402 lines
13 KiB
Fortran
402 lines
13 KiB
Fortran
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
MODULE ACCURACY_REAL
|
||
|
!
|
||
|
INTEGER, PARAMETER :: SP = SELECTED_REAL_KIND(6, 37) ! single precision
|
||
|
INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(15, 307) ! double precision
|
||
|
INTEGER, PARAMETER :: QP = SELECTED_REAL_KIND(33, 4931) ! quadruple precision
|
||
|
!
|
||
|
INTEGER, PARAMETER :: WP = DP ! selected value for code
|
||
|
!
|
||
|
END MODULE ACCURACY_REAL
|
||
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
MODULE ACCURACY_INTEGER
|
||
|
!
|
||
|
INTEGER, PARAMETER :: I1 = SELECTED_INT_KIND(8) ! default precision
|
||
|
INTEGER, PARAMETER :: I2 = SELECTED_INT_KIND(16) ! single precision
|
||
|
INTEGER, PARAMETER :: I4 = SELECTED_INT_KIND(32) ! double precision
|
||
|
INTEGER, PARAMETER :: I8 = SELECTED_INT_KIND(64) ! quadruple precision
|
||
|
!
|
||
|
INTEGER, PARAMETER :: IW = I1 ! selected value for code
|
||
|
!
|
||
|
END MODULE ACCURACY_INTEGER
|
||
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
MODULE MINMAX_VALUES
|
||
|
!
|
||
|
USE ACCURACY_REAL
|
||
|
USE ACCURACY_INTEGER
|
||
|
!
|
||
|
INTEGER (IW) :: III
|
||
|
!
|
||
|
REAL (WP) :: XXX
|
||
|
!
|
||
|
INTEGER (IW), PARAMETER :: INT_MAX = HUGE(III) ! maximal value of integer
|
||
|
!
|
||
|
REAL (WP), PARAMETER :: LN2 = 0.6931471805599453094172321214581765681D0 ! ln(2)
|
||
|
|
||
|
REAL (WP), PARAMETER :: MAX_2XP = MAXEXPONENT(XXX) ! max value of y so that 2^x is defined
|
||
|
REAL (WP), PARAMETER :: MIN_2XP = MINEXPONENT(XXX) ! max value of y so that 2^-x is defined
|
||
|
REAL (WP), PARAMETER :: REL_MIN = TINY(XXX) ! minimum value of real number
|
||
|
REAL (WP), PARAMETER :: REL_MAX = HUGE(XXX) ! maximum value of real number
|
||
|
REAL (WP), PARAMETER :: EPS_MIN = EPSILON(XXX) ! smallest value real such that x + epsilon /= x and x = 1
|
||
|
REAL (WP), PARAMETER :: DGT_SIG = DIGITS(XXX) ! number of significant digits
|
||
|
!
|
||
|
CONTAINS
|
||
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
SUBROUTINE MINMAX_EXP(MAX_EXP,MIN_EXP)
|
||
|
!
|
||
|
! This module computes the maximal and minimal exponent
|
||
|
! so that e^x is defined
|
||
|
!
|
||
|
IMPLICIT NONE
|
||
|
!
|
||
|
REAL (WP), INTENT(OUT) :: MAX_EXP,MIN_EXP
|
||
|
!
|
||
|
REAL (WP), PARAMETER :: LN2 = 0.6931471805599453094172321214581765681D0 ! ln(2)
|
||
|
!
|
||
|
MAX_EXP = INT(MAXEXPONENT(XXX) * LN2) ! max value of y so that e^x is defined
|
||
|
MIN_EXP = INT(MINEXPONENT(XXX) * LN2) ! max value of y so that e^-x is defined
|
||
|
!
|
||
|
END SUBROUTINE MINMAX_EXP
|
||
|
!
|
||
|
END MODULE MINMAX_VALUES
|
||
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
MODULE MACHINE_ACCURACY
|
||
|
!
|
||
|
! This module provides the AMOS legacy routines for machine accuracy:
|
||
|
!
|
||
|
! * FUNCTION D1MACH(I) --> double precision reals
|
||
|
!
|
||
|
! * FUNCTION I1MACH(I) --> integers
|
||
|
!
|
||
|
! * FUNCTION R1MACH(I) --> single precision reals
|
||
|
!
|
||
|
!
|
||
|
USE ACCURACY_REAL
|
||
|
USE ACCURACY_INTEGER
|
||
|
!
|
||
|
CONTAINS
|
||
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
FUNCTION D1MACH(I)
|
||
|
!
|
||
|
IMPLICIT NONE
|
||
|
!
|
||
|
INTEGER (IW) :: I
|
||
|
!
|
||
|
REAL (WP) :: D1MACH
|
||
|
REAL (WP) :: B,X
|
||
|
!
|
||
|
!***BEGIN PROLOGUE D1MACH
|
||
|
!***PURPOSE Return floating point machine dependent constants.
|
||
|
!***LIBRARY SLATEC
|
||
|
!***CATEGORY R1
|
||
|
!***TYPE SINGLE PRECISION (D1MACH-S, D1MACH-D)
|
||
|
!***KEYWORDS MACHINE CONSTANTS
|
||
|
!***AUTHOR Fox, P. A., (Bell Labs)
|
||
|
! Hall, A. D., (Bell Labs)
|
||
|
! Schryer, N. L., (Bell Labs)
|
||
|
!***DESCRIPTION
|
||
|
!
|
||
|
! D1MACH can be used to obtain machine-dependent parameters for the
|
||
|
! local machine environment. It is a function subprogram with one
|
||
|
! (input) argument, and can be referenced as follows:
|
||
|
!
|
||
|
! A = D1MACH(I)
|
||
|
!
|
||
|
! where I=1,...,5. The (output) value of A above is determined by
|
||
|
! the (input) value of I. The results for various values of I are
|
||
|
! discussed below.
|
||
|
!
|
||
|
! D1MACH(1) = B**(EMIN-1), the smallest positive magnitude.
|
||
|
! D1MACH(2) = B**EMAX*(1 - B**(-T)), the largest magnitude.
|
||
|
! D1MACH(3) = B**(-T), the smallest relative spacing.
|
||
|
! D1MACH(4) = B**(1-T), the largest relative spacing.
|
||
|
! D1MACH(5) = LOG10(B)
|
||
|
!
|
||
|
! Assume single precision numbers are represented in the T-digit,
|
||
|
! base-B form
|
||
|
!
|
||
|
! sign (B**E)*( (X(1)/B) + ... + (X(T)/B**T) )
|
||
|
!
|
||
|
! where 0 .LE. X(I) .LT. B for I=1,...,T, 0 .LT. X(1), and
|
||
|
! EMIN .LE. E .LE. EMAX.
|
||
|
!
|
||
|
! The values of B, T, EMIN and EMAX are provided in I1MACH as
|
||
|
! follows:
|
||
|
! I1MACH(10) = B, the base.
|
||
|
! I1MACH(11) = T, the number of base-B digits.
|
||
|
! I1MACH(12) = EMIN, the smallest exponent E.
|
||
|
! I1MACH(13) = EMAX, the largest exponent E.
|
||
|
!
|
||
|
!
|
||
|
!***REFERENCES P. A. Fox, A. D. Hall and N. L. Schryer, Framework for
|
||
|
! a portable library, ACM Transactions on Mathematical
|
||
|
! Software 4, 2 (June 1978), pp. 177-188.
|
||
|
!***ROUTINES CALLED XERMSG
|
||
|
!***REVISION HISTORY (YYMMDD)
|
||
|
! 790101 DATE WRITTEN
|
||
|
! 960329 Modified for Fortran 90 (BE after suggestions by EHG)
|
||
|
!***END PROLOGUE D1MACH
|
||
|
!
|
||
|
X = 1.0E0_WP
|
||
|
B = RADIX(X)
|
||
|
!
|
||
|
SELECT CASE (I)
|
||
|
CASE (1)
|
||
|
D1MACH = B**(MINEXPONENT(X)-1) ! the smallest positive magnitude.
|
||
|
CASE (2)
|
||
|
D1MACH = HUGE(X) ! the largest magnitude.
|
||
|
CASE (3)
|
||
|
D1MACH = B**(-DIGITS(X)) ! the smallest relative spacing.
|
||
|
CASE (4)
|
||
|
D1MACH = B**(1-DIGITS(X)) ! the largest relative spacing.
|
||
|
CASE (5)
|
||
|
D1MACH = LOG10(B)
|
||
|
CASE DEFAULT
|
||
|
WRITE (*,10)
|
||
|
STOP
|
||
|
END SELECT
|
||
|
!
|
||
|
! Formats:
|
||
|
!
|
||
|
10 FORMAT ('1ERROR 1 in D1MACH - I out of bounds')
|
||
|
!
|
||
|
END FUNCTION D1MACH
|
||
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
FUNCTION I1MACH(I)
|
||
|
!
|
||
|
IMPLICIT NONE
|
||
|
!
|
||
|
INTEGER :: I,I1MACH
|
||
|
!
|
||
|
REAL (SP) :: X
|
||
|
!
|
||
|
REAL (WP) :: XX
|
||
|
!
|
||
|
!***BEGIN PROLOGUE I1MACH
|
||
|
!***PURPOSE Return integer machine dependent constants.
|
||
|
!***LIBRARY SLATEC
|
||
|
!***CATEGORY R1
|
||
|
!***TYPE INTEGER (I1MACH-I)
|
||
|
!***KEYWORDS MACHINE CONSTANTS
|
||
|
!***AUTHOR Fox, P. A., (Bell Labs)
|
||
|
! Hall, A. D., (Bell Labs)
|
||
|
! Schryer, N. L., (Bell Labs)
|
||
|
!***DESCRIPTION
|
||
|
!
|
||
|
! I1MACH can be used to obtain machine-dependent parameters for the
|
||
|
! local machine environment. It is a function subprogram with one
|
||
|
! (input) argument and can be referenced as follows:
|
||
|
!
|
||
|
! K = I1MACH(I)
|
||
|
!
|
||
|
! where I=1,...,16. The (output) value of K above is determined by
|
||
|
! the (input) value of I. The results for various values of I are
|
||
|
! discussed below.
|
||
|
!
|
||
|
! I/O unit numbers:
|
||
|
! I1MACH( 1) = the standard input unit.
|
||
|
! I1MACH( 2) = the standard output unit.
|
||
|
! I1MACH( 3) = the standard punch unit.
|
||
|
! I1MACH( 4) = the standard error message unit.
|
||
|
!
|
||
|
! Words:
|
||
|
! I1MACH( 5) = the number of bits per integer storage unit.
|
||
|
! I1MACH( 6) = the number of characters per integer storage unit.
|
||
|
!
|
||
|
! Integers:
|
||
|
! assume integers are represented in the S-digit, base-A form
|
||
|
!
|
||
|
! sign ( X(S-1)*A**(S-1) + ... + X(1)*A + X(0) )
|
||
|
!
|
||
|
! where 0 .LE. X(I) .LT. A for I=0,...,S-1.
|
||
|
! I1MACH( 7) = A, the base.
|
||
|
! I1MACH( 8) = S, the number of base-A digits.
|
||
|
! I1MACH( 9) = A**S - 1, the largest magnitude.
|
||
|
!
|
||
|
! Floating-Point Numbers:
|
||
|
! Assume floating-point numbers are represented in the T-digit,
|
||
|
! base-B form
|
||
|
! sign (B**E)*( (X(1)/B) + ... + (X(T)/B**T) )
|
||
|
!
|
||
|
! where 0 .LE. X(I) .LT. B for I=1,...,T,
|
||
|
! 0 .LT. X(1), and EMIN .LE. E .LE. EMAX.
|
||
|
! I1MACH(10) = B, the base.
|
||
|
!
|
||
|
! Single-Precision:
|
||
|
! I1MACH(11) = T, the number of base-B digits.
|
||
|
! I1MACH(12) = EMIN, the smallest exponent E.
|
||
|
! I1MACH(13) = EMAX, the largest exponent E.
|
||
|
!
|
||
|
! Double-Precision:
|
||
|
! I1MACH(14) = T, the number of base-B digits.
|
||
|
! I1MACH(15) = EMIN, the smallest exponent E.
|
||
|
! I1MACH(16) = EMAX, the largest exponent E.
|
||
|
!
|
||
|
! To alter this function for a particular environment, the desired
|
||
|
! set of DATA statements should be activated by removing the C from
|
||
|
! column 1. Also, the values of I1MACH(1) - I1MACH(4) should be
|
||
|
! checked for consistency with the local operating system.
|
||
|
!
|
||
|
!***REFERENCES P. A. Fox, A. D. Hall and N. L. Schryer, Framework for
|
||
|
! a portable library, ACM Transactions on Mathematical
|
||
|
! Software 4, 2 (June 1978), pp. 177-188.
|
||
|
!***ROUTINES CALLED (NONE)
|
||
|
!***REVISION HISTORY (YYMMDD)
|
||
|
! 750101 DATE WRITTEN
|
||
|
! 960411 Modified for Fortran 90 (BE after suggestions by EHG).
|
||
|
! 980727 Modified value of I1MACH(6) (BE after suggestion by EHG).
|
||
|
!***END PROLOGUE I1MACH
|
||
|
!
|
||
|
X = 1.0
|
||
|
XX = 1.0E0_WP
|
||
|
|
||
|
SELECT CASE (I)
|
||
|
CASE (1)
|
||
|
I1MACH = 5 ! Input unit
|
||
|
CASE (2)
|
||
|
I1MACH = 6 ! Output unit
|
||
|
CASE (3)
|
||
|
I1MACH = 0 ! Punch unit is no longer used
|
||
|
CASE (4)
|
||
|
I1MACH = 0 ! Error message unit
|
||
|
CASE (5)
|
||
|
I1MACH = BIT_SIZE(I)
|
||
|
CASE (6)
|
||
|
I1MACH = 4 ! Characters per integer is hopefully no
|
||
|
! longer used.
|
||
|
! If it is used it has to be set manually.
|
||
|
! The value 4 is correct on IEEE-machines.
|
||
|
CASE (7)
|
||
|
I1MACH = RADIX(1)
|
||
|
CASE (8)
|
||
|
I1MACH = BIT_SIZE(I) - 1
|
||
|
CASE (9)
|
||
|
I1MACH = HUGE(1)
|
||
|
CASE (10)
|
||
|
I1MACH = RADIX(X)
|
||
|
CASE (11)
|
||
|
I1MACH = DIGITS(X)
|
||
|
CASE (12)
|
||
|
I1MACH = MINEXPONENT(X)
|
||
|
CASE (13)
|
||
|
I1MACH = MAXEXPONENT(X)
|
||
|
CASE (14)
|
||
|
I1MACH = DIGITS(XX)
|
||
|
CASE (15)
|
||
|
I1MACH = MINEXPONENT(XX)
|
||
|
CASE (16)
|
||
|
I1MACH = MAXEXPONENT(XX)
|
||
|
CASE DEFAULT
|
||
|
WRITE (*,10)
|
||
|
STOP
|
||
|
END SELECT
|
||
|
!
|
||
|
! Formats
|
||
|
!
|
||
|
10 FORMAT ('Fatal in I1MACH - I out of bounds')
|
||
|
!
|
||
|
END FUNCTION I1MACH
|
||
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
FUNCTION R1MACH (I)
|
||
|
!
|
||
|
IMPLICIT NONE
|
||
|
!
|
||
|
INTEGER :: I
|
||
|
!
|
||
|
REAL (SP) :: B,X,R1MACH
|
||
|
!
|
||
|
!***BEGIN PROLOGUE R1MACH
|
||
|
!***PURPOSE Return floating point machine dependent constants.
|
||
|
!***LIBRARY SLATEC
|
||
|
!***CATEGORY R1
|
||
|
!***TYPE SINGLE PRECISION (R1MACH-S, D1MACH-D)
|
||
|
!***KEYWORDS MACHINE CONSTANTS
|
||
|
!***AUTHOR Fox, P. A., (Bell Labs)
|
||
|
! Hall, A. D., (Bell Labs)
|
||
|
! Schryer, N. L., (Bell Labs)
|
||
|
!***DESCRIPTION
|
||
|
!
|
||
|
! R1MACH can be used to obtain machine-dependent parameters for the
|
||
|
! local machine environment. It is a function subprogram with one
|
||
|
! (input) argument, and can be referenced as follows:
|
||
|
!
|
||
|
! A = R1MACH(I)
|
||
|
!
|
||
|
! where I=1,...,5. The (output) value of A above is determined by
|
||
|
! the (input) value of I. The results for various values of I are
|
||
|
! discussed below.
|
||
|
!
|
||
|
! R1MACH(1) = B**(EMIN-1), the smallest positive magnitude.
|
||
|
! R1MACH(2) = B**EMAX*(1 - B**(-T)), the largest magnitude.
|
||
|
! R1MACH(3) = B**(-T), the smallest relative spacing.
|
||
|
! R1MACH(4) = B**(1-T), the largest relative spacing.
|
||
|
! R1MACH(5) = LOG10(B)
|
||
|
!
|
||
|
! Assume single precision numbers are represented in the T-digit,
|
||
|
! base-B form
|
||
|
!
|
||
|
! sign (B**E)*( (X(1)/B) + ... + (X(T)/B**T) )
|
||
|
!
|
||
|
! where 0 .LE. X(I) .LT. B for I=1,...,T, 0 .LT. X(1), and
|
||
|
! EMIN .LE. E .LE. EMAX.
|
||
|
!
|
||
|
! The values of B, T, EMIN and EMAX are provided in I1MACH as
|
||
|
! follows:
|
||
|
! I1MACH(10) = B, the base.
|
||
|
! I1MACH(11) = T, the number of base-B digits.
|
||
|
! I1MACH(12) = EMIN, the smallest exponent E.
|
||
|
! I1MACH(13) = EMAX, the largest exponent E.
|
||
|
!
|
||
|
!
|
||
|
!***REFERENCES P. A. Fox, A. D. Hall and N. L. Schryer, Framework for
|
||
|
! a portable library, ACM Transactions on Mathematical
|
||
|
! Software 4, 2 (June 1978), pp. 177-188.
|
||
|
!***ROUTINES CALLED XERMSG
|
||
|
!***REVISION HISTORY (YYMMDD)
|
||
|
! 790101 DATE WRITTEN
|
||
|
! 960329 Modified for Fortran 90 (BE after suggestions by EG)
|
||
|
!***END PROLOGUE R1MACH
|
||
|
!
|
||
|
X = 1.0
|
||
|
B = RADIX(X)
|
||
|
!
|
||
|
SELECT CASE (I)
|
||
|
CASE (1)
|
||
|
R1MACH = B**(MINEXPONENT(X)-1) ! the smallest positive magnitude.
|
||
|
CASE (2)
|
||
|
R1MACH = HUGE(X) ! the largest magnitude.
|
||
|
CASE (3)
|
||
|
R1MACH = B**(-DIGITS(X)) ! the smallest relative spacing.
|
||
|
CASE (4)
|
||
|
R1MACH = B**(1-DIGITS(X)) ! the largest relative spacing.
|
||
|
CASE (5)
|
||
|
R1MACH = LOG10(B)
|
||
|
CASE DEFAULT
|
||
|
WRITE (*,10)
|
||
|
STOP
|
||
|
END SELECT
|
||
|
!
|
||
|
! Formats:
|
||
|
!
|
||
|
10 FORMAT ('1ERROR 1 IN R1MACH - I out of bounds')
|
||
|
!
|
||
|
END FUNCTION R1MACH
|
||
|
!
|
||
|
END MODULE MACHINE_ACCURACY
|