67 lines
1.8 KiB
Fortran
67 lines
1.8 KiB
Fortran
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
MODULE VELOCITIES
|
||
|
!
|
||
|
USE ACCURACY_REAL
|
||
|
!
|
||
|
CONTAINS
|
||
|
!
|
||
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
SUBROUTINE VELOCITIES_3D(RS,T,EC_TYPE,VE2,V_INT_2)
|
||
|
!
|
||
|
! This subroutine computes velocities as a function of the
|
||
|
! correlation energy
|
||
|
!
|
||
|
!
|
||
|
! References: (1) I. M. Tkachenko, J. Alcober and J. L. Munoz-Cobo,
|
||
|
! Contrib. Plasma Phys. 5, 467-475 (2002)
|
||
|
!
|
||
|
! Input parameters:
|
||
|
!
|
||
|
! * RS : Wigner-Seitz radius (in units of a_0)
|
||
|
! * T : temperature (SI)
|
||
|
! * EC_TYPE : type of correlation energy functional
|
||
|
!
|
||
|
! Output parameters:
|
||
|
!
|
||
|
! * VE2 : square of the average kinetic energy velocity
|
||
|
! * V_INT_2 : square of the correlation energy velocity
|
||
|
!
|
||
|
!
|
||
|
!
|
||
|
! Author : D. Sébilleau
|
||
|
!
|
||
|
! Last modified : 18 Jun 2020
|
||
|
!
|
||
|
!
|
||
|
USE REAL_NUMBERS, ONLY : TWO
|
||
|
USE CONSTANTS_P1, ONLY : H_BAR,E
|
||
|
USE CORRELATION_ENERGIES
|
||
|
!
|
||
|
IMPLICIT NONE
|
||
|
!
|
||
|
CHARACTER (LEN = 6) :: EC_TYPE
|
||
|
!
|
||
|
REAL (WP) :: RS,T
|
||
|
REAL (WP) :: VE2,V_INT_2
|
||
|
REAL (WP) :: COEF,EC,D_EC_1,D_EC_2
|
||
|
!
|
||
|
COEF= (E*E/H_BAR)**2 !
|
||
|
!
|
||
|
EC = EC_3D(EC_TYPE,1,RS,T) !
|
||
|
CALL DERIVE_EC_3D(EC_TYPE,1,5,RS,T,D_EC_1,D_EC_2) !
|
||
|
!
|
||
|
! Velocities (with EC per electron in Ryd) !
|
||
|
!
|
||
|
VE2 = COEF*(2.21E0_WP/(RS*RS) - EC - RS*D_EC_1) ! ref (1) eq. (22)
|
||
|
V_INT_2 = -TWO*COEF/15.0E0_WP * & !
|
||
|
(-0.916E0_WP/RS + TWO*EC + RS*D_EC_1) ! ref (1) eq. (22)
|
||
|
!
|
||
|
END SUBROUTINE VELOCITIES_3D
|
||
|
!
|
||
|
END MODULE VELOCITIES
|
||
|
|