mcutils/xray/id9.py

87 lines
2.8 KiB
Python

import logging
log = logging.getLogger(__name__)
import os
import collections
import numpy as np
from . import azav
from . import dataReduction
from . import utils
from . import storage
default_extension = ".npz"
def _conv(x):
try:
x = float(x)
except:
x = np.nan
return x
def readDelayFromDiagnostic(fname):
""" return an ordered dict dictionary of filename; for each key a rounded
value of delay is associated """
if os.path.isdir(fname): fname += "/diagnostics.log"
data = np.genfromtxt(fname,usecols=(2,3),\
dtype=None,converters={3: lambda x: _conv(x)},
names = ['fname','delay'])
files = data['fname'].astype(str)
delays = data['delay']
# skip lines that cannot be interpreted as float (like done, etc)
idx_ok = np.isfinite( delays )
files = files[idx_ok]
delays = delays[idx_ok]
delays = np.round(delays.astype(float),12)
return collections.OrderedDict( zip(files,delays) )
def doFolder_azav(folder,nQ=1500,force=False,mask=None,saveChi=True,
poni='pyfai.poni',storageFile='auto'):
""" very small wrapper around azav.doFolder, essentially just reading
the diagnostics.log """
diag = dict( delays = readDelayFromDiagnostic(folder) )
if storageFile == 'auto' : storageFile = folder + "/" + "pyfai_1d" + default_extension
return azav.doFolder(folder,files="*.edf*",nQ=nQ,force=force,mask=mask,
saveChi=saveChi,poni=poni,storageFile=storageFile,diagnostic=diag)
def doFolder_dataRed(azavStorage,monitor=None,funcForAveraging=np.nanmean,
errMask=5,chi2Mask=2,qlims=None,outStorageFile='auto'):
""" azavStorage if a DataStorage instance or the filename to read """
if isinstance(azavStorage,storage.DataStorage):
data = azavStorage
folder = azavStorage.folder
elif os.path.isfile(azavStorage):
folder = os.path.dirname(azavStorage)
data = storage.DataStorage(azavStorage)
else:
# assume is just a folder name
folder = azavStorage
azavStorage = folder + "/pyfai_1d" + default_extension
data = storage.DataStorage(azavStorage)
if qlims is not None:
idx = (data.q>qlims[0]) & (data.q<qlims[1])
data.data = data.data[:,idx]
data.q = data.q[idx]
# calculate differences
diffs = dataReduction.calcTimeResolvedSignal(data.delays,data.data,q=data.q,\
reference="min",monitor=monitor,funcForAveraging=funcForAveraging)
# mask if asked so
if errMask>0:
diffs = dataReduction.errorMask(diffs,threshold=errMask)
if chi2Mask>0:
diffs = dataReduction.chi2Mask(diffs,threshold=chi2Mask)
diffs = dataReduction.applyMasks(diffs)
# save txt and npz file
dataReduction.saveTxt(folder,diffs,info=data.pyfai_info)
if outStorageFile == 'auto':
outStorageFile = folder + "/diffs" + default_extension
diffs.save(outStorageFile)
return data,diffs