! !======================================================================= ! MODULE VELOCITIES ! USE ACCURACY_REAL ! CONTAINS ! ! !======================================================================= ! SUBROUTINE VELOCITIES_3D(RS,T,EC_TYPE,VE2,V_INT_2) ! ! This subroutine computes velocities as a function of the ! correlation energy ! ! ! References: (1) I. M. Tkachenko, J. Alcober and J. L. Munoz-Cobo, ! Contrib. Plasma Phys. 5, 467-475 (2002) ! ! Input parameters: ! ! * RS : Wigner-Seitz radius (in units of a_0) ! * T : temperature (SI) ! * EC_TYPE : type of correlation energy functional ! ! Output parameters: ! ! * VE2 : square of the average kinetic energy velocity ! * V_INT_2 : square of the correlation energy velocity ! ! ! ! Author : D. Sébilleau ! ! Last modified : 18 Jun 2020 ! ! USE REAL_NUMBERS, ONLY : TWO USE CONSTANTS_P1, ONLY : H_BAR,E USE CORRELATION_ENERGIES ! IMPLICIT NONE ! CHARACTER (LEN = 6) :: EC_TYPE ! REAL (WP) :: RS,T REAL (WP) :: VE2,V_INT_2 REAL (WP) :: COEF,EC,D_EC_1,D_EC_2 ! COEF= (E*E/H_BAR)**2 ! ! EC = EC_3D(EC_TYPE,1,RS,T) ! CALL DERIVE_EC_3D(EC_TYPE,1,5,RS,T,D_EC_1,D_EC_2) ! ! ! Velocities (with EC per electron in Ryd) ! ! VE2 = COEF*(2.21E0_WP/(RS*RS) - EC - RS*D_EC_1) ! ref (1) eq. (22) V_INT_2 = -TWO*COEF/15.0E0_WP * & ! (-0.916E0_WP/RS + TWO*EC + RS*D_EC_1) ! ref (1) eq. (22) ! END SUBROUTINE VELOCITIES_3D ! END MODULE VELOCITIES