mcutils/xray/azav.py

448 lines
16 KiB
Python

from __future__ import print_function,division
import logging
log = logging.getLogger(__name__)
import numpy as np
np.seterr(all='ignore')
import os
import collections
import glob
import pathlib
from . import storage
from . import utils
from . import filters
import re
import fabio
import pyFAI
try:
import matplotlib.pyplot as plt
except ImportError:
log.warn("Can't import matplotlib !")
def _read(fname):
""" read data from file using fabio """
f = fabio.open(fname)
data = f.data
del f; # close file
return data
def read(fnames):
""" read data from file(s) using fabio """
if isinstance(fnames,str):
data = _read(fnames)
else:
# read one image to know img size
temp = _read(fnames[0])
shape = [len(fnames),]+list(temp.shape)
data = np.empty(shape)
data[0] = temp
for i in range(1,len(fnames)): data[i] = _read(fnames[i])
return data
def ai_as_dict(ai):
""" ai is a pyFAI azimuthal intagrator"""
methods = dir(ai)
methods = [m for m in methods if m.find("get_") == 0]
names = [m[4:] for m in methods]
values = [getattr(ai,m)() for m in methods]
ret = dict( zip(names,values) )
ret["detector"] = ai.detector.get_name()
return ret
def ai_as_str(ai):
""" ai is a pyFAI azimuthal intagrator"""
s=[ "# Detector : %s" % ai.detector.name,
"# Pixel [um] : %.2fx%.2f" % (ai.pixel1*1e6,ai.pixel2*1e6),
"# Distance [mm] : %.3f" % (ai.dist*1e3),
"# Center [mm] : %.3f,%.3f" % (ai.poni1*1e3,ai.poni2*1e3),
"# Center [px] : %.3f,%.3f" % (ai.poni1/ai.pixel1,ai.poni2/ai.pixel2),
"# Wavelength [A] : %.5f" % (ai.wavelength*1e10),
"# rot[1,2,3] [rad]: %.3f,%.3f,%.3f" % (ai.rot1,ai.rot2,ai.rot3) ]
return "\n".join(s)
def do1d(ai, imgs, mask = None, npt_radial = 600, method = 'csr',safe=True,dark=10., polCorr = 1):
""" ai is a pyFAI azimuthal intagrator
it can be defined with pyFAI.load(ponifile)
mask: True are points to be masked out """
# force float to be sure of type casting for img
if isinstance(dark,int): dark = float(dark);
if imgs.ndim == 2: imgs = (imgs,)
out_i = np.empty( ( len(imgs), npt_radial) )
out_s = np.empty( ( len(imgs), npt_radial) )
for _i,img in enumerate(imgs):
q,i, sig = ai.integrate1d(img-dark, npt_radial, mask= mask, safe = safe,\
unit="q_A^-1", method = method, error_model = "poisson",
polarization_factor = polCorr)
out_i[_i] = i
out_s[_i] = sig
return q,np.squeeze(out_i),np.squeeze(out_s)
def do2d(ai, imgs, mask = None, npt_radial = 600, npt_azim=360,method = 'csr',safe=True,dark=10., polCorr = 1):
""" ai is a pyFAI azimuthal intagrator
it can be defined with pyFAI.load(ponifile)
mask: True are points to be masked out """
# force float to be sure of type casting for img
if isinstance(dark,int): dark = float(dark);
if imgs.ndim == 2: imgs = (imgs,)
out = np.empty( ( len(imgs), npt_azim,npt_radial) )
for _i,img in enumerate(imgs):
i2d,q,azTheta = ai.integrate2d(img-dark, npt_radial, npt_azim=npt_azim,
mask= mask, safe = safe,unit="q_A^-1", method = method,
polarization_factor = polCorr )
out[_i] = i2d
return q,azTheta,np.squeeze(out)
def getAI(poni=None,folder=None,**kwargs):
""" get AzimuthalIntegrator instance:
→ if poni is a string, it is used as filename to read.
in this case if folder is given it is used (together with all its
subfolder) as search path (along with ./ and home folder)
→ kwargs if present can be used to define (or override) parameters from files,
dist,xcen,ycen,poni1,poni2,rot1,rot2,rot3,pixel1,pixel2,splineFile,
detector,wavelength
"""
if isinstance(poni,pyFAI.azimuthalIntegrator.AzimuthalIntegrator):
ai = poni
elif isinstance(poni,str):
# look is file exists in cwd
if os.path.isfile(poni):
fname = poni
# if file does not exist look for one with that name around
else:
# build search paths
folders = []
if folder is not None:
temp = os.path.abspath(folder)
path = pathlib.Path(temp)
folders = [ str(path), ]
for p in path.parents: folders.append(str(p))
folders.append( "./" )
folders.append( os.path.expanduser("~/") )
# look for file
for path in folders:
fname = path + "/" + poni
if os.path.isfile(fname):
log.info("Found poni file %s",fname)
break
else:
log.debug("Could not poni file %s",fname)
ai = pyFAI.load(fname)
else:
ai = pyFAI.azimuthalIntegrator.AzimuthalIntegrator()
for par,value in kwargs.items(): setattr(ai,par,value)
# provide xcen and ycen for convenience (note: xcen changes poni2
# and ycen changes poni1)
if 'xcen' in kwargs: ai.poni2 = kwargs['xcen'] * ai.pixel2
if 'ycen' in kwargs: ai.poni1 = kwargs['ycen'] * ai.pixel1
ai.reset(); # needed in case of overridden parameters
return ai
g_mask_str = re.compile("(\w)\s*(<|>)\s*(\d+)")
def _interpretMask(mask,shape=None):
"""
if mask is an existing filename, returns it
if mask is a string like [x|y] [<|>] int;
for example y>500 will dis-regard out for y>500
"""
maskout = None
if isinstance(mask,str) and os.path.isfile(mask):
maskout = read(mask).astype(np.bool)
elif isinstance(mask,str) and not os.path.isfile(mask):
err_msg = ValueError("The string '%s' could not be interpreted as simple\
mask; it should be something like x>10"%mask)
assert shape is not None
# interpret string
maskout = np.zeros(shape,dtype=bool)
match = g_mask_str.match(mask)
if match is None: raise err_msg
(axis,sign,lim) = match.groups()
if axis not in ("x","y"): raise err_msg
if sign not in (">","<"): raise err_msg
lim = int(lim)
idx = slice(lim,None) if sign == ">" else slice(None,lim)
if axis == 'y':
maskout[idx,:] = True
else:
maskout[:,idx] = True
elif isinstance(mask,np.ndarray):
maskout = mask.astype(np.bool)
elif mask is None:
assert shape is not None
maskout = np.zeros(shape,dtype=bool)
else:
maskout = None
raise ValueError("Could not interpret %s as mask input"%mask)
if shape is not None and maskout.shape != shape:
raise ValueError("The mask shape %s does not match the shape given as\
argument %s"%(maskout.shape,shape))
return maskout
def interpretMask(masks,shape=None):
"""
if masks is a list of masks, eachone can be:
* an existing filename
* a string like [x|y] [<|>] int;
"""
if not isinstance( masks, (list,tuple,np.ndarray) ):
masks = (masks,)
masks = [_interpretMask(mask,shape) for mask in masks]
# put them all together
mask = masks[0]
for m in masks[1:]:
mask = np.logical_or(mask,m)
return mask
def removeBackground(data,qlims=(0,10),max_iter=30,background_regions=[],force=False,
storageFile=None,save=True,**removeBkg):
""" similar function to the zray.utils one, this works on dataset created by
doFolder """
idx = utils.findSlice(data.q_orig,qlims)
# see if there are some to do ...
if force:
idx_start = 0
else:
idx_start = len(data.data)
if idx_start < len(data.data_orig):
_q,_data = utils.removeBackground(data.q_orig[idx],data.data_orig[:,idx],
max_iter=max_iter,background_regions=background_regions,**removeBkg)
data.q = _q
data.data = np.concatenate( (data.data,_data ) )
data.err = np.concatenate( (data.err ,data.err[idx_start,idx] ) )
if save: data.save(storageFile); # if None uses .filename
return data
def doFolder(folder,files='*.edf*',nQ = 1500,force=False,mask=None,dark=10,norm='auto',
saveChi=True,poni='pyfai.poni',storageFile='auto',save=True,diagnostic=None):
""" calc 1D curves from files in folder, returning a dictionary of stuff
nQ : number of Q-points (equispaced)
force : if True, redo from beginning even if previous data are found
if False, do only new files
mask : can be a list of [filenames|array of booleans|mask string]
pixels that are True are dis-regarded
saveChi: self-explanatory
poni : could be:
→ an AzimuthalIntegrator instance
→ a filename that will be look for in
1 'folder' first
2 in ../folder
3 in ../../folder
....
n-1 in pwd
n in homefolder
→ a dictionary (use to bootstrap an AzimuthalIntegrator using
AzimuthalIntegrator(**poni)
"""
if storageFile == 'auto': storageFile = folder + "/" + "pyfai_1d.h5"
if os.path.isfile(storageFile) and not force:
saved = storage.DataStorage(storageFile)
log.info("Found %d images in storage file"%saved.data.shape[0])
else:
saved = None
files = utils.getFiles(folder,files)
if saved is not None:
files = [f for f in files if utils.getBasename(f) not in saved["files"]]
if diagnostic is not None:
key = list( diagnostic.keys() )[0]
files_diagnostic = list(diagnostic[key].keys())
files = [ f for f in files if utils.getBasename(f) in files_diagnostic ]
log.info("Will do azimuthal integration for %d files"%(len(files)))
if len(files) > 0:
# which poni file to use:
ai = getAI(poni,folder)
shape = read(files[0]).shape
mask = interpretMask(mask,shape)
data = np.empty( (len(files),nQ) )
err = np.empty( (len(files),nQ) )
for ifname,fname in enumerate(files):
img = read(fname)
q,i,e = do1d(ai,img,mask=mask,npt_radial=nQ,dark=dark)
data[ifname] = i
err[ifname] = e
if saveChi:
chi_fname = utils.removeExt(fname) + ".chi"
utils.saveTxt(chi_fname,q,np.vstack((i,e)),info=ai_as_str(ai),overwrite=True)
files = [ utils.getBasename(f) for f in files ]
files = np.asarray(files)
if saved is not None:
files = np.concatenate( (saved["files"] ,files ) )
data = np.concatenate( (saved["data"] ,data ) )
err = np.concatenate( (saved["err"] ,err ) )
ret = dict(q=q,folder=folder,files=files,data=data,err=err,
data_orig=data.copy(),err_orig=err.copy(),q_orig=q.copy(),
pyfai=ai_as_dict(ai),pyfai_info=ai_as_str(ai),mask=mask)
# add info from diagnostic if provided
if diagnostic is not None:
for k in diagnostic:
ret[k] = np.asarray( [diagnostic[k][f] for f in ret['files']] )
ret = storage.DataStorage(ret)
# sometime saving is not necessary (if one has to do it after subtracting background
if storageFile is not None and save: ret.save(storageFile)
else:
ret = saved
return ret
def removeBackground(data,qlims=(0,10),max_iter=30,background_regions=[],
storageFile=None,save=True,**removeBkg):
""" similar function to the zray.utils one, this works on dataset created by
doFolder """
idx = utils.findSlice(data.q,qlims)
data.q,data.data = utils.removeBackground(data.q[idx],data.data[:,idx],
max_iter=max_iter,background_regions=background_regions,**removeBkg)
data.err = data.err[idx]
if save: data.save(storageFile); # if None uses .filename
return data
def _calc_R(x,y, xc, yc):
""" calculate the distance of each 2D points from the center (xc, yc) """
return np.sqrt((x-xc)**2 + (y-yc)**2)
def _chi2(c, x, y):
""" calculate the algebraic distance between the data points and the mean
circle centered at c=(xc, yc) """
Ri = _calc_R(x, y, *c)
return Ri - Ri.mean()
def leastsq_circle(x,y):
from scipy import optimize
# coordinates of the barycenter
center_estimate = np.nanmean(x), np.nanmean(y)
center, ier = optimize.leastsq(_chi2, center_estimate, args=(x,y))
xc, yc = center
Ri = _calc_R(x, y, *center)
R = Ri.mean()
residu = np.sum((Ri - R)**2)
return xc, yc, R
def find_center(img,psize=100e-6,dist=0.1,wavelength=0.8e-10,center=None,reference=None,**kwargs):
""" center is the initial centr (can be None)
reference is a reference position to be plot in 2D plots """
plt.ion()
kw = dict( pixel1 = psize, pixel2 = psize, dist = dist,wavelength=wavelength )
kw.update(kwargs)
ai = pyFAI.azimuthalIntegrator.AzimuthalIntegrator(**kw)
fig_img,ax_img = plt.subplots(1,1)
fig_pyfai,ax_pyfai = plt.subplots(1,1)
fig_pyfai = plt.figure(2)
temp= ax_img.imshow(img)
plt.sca(ax_img); # set figure to use for mouse interaction
temp.set_clim( *np.percentile(img,(2,95) ) )
ans = ""
print("Enter 'end' when done")
while ans != "end":
if center is None:
print("Click on beam center:")
plt.sca(ax_img); # set figure to use for mouse interaction
center = plt.ginput()[0]
print("Selected center:",center)
ai.set_poni1(center[1]*psize)
ai.set_poni2(center[0]*psize)
q,az,i = do2d(ai,img)
mesh = ax_pyfai.pcolormesh(q,az,i)
mesh.set_clim( *np.percentile(i,(2,95) ) )
ax_pyfai.set_title(str(center))
if reference is not None: ax_pyfai.axvline(reference)
plt.pause(0.01)
plt.draw()
plt.draw_all()
ans=input("Enter to continue with clinking or enter xc,yc values ")
if ans == '':
center = None
else:
try:
center = list(map(float,ans.split(",")))
except Exception as e:
center = None
if center == []: center = None
print("Final values: (in pixels) %.3f %.3f"%(center[0],center[1]))
return ai
def average(fileOrFolder,delays=slice(None),scale=1,norm=None,returnAll=False,plot=False,
showTrend=False):
data = storage.DataStorage(fileOrFolder)
if isinstance(delays,slice):
idx = np.arange(data.delays.shape[0])[delays]
elif isinstance(delays,(int,float)):
idx = data.delays == float(delays)
else:
idx = data.delays < 0
if idx.sum() == 0:
print("No data with the current filter")
return None
i = data.data[idx]
q = data.q
if isinstance(norm,(tuple,list)):
idx = ( q>norm[0] ) & (q<norm[1])
norm = np.nanmean(i[:,idx],axis=1)
i = i/norm[:,np.newaxis]
if isinstance(norm,np.ndarray):
i = i/norm[:,np.newaxis]
title = "%s %s" % (fileOrFolder,str(delays))
utils.plotdata(q,i*scale,showTrend=showTrend,plot=plot,title=title)
if returnAll:
return q,i.mean(axis=0)*scale,i
else:
return q,i.mean(axis=0)*scale
#### Utilities for chi files ####
def chiRead(fname,scale=1):
q,i = np.loadtxt(fname,unpack=True,usecols=(0,1))
return q,i*scale
def chiPlot(fname,useTheta=False,E=12.4):
q,i = chiRead(fname)
lam = 12.4/E
theta = 2*180/3.14*np.arcsin(q*lam/4/3.14)
x = theta if useTheta else q
plt.plot(x,i,label=fname)
def chiAverage(folder,basename="",scale=1,norm=None,returnAll=False,plot=False,showTrend=False,clim='auto'):
files = glob.glob("%s/%s*chi"%(folder,basename))
files.sort()
print(files)
if len(files) == 0:
print("No file found (basename %s)" % basename)
return None
q,_ = chiRead(files[0])
i = np.asarray( [ chiRead(f)[1] for f in files ] )
if isinstance(norm,(tuple,list)):
idx = ( q>norm[0] ) & (q<norm[1])
norm = np.nanmean(i[:,idx],axis=1)
i = i/norm[:,np.newaxis]
elif isinstance(norm,np.ndarray):
i = i/norm[:,np.newaxis]
title = "%s %s" % (folder,basename)
utils.plotdata(q,i,plot=plot,showTrend=showTrend,title=title,clim=clim)
if (showTrend and plot): plt.subplot(1,2,1)
if showTrend:
plt.pcolormesh(np.arange(i.shape[0]),q,i.T)
plt.xlabel("image number, 0 being older")
plt.ylabel(r"q ($\AA^{-1}$)")
if (showTrend and plot): plt.subplot(1,2,2)
if plot:
plt.plot(q,i.mean(axis=0)*scale)
if (plot or showTrend):
plt.title(folder+"/"+basename)
if returnAll:
return q,i.mean(axis=0)*scale,i
else:
return q,i.mean(axis=0)*scale