,JANGLE)=SUMR_1(JPLAN,JE,JANGLE)+SR_1*W_A
|
||||
&(JANGLE_A)
|
||||
SUMF_1(JPLAN,JE,JANGLE)=SUMF_1(JPLAN,JE,JANGLE)+SF_1*W_A
|
||||
&(JANGLE_A)
|
||||
ELSEIF(JEL.EQ.0) THEN
|
||||
SUMR_1(JPLAN,JE,1)=SUMR_1(JPLAN,JE,1)+SR_1*W(JANGLE)*W_A
|
||||
&(JANGLE_A)
|
||||
SUMF_1(JPLAN,JE,1)=SUMF_1(JPLAN,JE,1)+SF_1*W(JANGLE)*W_A
|
||||
&(JANGLE_A)
|
||||
ENDIF
|
||||
IF(IDICHR.GT.0) THEN
|
||||
IF(JEL.EQ.1) THEN
|
||||
SUMR_2(JPLAN,JE,JANGLE_A)=SUMR_2(JPLAN,JE,JANGLE_A)+SR
|
||||
&_2*W(JANGLE)
|
||||
SUMF_2(JPLAN,JE,JANGLE_A)=SUMF_2(JPLAN,JE,JANGLE_A)+SF
|
||||
&_2*W(JANGLE)
|
||||
ELSEIF(JEL.EQ.2) THEN
|
||||
SUMR_2(JPLAN,JE,JANGLE)=SUMR_2(JPLAN,JE,JANGLE)+SR_2*W
|
||||
&_A(JANGLE_A)
|
||||
SUMF_2(JPLAN,JE,JANGLE)=SUMF_2(JPLAN,JE,JANGLE)+SF_2*W
|
||||
&_A(JANGLE_A)
|
||||
ELSEIF(JEL.EQ.0) THEN
|
||||
SUMR_2(JPLAN,JE,1)=SUMR_2(JPLAN,JE,1)+SR_2*W(JANGLE)*W
|
||||
&_A(JANGLE_A)
|
||||
SUMF_2(JPLAN,JE,1)=SUMF_2(JPLAN,JE,1)+SF_2*W(JANGLE)*W
|
||||
&_A(JANGLE_A)
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
ENDDO
|
||||
C
|
||||
ENDDO
|
||||
IF(I_EXT_A.NE.0) THEN
|
||||
REWIND IUI9
|
||||
READ(IUI9,1) NDUM
|
||||
READ(IUI9,1) NDUM
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
IF(I_EXT.NE.0) THEN
|
||||
REWIND IUI6
|
||||
READ(IUI6,1) NDUM
|
||||
READ(IUI6,1) NDUM
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
CLOSE(IUI6)
|
||||
CLOSE(IUI9)
|
||||
REWIND IUO2
|
||||
C
|
||||
WRITE(IUO2,16) SPECTRO2,LIKE,SPECTRO,OUTDATA
|
||||
IF((SPECTRO.NE.'APC').OR.(JEL.EQ.0)) THEN
|
||||
WRITE(IUO2,19) ISPIN,IDICHR,I_SO,ISFLIP
|
||||
WRITE(IUO2,18) NE,NPLAN,ISOM
|
||||
ELSEIF(JEL.EQ.1) THEN
|
||||
WRITE(IUO2,20) ISPIN_A,IDICHR_A,I_SO_A,ISFLIP_A,ICHKDIR_A,IPHI_A
|
||||
&,ITHETA_A,IE_A
|
||||
WRITE(IUO2,21) NPHI0,NTHETA0,NE,NPLAN,ISOM
|
||||
ELSEIF(JEL.EQ.2) THEN
|
||||
WRITE(IUO2,20) ISPIN,IDICHR,I_SO,ISFLIP,ICHKDIR,IPHI,ITHETA,IE
|
||||
WRITE(IUO2,21) NPHI0,NTHETA0,NE,NPLAN,ISOM
|
||||
ENDIF
|
||||
C
|
||||
DO JE=1,NE
|
||||
DO JANGLE=1,NANGLE
|
||||
IF(SPECTRO.EQ.'APC') THEN
|
||||
IF(JEL.EQ.1) THEN
|
||||
THETA=DTHETAA(JANGLE)
|
||||
PHI=DPHIA(JANGLE)
|
||||
ELSEIF(JEL.EQ.2) THEN
|
||||
THETA=DTHETA(JANGLE)
|
||||
PHI=DPHI(JANGLE)
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
DO JPLAN=1,NPLAN
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
IF((SPECTRO.NE.'APC').OR.(JEL.EQ.0)) THEN
|
||||
WRITE(IUO2,33) JPLAN,ECIN(JE),SUMR_1(JPLAN,JE,JANGLE),SU
|
||||
&MF_1(JPLAN,JE,JANGLE)
|
||||
ELSE
|
||||
WRITE(IUO2,34) JPLAN,THETA,PHI,ECIN(JE),SUMR_1(JPLAN,JE,
|
||||
&JANGLE),SUMF_1(JPLAN,JE,JANGLE)
|
||||
ENDIF
|
||||
ELSE
|
||||
IF((SPECTRO.NE.'APC').OR.(JEL.EQ.0)) THEN
|
||||
WRITE(IUO2,43) JPLAN,ECIN(JE),SUMR_1(JPLAN,JE,JANGLE),SU
|
||||
&MF_1(JPLAN,JE,JANGLE),SUMR_2(JPLAN,JE,JANGLE),SUMF_2(JPLAN,JE,JANG
|
||||
&LE)
|
||||
ELSE
|
||||
WRITE(IUO2,44) JPLAN,THETA,PHI,ECIN(JE),SUMR_1(JPLAN,JE,
|
||||
&JANGLE),SUMF_1(JPLAN,JE,JANGLE),SUMR_2(JPLAN,JE,JANGLE),SUMF_2(JPL
|
||||
&AN,JE,JANGLE)
|
||||
ENDIF
|
||||
ENDIF
|
||||
ENDDO
|
||||
C
|
||||
IF(IDICHR.EQ.0) THEN
|
||||
IF((SPECTRO.NE.'APC').OR.(JEL.EQ.0)) THEN
|
||||
WRITE(IUO2,33) JVOL,ECIN(JE),SUMR_1(NPLAN+1,JE,JANGLE),SUM
|
||||
&F_1(NPLAN+1,JE,JANGLE)
|
||||
WRITE(IUO2,33) JTOT,ECIN(JE),SUMR_1(NPLAN+2,JE,JANGLE),SUM
|
||||
&F_1(NPLAN+2,JE,JANGLE)
|
||||
ELSE
|
||||
WRITE(IUO2,34) JVOL,THETA,PHI,ECIN(JE),SUMR_1(NPLAN+1,JE,J
|
||||
&ANGLE),SUMF_1(NPLAN+1,JE,JANGLE)
|
||||
WRITE(IUO2,34) JTOT,THETA,PHI,ECIN(JE),SUMR_1(NPLAN+2,JE,J
|
||||
&ANGLE),SUMF_1(NPLAN+2,JE,JANGLE)
|
||||
ENDIF
|
||||
ELSE
|
||||
IF((SPECTRO.NE.'APC').OR.(JEL.EQ.0)) THEN
|
||||
WRITE(IUO2,43) JVOL,ECIN(JE),SUMR_1(NPLAN+1,JE,JANGLE),SUM
|
||||
&F_1(NPLAN+1,JE,JANGLE),SUMR_2(NPLAN+1,JE,JANGLE),SUMF_2(NPLAN+1,JE
|
||||
&,JANGLE)
|
||||
WRITE(IUO2,43) JTOT,ECIN(JE),SUMR_1(NPLAN+2,JE,JANGLE),SUM
|
||||
&F_1(NPLAN+2,JE,JANGLE),SUMR_2(NPLAN+2,JE,JANGLE),SUMF_2(NPLAN+2,JE
|
||||
&,JANGLE)
|
||||
ELSE
|
||||
WRITE(IUO2,44) JVOL,THETA,PHI,ECIN(JE),SUMR_1(NPLAN+1,JE,J
|
||||
&ANGLE),SUMF_1(NPLAN+1,JE,JANGLE),SUMR_2(NPLAN+1,JE,JANGLE),SUMF_2(
|
||||
&NPLAN+1,JE,JANGLE)
|
||||
WRITE(IUO2,44) JTOT,THETA,PHI,ECIN(JE),SUMR_1(NPLAN+2,JE,J
|
||||
&ANGLE),SUMF_1(NPLAN+2,JE,JANGLE),SUMR_2(NPLAN+2,JE,JANGLE),SUMF_2(
|
||||
&NPLAN+2,JE,JANGLE)
|
||||
ENDIF
|
||||
ENDIF
|
||||
C
|
||||
ENDDO
|
||||
ENDDO
|
||||
C
|
||||
1 FORMAT(13X,I4)
|
||||
2 FORMAT(15X,F8.3,3X,F8.3,3X,E12.6)
|
||||
3 FORMAT(2X,I3,2X,F6.2,2X,F6.2,2X,F8.2,2X,E12.6,2X,E12.6)
|
||||
4 FORMAT(//,8X,'<<<<<<<<<< DIMENSION OF THE ARRAYS TOO SMALL ','IN
|
||||
&THE WEIGHT_SUM SUBROUTINE - INCREASE NPM TO ',I3,'>>>>>>>>>>')
|
||||
5 FORMAT(6X,I1,1X,I3,3X,I3)
|
||||
8 FORMAT(I4,2X,I4,2X,I4,2X,I3,2X,I1)
|
||||
9 FORMAT(9(2X,I1),2X,I2)
|
||||
13 FORMAT(2X,I3,2X,F6.2,2X,F6.2,2X,F8.2,2X,F6.2,2X,F6.2,2X,E12.6,2X,E
|
||||
&12.6)
|
||||
15 FORMAT(2X,A3,11X,A13)
|
||||
16 FORMAT(2X,A3,A5,1X,A3,2X,A13)
|
||||
18 FORMAT(I4,2X,I3,2X,I1)
|
||||
19 FORMAT(4(2X,I1))
|
||||
20 FORMAT(8(2X,I1))
|
||||
21 FORMAT(I4,2X,I4,2X,I4,2X,I3,2X,I1)
|
||||
23 FORMAT(2X,I3,2X,F6.2,2X,F6.2,2X,F8.2,2X,E12.6,2X,E12.6,2X,E12.6,2X
|
||||
&,E12.6)
|
||||
24 FORMAT(2X,I3,2X,F6.2,2X,F6.2,2X,F8.2,2X,F6.2,2X,F6.2,2X,E12.6,2X,E
|
||||
&12.6,2X,E12.6,2X,E12.6)
|
||||
33 FORMAT(2X,I3,2X,F8.2,2X,E12.6,2X,E12.6)
|
||||
34 FORMAT(2X,I3,2X,F6.2,2X,F6.2,2X,F8.2,2X,E12.6,2X,E12.6)
|
||||
43 FORMAT(2X,I3,2X,F8.2,2X,E12.6,2X,E12.6,2X,E12.6,2X,E12.6)
|
||||
44 FORMAT(2X,I3,2X,F6.2,2X,F6.2,2X,F8.2,2X,E12.6,2X,E12.6,2X,E12.6,2X
|
||||
&,E12.6)
|
||||
C
|
||||
RETURN
|
||||
C
|
||||
END
|
|
@ -2,7 +2,7 @@ memalloc_src := memalloc/dim_mod.f memalloc/modules.f memalloc/all
|
|||
cluster_gen_src := $(wildcard cluster_gen/*.f)
|
||||
common_sub_src := $(wildcard common_sub/*.f)
|
||||
renormalization_src := $(wildcard renormalization/*.f)
|
||||
phd_mi_noso_nosp_nosym_src := $(wildcard phd_mi_noso_nosp_nosym/*.f)
|
||||
phd_mi_noso_nosp_nosym_src := $(filter-out phd_mi_noso_nosp_nosym/lapack_axb.f, $(wildcard phd_mi_noso_nosp_nosym/*.f))
|
||||
|
||||
SRCS = $(memalloc_src) $(cluster_gen_src) $(common_sub_src) $(renormalization_src) $(phd_mi_noso_nosp_nosym_src)
|
||||
MAIN_F = phd_mi_noso_nosp_nosym/main.f
|
||||
|
|
|
@ -115,7 +115,7 @@ C Renormalization of the path
|
|||
C
|
||||
IF(I_REN.GE.1) THEN
|
||||
COEF=COEF*C_REN(JORDP)
|
||||
write(354,*) JORDP,C_REN(JORDP)
|
||||
C write(354,*) JORDP,C_REN(JORDP)
|
||||
ENDIF
|
||||
C
|
||||
C Call of the subroutines used for the R-A termination matrix
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -16,8 +17,8 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/tests.py
|
||||
# Last modified: ven. 10 avril 2020 17:33:28
|
||||
# Committed by : "Sylvain Tricot <sylvain.tricot@univ-rennes1.fr>"
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
|
||||
|
||||
import os
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -18,8 +19,8 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/utils.py
|
||||
# Last modified: Thu, 06 Oct 2022 18:19:16 +0200
|
||||
# Committed by : Sylvain Tricot <sylvain.tricot@univ-rennes1.fr> 1665073156 +0200
|
||||
# Last modified: Thu, 06 Oct 2022 18:27:24 +0200
|
||||
# Committed by : Sylvain Tricot <sylvain.tricot@univ-rennes1.fr> 1665073644 +0200
|
||||
|
||||
|
||||
"""
|
||||
|
@ -70,7 +71,7 @@ class ForeignPotential(object):
|
|||
self.phagen_data = {'types': []}
|
||||
|
||||
def write(self, filename, prototypical_atoms):
|
||||
LOGGER.debug(f"Writing Phagen input potential file: {filename}")
|
||||
LOGGER.debug("Writing Phagen input potential file: {}".format(filename))
|
||||
|
||||
def DEPRECATEDappend_atom_potential(atom):
|
||||
Z = atom.number
|
||||
|
@ -81,8 +82,8 @@ class ForeignPotential(object):
|
|||
itypes.append(i)
|
||||
# Check now that we have only one type in the list
|
||||
# otherwise we do not know yet how to deal with this.
|
||||
assert len(itypes) > 0, f"Cannot find the data for atom with Z={Z}"
|
||||
assert len(itypes) == 1, f"Too many datasets for atom with Z={Z}"
|
||||
assert len(itypes) > 0, "Cannot find the data for atom with Z={}".format(Z)
|
||||
assert len(itypes) == 1, "Too many datasets for atom with Z={}".format(Z)
|
||||
# So far so good, let's write the block
|
||||
t = self.phagen_data['types'][itypes[0]]
|
||||
s = "{:<7d}{:<10d}{:1.4f}\n".format(
|
||||
|
@ -95,7 +96,7 @@ class ForeignPotential(object):
|
|||
def append_atom_potential(atom):
|
||||
line_fmt = "{:+1.8e} " * 4 + "\n"
|
||||
atom_type = atom.get('atom_type')
|
||||
assert atom_type != None, f"Unable get the atom type!"
|
||||
assert atom_type != None, "Unable get the atom type!"
|
||||
for t in self.phagen_data['types']:
|
||||
if t['atom_type'] == atom_type:
|
||||
s = "{:<7d}{:<10d}{:1.4f}\n".format(
|
||||
|
@ -138,7 +139,7 @@ class SPRKKRPotential(ForeignPotential):
|
|||
self.potfile = potfile
|
||||
self.load_sprkkr_atom_types()
|
||||
for f in exported_files:
|
||||
LOGGER.info(f"Loading file {f}...")
|
||||
LOGGER.info("Loading file {}...".format(f))
|
||||
# get the IT from the filename
|
||||
m=re.match('SPRKKR-IT_(?P<IT>\d+)-PHAGEN.*', os.path.basename(f))
|
||||
it = int(m.group('IT'))
|
||||
|
@ -192,7 +193,7 @@ class SPRKKRPotential(ForeignPotential):
|
|||
return data
|
||||
|
||||
# load info in *.pot file
|
||||
LOGGER.info(f"Loading SPRKKR *.pot file {self.potfile}...")
|
||||
LOGGER.info("Loading SPRKKR *.pot file {}...".format(self.potfile))
|
||||
with open(self.potfile, 'r') as fd:
|
||||
content = fd.read()
|
||||
|
||||
|
@ -233,7 +234,7 @@ class SPRKKRPotential(ForeignPotential):
|
|||
IT = occupation['ITOQ']
|
||||
atom = self.atoms[i]
|
||||
atom.set('atom_type', IT)
|
||||
LOGGER.debug(f"Site #{IQ} is type #{IT}, atom {atom}")
|
||||
LOGGER.debug("Site #{} is type #{}, atom {}".format(IQ, IT, atom))
|
||||
|
||||
|
||||
|
||||
|
@ -314,34 +315,13 @@ def cut_cylinder(atoms, axis="z", radius=None):
|
|||
:return: The modified atom cluster
|
||||
:rtype: ase.Atoms
|
||||
"""
|
||||
if radius is None:
|
||||
raise ValueError("radius not set")
|
||||
|
||||
new_atoms = atoms.copy()
|
||||
|
||||
dims = {"x": 0, "y": 1, "z": 2}
|
||||
if axis in dims:
|
||||
axis = dims[axis]
|
||||
else:
|
||||
raise ValueError("axis not valid, must be 'x','y', or 'z'")
|
||||
|
||||
del_list = []
|
||||
for index, position in enumerate(new_atoms.positions):
|
||||
# calculating the distance of the atom to the given axis
|
||||
r = 0
|
||||
for dim in range(3):
|
||||
if dim != axis:
|
||||
r = r + position[dim]**2
|
||||
r = np.sqrt(r)
|
||||
|
||||
if r > radius:
|
||||
del_list.append(index)
|
||||
|
||||
del_list.reverse()
|
||||
for index in del_list:
|
||||
del new_atoms[index]
|
||||
|
||||
return new_atoms
|
||||
if axis not in ('z',):
|
||||
raise ValueError("axis value != 'z' is not supported yet.")
|
||||
X, Y, Z = atoms.positions.T
|
||||
R = np.sqrt(X**2 + Y **2)
|
||||
T = np.arctan2(Y, X)
|
||||
i = np.where(R <= radius)[0]
|
||||
return atoms[i]
|
||||
|
||||
|
||||
def cut_cone(atoms, radius, z=0):
|
||||
|
@ -429,11 +409,15 @@ def cut_plane(atoms, x=None, y=None, z=None):
|
|||
|
||||
dim_values = np.array(dim_values)
|
||||
|
||||
def constraint(coordinates):
|
||||
return np.all(np.logical_and(coordinates >= dim_values[:, 0],
|
||||
coordinates <= dim_values[:, 1]))
|
||||
X, Y, Z = atoms.positions.T
|
||||
i0 = np.where(X >= dim_values[0, 0])[0]
|
||||
i1 = np.where(X[i0] <= dim_values[0, 1])[0]
|
||||
i2 = np.where(Y[i0][i1] >= dim_values[1, 0])[0]
|
||||
i3 = np.where(Y[i0][i1][i2] <= dim_values[1, 1])[0]
|
||||
i4 = np.where(Z[i0][i1][i2][i3] >= dim_values[2, 0])[0]
|
||||
i5 = np.where(Z[i0][i1][i2][i3][i4] <= dim_values[2, 1])[0]
|
||||
indices = np.arange(len(atoms))[i0][i1][i2][i3][i4][i5]
|
||||
|
||||
indices = np.where(list(map(constraint, atoms.positions)))[0]
|
||||
return atoms[indices]
|
||||
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#
|
||||
# Copyright © 2016-2020 - Rennes Physics Institute
|
||||
#
|
||||
|
@ -16,8 +17,8 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/version.py
|
||||
# Last modified: Thu, 06 Oct 2022 18:19:16 +0200
|
||||
# Committed by : Sylvain Tricot <sylvain.tricot@univ-rennes1.fr> 1665073156 +0200
|
||||
# Last modified: Wed, 26 Oct 2022 17:15:24 +0200
|
||||
# Committed by : Sylvain Tricot <sylvain.tricot@univ-rennes1.fr> 1666797324 +0200
|
||||
|
||||
|
||||
import os
|
||||
|
@ -26,28 +27,27 @@ from importlib.metadata import version
|
|||
import subprocess
|
||||
|
||||
# find the version number
|
||||
# 1- If it fails, try to read it from the distribution file
|
||||
# 2- Try to read it from the git info
|
||||
# 3- If it fails, try to read it from the VERSION file
|
||||
# 1- Try to read it from the git info
|
||||
# 2- If it fails, try to read it from the VERSION file
|
||||
# 3- If it fails, try to read it from the distribution file
|
||||
|
||||
PKGNAME = 'msspec'
|
||||
|
||||
try:
|
||||
__version__ = version(PKGNAME)
|
||||
cmd = ["git describe|sed 's/-\([0-9]\+\)-.*/.dev\\1/g'"]
|
||||
result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, shell=True)
|
||||
__version__ = result.stdout.decode('utf-8').strip()
|
||||
if __version__ == "":
|
||||
raise
|
||||
except Exception as err:
|
||||
try:
|
||||
p = subprocess.run(["git", "describe"], capture_output=True, text=True)
|
||||
if p.stdout not in ("", None):
|
||||
__version__ = p.stdout.strip()
|
||||
else:
|
||||
raise NameError("git describe failed!")
|
||||
thisfile_path = os.path.abspath(__file__)
|
||||
thisfile_dir = os.path.dirname(thisfile_path)
|
||||
versionfile = os.path.join(thisfile_dir, "./VERSION")
|
||||
with open(versionfile, "r") as fd:
|
||||
__version__ = fd.readline().strip()
|
||||
except Exception as err:
|
||||
try:
|
||||
thisfile_path = os.path.abspath(__file__)
|
||||
thisfile_dir = os.path.dirname(thisfile_path)
|
||||
versionfile = os.path.join(thisfile_dir, "../VERSION")
|
||||
with open(versionfile, "r") as fd:
|
||||
__version__ = fd.readline().strip()
|
||||
__version__ = version(PKGNAME)
|
||||
except Exception as err:
|
||||
print("Unable to get the version number!")
|
||||
__version__ = "9.9.9"
|
||||
__version__ = "0.0.0"
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
PYTHON = python
|
||||
PYTHON = python3
|
||||
PYMAJ = 3
|
||||
PYMIN = 6
|
||||
PYMIN = 5
|
||||
|
||||
FC = gfortran
|
||||
F2PY = f2py3 --f77exec=$(FC) --f90exec=$(FC)
|
||||
|
@ -31,7 +31,7 @@ IFORT_FFLAGS_DBG =
|
|||
################################################################################
|
||||
# F2PY CONFIGURATION #
|
||||
################################################################################
|
||||
F2PYFLAGS = --opt=-O2
|
||||
F2PYFLAGS = --opt=-O2 -llapack -larpack
|
||||
F2PYFLAGS_DBG = --debug-capi --debug
|
||||
################################################################################
|
||||
|
||||
|
@ -41,7 +41,7 @@ F2PYFLAGS_DBG = --debug-capi --debug
|
|||
# /!\ DO NOT EDIT BELOW THAT LINE (unlesss you know what you're doing...) #
|
||||
# CORE CONFIGURATION #
|
||||
################################################################################
|
||||
VERSION:=$(shell git describe)
|
||||
VERSION:=$(shell git describe|sed 's/-\([0-9]\+\)-.*/.dev\1/g')
|
||||
VENV_PATH := $(INSTALL_PREFIX)/src/msspec_venv_$(VERSION)
|
||||
|
||||
|
||||
|
@ -103,7 +103,7 @@ endif
|
|||
|
||||
FFLAGS = $($(PREFIX)_FFLAGS$(SUFFIX))
|
||||
|
||||
OBJS = $(addprefix $(BUILDDIR)/, $(patsubst %.f,%.o, $(filter-out $(MAIN_F), $(SRCS))))
|
||||
OBJS = $(addprefix $(BUILDDIR)/, $(patsubst %.f90,%.o, $(patsubst %.f,%.o, $(filter-out $(MAIN_F), $(SRCS)))))
|
||||
|
||||
.PHONY: clean obj all info
|
||||
|
||||
|
@ -141,6 +141,12 @@ $(BUILDDIR)/%.o: %.f
|
|||
$(FC) $(FFLAGS) -J $(BUILDDIR) -I $(BUILDDIR) -fPIC -o $@ -c $^ $(OUPUT_REDIRECTION)
|
||||
|
||||
|
||||
$(BUILDDIR)/%.o: %.f90
|
||||
@echo "Compiling $@..."
|
||||
mkdir -p $(basename $@)
|
||||
$(FC) $(FFLAGS) -J $(BUILDDIR) -I $(BUILDDIR) -fPIC -o $@ -c $^ $(OUPUT_REDIRECTION)
|
||||
|
||||
|
||||
$(SO): $(OBJS) $(MAIN_F)
|
||||
@echo "building Python binding $@..."
|
||||
mkdir -p $(BUILDDIR)
|
||||
|
|
|
@ -2,7 +2,7 @@ ase
|
|||
h5py
|
||||
ipython
|
||||
lxml
|
||||
matplotlib==3.4.3
|
||||
matplotlib
|
||||
numpy
|
||||
Pint
|
||||
pandas
|
||||
|
@ -10,3 +10,5 @@ pycairo
|
|||
scipy
|
||||
setuptools-scm
|
||||
terminaltables
|
||||
wheel
|
||||
wxPython
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
[build-system]
|
||||
requires = ["setuptools>=45", "setuptools_scm[toml]>=6.2"]
|
||||
build-backend = "setuptools.build_meta"
|
|
@ -0,0 +1,55 @@
|
|||
[metadata]
|
||||
name = msspec
|
||||
version = attr: msspec.version.__version__
|
||||
author = Didier Sébilleau, Sylvain Tricot
|
||||
author_email = sylvain.tricot@univ-rennes1.fr
|
||||
url = https://msspec.cnrs.fr
|
||||
description = A multiple scattering package for sepectroscopies using electrons to probe materials
|
||||
long_description = MsSpec is a Fortran package to compute the
|
||||
cross-section of several spectroscopies involving one (or more)
|
||||
electron(s) as the probe. This package provides a python interface to
|
||||
control all the steps of the calculation.
|
||||
|
||||
Available spectroscopies:
|
||||
* Photoelectron diffraction
|
||||
* Auger electron diffraction
|
||||
* Low energy electron diffraction
|
||||
* X-Ray absorption spectroscopy
|
||||
* Auger Photoelectron coincidence spectroscopy
|
||||
* Computation of the spectral radius""",
|
||||
keywords = spectroscopy atom electron photon multiple scattering
|
||||
license = GPL
|
||||
classifiers =
|
||||
Development Status :: 3 - Alpha
|
||||
Environment :: Console
|
||||
Intended Audience :: Science/Research
|
||||
License :: OSI Approved :: GNU General Public License (GPL)
|
||||
Natural Language :: English
|
||||
Operating System :: Microsoft :: Windows :: Windows 10
|
||||
Operating System :: POSIX :: Linux
|
||||
Operating System :: MacOS :: MacOS X
|
||||
Programming Language :: Fortran
|
||||
Programming Language :: Python :: 3 :: Only
|
||||
Topic :: Scientific/Engineering :: Physics
|
||||
|
||||
[options]
|
||||
packages = find:
|
||||
zip_safe = False
|
||||
install_requires =
|
||||
setuptools_scm
|
||||
ase
|
||||
h5py
|
||||
ipython
|
||||
lxml
|
||||
matplotlib
|
||||
numpy
|
||||
Pint
|
||||
pandas
|
||||
pycairo
|
||||
scipy
|
||||
terminaltables
|
||||
|
||||
[options.package_data]
|
||||
msspec.phagen = fortran/*.so
|
||||
msspec.spec = fortran/*.so
|
||||
msspec = VERSION
|
Binary file not shown.
Loading…
Reference in New Issue