33 lines
901 B
Python
33 lines
901 B
Python
import lmfit
|
|
import numpy as np
|
|
import logging as log
|
|
|
|
pv = lmfit.models.PseudoVoigtModel()
|
|
|
|
def fitPeak(x,y,err=1,autorange=False):
|
|
if isinstance(err,np.ndarray):
|
|
if np.all(err==0):
|
|
err = 1
|
|
log.warn("Asked to fit peak but all errors are zero, forcing them to 1")
|
|
elif np.isfinite(err).sum() != len(err):
|
|
idx = np.isfinite(err)
|
|
x = x[idx]
|
|
y = y[idx]
|
|
err = err[idx]
|
|
log.warn("Asked to fit peak but some errorbars are infinite or nans,\
|
|
excluding those points")
|
|
if autorange:
|
|
# find fwhm
|
|
idx = np.ravel(np.argwhere( y<y.max()/2 ))
|
|
# find first crossing
|
|
p1 = idx[idx<np.argmax(y)][-1]
|
|
p2 = idx[idx>np.argmax(y)][0]
|
|
c = int( (p1+p2)/2 )
|
|
dp = int( np.abs(p1-p2) )
|
|
idx = slice(c-dp,c+dp)
|
|
x = x[idx]
|
|
y = y[idx]
|
|
pars = pv.guess(y,x=x)
|
|
ret = pv.fit(y,x=x,weights=1/err,params=pars)
|
|
return ret
|