MsSpec-DFM/New_libraries/DFM_library/ACCURACY_LIBRARY/accuracy.f90

402 lines
13 KiB
Fortran

!
!=======================================================================
!
MODULE ACCURACY_REAL
!
INTEGER, PARAMETER :: SP = SELECTED_REAL_KIND(6, 37) ! single precision
INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(15, 307) ! double precision
INTEGER, PARAMETER :: QP = SELECTED_REAL_KIND(33, 4931) ! quadruple precision
!
INTEGER, PARAMETER :: WP = DP ! selected value for code
!
END MODULE ACCURACY_REAL
!
!=======================================================================
!
MODULE ACCURACY_INTEGER
!
INTEGER, PARAMETER :: I1 = SELECTED_INT_KIND(8) ! default precision
INTEGER, PARAMETER :: I2 = SELECTED_INT_KIND(16) ! single precision
INTEGER, PARAMETER :: I4 = SELECTED_INT_KIND(32) ! double precision
INTEGER, PARAMETER :: I8 = SELECTED_INT_KIND(64) ! quadruple precision
!
INTEGER, PARAMETER :: IW = I1 ! selected value for code
!
END MODULE ACCURACY_INTEGER
!
!=======================================================================
!
MODULE MINMAX_VALUES
!
USE ACCURACY_REAL
USE ACCURACY_INTEGER
!
INTEGER (IW) :: III
!
REAL (WP) :: XXX
!
INTEGER (IW), PARAMETER :: INT_MAX = HUGE(III) ! maximal value of integer
!
REAL (WP), PARAMETER :: LN2 = 0.6931471805599453094172321214581765681D0 ! ln(2)
REAL (WP), PARAMETER :: MAX_2XP = MAXEXPONENT(XXX) ! max value of y so that 2^x is defined
REAL (WP), PARAMETER :: MIN_2XP = MINEXPONENT(XXX) ! max value of y so that 2^-x is defined
REAL (WP), PARAMETER :: REL_MIN = TINY(XXX) ! minimum value of real number
REAL (WP), PARAMETER :: REL_MAX = HUGE(XXX) ! maximum value of real number
REAL (WP), PARAMETER :: EPS_MIN = EPSILON(XXX) ! smallest value real such that x + epsilon /= x and x = 1
REAL (WP), PARAMETER :: DGT_SIG = DIGITS(XXX) ! number of significant digits
!
CONTAINS
!
!=======================================================================
!
SUBROUTINE MINMAX_EXP(MAX_EXP,MIN_EXP)
!
! This module computes the maximal and minimal exponent
! so that e^x is defined
!
IMPLICIT NONE
!
REAL (WP), INTENT(OUT) :: MAX_EXP,MIN_EXP
!
REAL (WP), PARAMETER :: LN2 = 0.6931471805599453094172321214581765681D0 ! ln(2)
!
MAX_EXP = INT(MAXEXPONENT(XXX) * LN2) ! max value of y so that e^x is defined
MIN_EXP = INT(MINEXPONENT(XXX) * LN2) ! max value of y so that e^-x is defined
!
END SUBROUTINE MINMAX_EXP
!
END MODULE MINMAX_VALUES
!
!=======================================================================
!
MODULE MACHINE_ACCURACY
!
! This module provides the AMOS legacy routines for machine accuracy:
!
! * FUNCTION D1MACH(I) --> double precision reals
!
! * FUNCTION I1MACH(I) --> integers
!
! * FUNCTION R1MACH(I) --> single precision reals
!
!
USE ACCURACY_REAL
USE ACCURACY_INTEGER
!
CONTAINS
!
!=======================================================================
!
FUNCTION D1MACH(I)
!
IMPLICIT NONE
!
INTEGER (IW) :: I
!
REAL (WP) :: D1MACH
REAL (WP) :: B,X
!
!***BEGIN PROLOGUE D1MACH
!***PURPOSE Return floating point machine dependent constants.
!***LIBRARY SLATEC
!***CATEGORY R1
!***TYPE SINGLE PRECISION (D1MACH-S, D1MACH-D)
!***KEYWORDS MACHINE CONSTANTS
!***AUTHOR Fox, P. A., (Bell Labs)
! Hall, A. D., (Bell Labs)
! Schryer, N. L., (Bell Labs)
!***DESCRIPTION
!
! D1MACH can be used to obtain machine-dependent parameters for the
! local machine environment. It is a function subprogram with one
! (input) argument, and can be referenced as follows:
!
! A = D1MACH(I)
!
! where I=1,...,5. The (output) value of A above is determined by
! the (input) value of I. The results for various values of I are
! discussed below.
!
! D1MACH(1) = B**(EMIN-1), the smallest positive magnitude.
! D1MACH(2) = B**EMAX*(1 - B**(-T)), the largest magnitude.
! D1MACH(3) = B**(-T), the smallest relative spacing.
! D1MACH(4) = B**(1-T), the largest relative spacing.
! D1MACH(5) = LOG10(B)
!
! Assume single precision numbers are represented in the T-digit,
! base-B form
!
! sign (B**E)*( (X(1)/B) + ... + (X(T)/B**T) )
!
! where 0 .LE. X(I) .LT. B for I=1,...,T, 0 .LT. X(1), and
! EMIN .LE. E .LE. EMAX.
!
! The values of B, T, EMIN and EMAX are provided in I1MACH as
! follows:
! I1MACH(10) = B, the base.
! I1MACH(11) = T, the number of base-B digits.
! I1MACH(12) = EMIN, the smallest exponent E.
! I1MACH(13) = EMAX, the largest exponent E.
!
!
!***REFERENCES P. A. Fox, A. D. Hall and N. L. Schryer, Framework for
! a portable library, ACM Transactions on Mathematical
! Software 4, 2 (June 1978), pp. 177-188.
!***ROUTINES CALLED XERMSG
!***REVISION HISTORY (YYMMDD)
! 790101 DATE WRITTEN
! 960329 Modified for Fortran 90 (BE after suggestions by EHG)
!***END PROLOGUE D1MACH
!
X = 1.0E0_WP
B = RADIX(X)
!
SELECT CASE (I)
CASE (1)
D1MACH = B**(MINEXPONENT(X)-1) ! the smallest positive magnitude.
CASE (2)
D1MACH = HUGE(X) ! the largest magnitude.
CASE (3)
D1MACH = B**(-DIGITS(X)) ! the smallest relative spacing.
CASE (4)
D1MACH = B**(1-DIGITS(X)) ! the largest relative spacing.
CASE (5)
D1MACH = LOG10(B)
CASE DEFAULT
WRITE (*,10)
STOP
END SELECT
!
! Formats:
!
10 FORMAT ('1ERROR 1 in D1MACH - I out of bounds')
!
END FUNCTION D1MACH
!
!=======================================================================
!
FUNCTION I1MACH(I)
!
IMPLICIT NONE
!
INTEGER :: I,I1MACH
!
REAL (SP) :: X
!
REAL (WP) :: XX
!
!***BEGIN PROLOGUE I1MACH
!***PURPOSE Return integer machine dependent constants.
!***LIBRARY SLATEC
!***CATEGORY R1
!***TYPE INTEGER (I1MACH-I)
!***KEYWORDS MACHINE CONSTANTS
!***AUTHOR Fox, P. A., (Bell Labs)
! Hall, A. D., (Bell Labs)
! Schryer, N. L., (Bell Labs)
!***DESCRIPTION
!
! I1MACH can be used to obtain machine-dependent parameters for the
! local machine environment. It is a function subprogram with one
! (input) argument and can be referenced as follows:
!
! K = I1MACH(I)
!
! where I=1,...,16. The (output) value of K above is determined by
! the (input) value of I. The results for various values of I are
! discussed below.
!
! I/O unit numbers:
! I1MACH( 1) = the standard input unit.
! I1MACH( 2) = the standard output unit.
! I1MACH( 3) = the standard punch unit.
! I1MACH( 4) = the standard error message unit.
!
! Words:
! I1MACH( 5) = the number of bits per integer storage unit.
! I1MACH( 6) = the number of characters per integer storage unit.
!
! Integers:
! assume integers are represented in the S-digit, base-A form
!
! sign ( X(S-1)*A**(S-1) + ... + X(1)*A + X(0) )
!
! where 0 .LE. X(I) .LT. A for I=0,...,S-1.
! I1MACH( 7) = A, the base.
! I1MACH( 8) = S, the number of base-A digits.
! I1MACH( 9) = A**S - 1, the largest magnitude.
!
! Floating-Point Numbers:
! Assume floating-point numbers are represented in the T-digit,
! base-B form
! sign (B**E)*( (X(1)/B) + ... + (X(T)/B**T) )
!
! where 0 .LE. X(I) .LT. B for I=1,...,T,
! 0 .LT. X(1), and EMIN .LE. E .LE. EMAX.
! I1MACH(10) = B, the base.
!
! Single-Precision:
! I1MACH(11) = T, the number of base-B digits.
! I1MACH(12) = EMIN, the smallest exponent E.
! I1MACH(13) = EMAX, the largest exponent E.
!
! Double-Precision:
! I1MACH(14) = T, the number of base-B digits.
! I1MACH(15) = EMIN, the smallest exponent E.
! I1MACH(16) = EMAX, the largest exponent E.
!
! To alter this function for a particular environment, the desired
! set of DATA statements should be activated by removing the C from
! column 1. Also, the values of I1MACH(1) - I1MACH(4) should be
! checked for consistency with the local operating system.
!
!***REFERENCES P. A. Fox, A. D. Hall and N. L. Schryer, Framework for
! a portable library, ACM Transactions on Mathematical
! Software 4, 2 (June 1978), pp. 177-188.
!***ROUTINES CALLED (NONE)
!***REVISION HISTORY (YYMMDD)
! 750101 DATE WRITTEN
! 960411 Modified for Fortran 90 (BE after suggestions by EHG).
! 980727 Modified value of I1MACH(6) (BE after suggestion by EHG).
!***END PROLOGUE I1MACH
!
X = 1.0
XX = 1.0E0_WP
SELECT CASE (I)
CASE (1)
I1MACH = 5 ! Input unit
CASE (2)
I1MACH = 6 ! Output unit
CASE (3)
I1MACH = 0 ! Punch unit is no longer used
CASE (4)
I1MACH = 0 ! Error message unit
CASE (5)
I1MACH = BIT_SIZE(I)
CASE (6)
I1MACH = 4 ! Characters per integer is hopefully no
! longer used.
! If it is used it has to be set manually.
! The value 4 is correct on IEEE-machines.
CASE (7)
I1MACH = RADIX(1)
CASE (8)
I1MACH = BIT_SIZE(I) - 1
CASE (9)
I1MACH = HUGE(1)
CASE (10)
I1MACH = RADIX(X)
CASE (11)
I1MACH = DIGITS(X)
CASE (12)
I1MACH = MINEXPONENT(X)
CASE (13)
I1MACH = MAXEXPONENT(X)
CASE (14)
I1MACH = DIGITS(XX)
CASE (15)
I1MACH = MINEXPONENT(XX)
CASE (16)
I1MACH = MAXEXPONENT(XX)
CASE DEFAULT
WRITE (*,10)
STOP
END SELECT
!
! Formats
!
10 FORMAT ('Fatal in I1MACH - I out of bounds')
!
END FUNCTION I1MACH
!
!=======================================================================
!
FUNCTION R1MACH (I)
!
IMPLICIT NONE
!
INTEGER :: I
!
REAL (SP) :: B,X,R1MACH
!
!***BEGIN PROLOGUE R1MACH
!***PURPOSE Return floating point machine dependent constants.
!***LIBRARY SLATEC
!***CATEGORY R1
!***TYPE SINGLE PRECISION (R1MACH-S, D1MACH-D)
!***KEYWORDS MACHINE CONSTANTS
!***AUTHOR Fox, P. A., (Bell Labs)
! Hall, A. D., (Bell Labs)
! Schryer, N. L., (Bell Labs)
!***DESCRIPTION
!
! R1MACH can be used to obtain machine-dependent parameters for the
! local machine environment. It is a function subprogram with one
! (input) argument, and can be referenced as follows:
!
! A = R1MACH(I)
!
! where I=1,...,5. The (output) value of A above is determined by
! the (input) value of I. The results for various values of I are
! discussed below.
!
! R1MACH(1) = B**(EMIN-1), the smallest positive magnitude.
! R1MACH(2) = B**EMAX*(1 - B**(-T)), the largest magnitude.
! R1MACH(3) = B**(-T), the smallest relative spacing.
! R1MACH(4) = B**(1-T), the largest relative spacing.
! R1MACH(5) = LOG10(B)
!
! Assume single precision numbers are represented in the T-digit,
! base-B form
!
! sign (B**E)*( (X(1)/B) + ... + (X(T)/B**T) )
!
! where 0 .LE. X(I) .LT. B for I=1,...,T, 0 .LT. X(1), and
! EMIN .LE. E .LE. EMAX.
!
! The values of B, T, EMIN and EMAX are provided in I1MACH as
! follows:
! I1MACH(10) = B, the base.
! I1MACH(11) = T, the number of base-B digits.
! I1MACH(12) = EMIN, the smallest exponent E.
! I1MACH(13) = EMAX, the largest exponent E.
!
!
!***REFERENCES P. A. Fox, A. D. Hall and N. L. Schryer, Framework for
! a portable library, ACM Transactions on Mathematical
! Software 4, 2 (June 1978), pp. 177-188.
!***ROUTINES CALLED XERMSG
!***REVISION HISTORY (YYMMDD)
! 790101 DATE WRITTEN
! 960329 Modified for Fortran 90 (BE after suggestions by EG)
!***END PROLOGUE R1MACH
!
X = 1.0
B = RADIX(X)
!
SELECT CASE (I)
CASE (1)
R1MACH = B**(MINEXPONENT(X)-1) ! the smallest positive magnitude.
CASE (2)
R1MACH = HUGE(X) ! the largest magnitude.
CASE (3)
R1MACH = B**(-DIGITS(X)) ! the smallest relative spacing.
CASE (4)
R1MACH = B**(1-DIGITS(X)) ! the largest relative spacing.
CASE (5)
R1MACH = LOG10(B)
CASE DEFAULT
WRITE (*,10)
STOP
END SELECT
!
! Formats:
!
10 FORMAT ('1ERROR 1 IN R1MACH - I out of bounds')
!
END FUNCTION R1MACH
!
END MODULE MACHINE_ACCURACY