from __future__ import print_function,division import logging log = logging.getLogger(__name__) import numpy as np np.seterr(all='ignore') from . import utils from . import storage import os def subtractReferences(i,idx_ref, useRatio = False): """ given data in i (first index is shot num) and the indeces of the references (idx_ref, array of integers) it interpolates the closest reference data for each shot and subtracts it (or divides it, depending on useRatio = [True|False]; Note: it works in place (i.e. it modifies i) """ iref=np.empty_like(i) idx_ref = np.squeeze(idx_ref) idx_ref = np.atleast_1d(idx_ref) if idx_ref.shape[0] == 1: return i-i[idx_ref] # references before first ref are "first ref" iref[:idx_ref[0]] = i[idx_ref[0]] # references after last ref are "last ref" iref[idx_ref[-1]:] = i[idx_ref[-1]] _ref = 0 for _i in range(idx_ref[0],idx_ref[-1]): idx_ref_before = idx_ref[_ref] idx_ref_after = idx_ref[_ref+1] ref_before = i[idx_ref_before] ref_after = i[idx_ref_after] weight_before = float(_i-idx_ref_before)/(idx_ref_after-idx_ref_before) weight_after = 1-weight_before if weight_after == 1: iref[_i] = ref_before elif weight_before == 1: iref[_i] = ref_after else: # normal reference for an on chi, the weighted average iref[_i] = weight_before*ref_before + weight_after*ref_after if _i>=idx_ref_after: _ref += 1 log.debug("SubtractRederence For image %d : %d-%d"%(_i,idx_ref_before,idx_ref_after)) if useRatio: i /= iref else: i -= iref return i def averageScanPoints(scan,data,isRef=None,lpower=None,useRatio=False,\ funcForAveraging=np.nanmean): """ given scanpoints in 'scan' and corresponding data in 'data' average all data corresponding the exactly the same scanpoint. If the values in scan are coming from a readback, rounding might be necessary. No normalization is done inside this function if isRef is provided must be a boolean array of the same shape as 'scan' is there is at least one scanpoint marked as True, the data are subtracted/divided by the interpolated reference if lpower is provided the data is divided by it (how it is done depends if one uses the ratio or not funcForAveraging: is usually np.nanmean or np.nanmedian. it can be any function that support axis=0 as keyword argument """ data = data.astype(np.float) avData = np.nanmedian( data , axis = 0 ) if isRef is None: isRef = np.zeros( data.shape[0], dtype=bool ) assert data.shape[0] == isRef.shape[0] # subtract reference only is there is at least one if isRef.sum()>0: # create a copy (subtractReferences works in place) diff = subtractReferences(data.copy(),np.argwhere(isRef), useRatio=useRatio) avNeg = funcForAveraging(data[isRef],axis=0) else: diff = data avNeg = np.zeros_like(avData) # normalize signal for laser intensity if provided if lpower is not None: lpower = utils.reshapeToBroadcast(lpower,data) if useRatio is False: diff /= lpower else: diff = (data-1)/lpower+1 scan_pos = np.unique(scan) shape_out = [len(scan_pos),] + list(diff.shape[1:]) ret = np.empty(shape_out) err = np.empty(shape_out) data_abs = np.empty(shape_out) diffsInScanPoint = [] chi2_0 = [] for i,t in enumerate(scan_pos): shot_idx = (scan == t) # select data for the scan point diff_for_scan = diff[shot_idx] diffsInScanPoint.append( diff_for_scan ) # calculate average ret[i] = funcForAveraging(diff_for_scan,axis=0) data_abs[i] = funcForAveraging(data[shot_idx],axis=0) # calculate std noise = np.nanstd(diff[shot_idx], axis = 0) # calculate chi2 of different repetitions chi2 = np.power( (diff_for_scan - ret[i])/noise,2) # sum over all axis but first for _ in range(diff_for_scan.ndim-1): chi2 = np.nansum( chi2, axis=-1 ) # store chi2_0 chi2_0.append( chi2/ret[i].size ) # store error of mean err[i] = noise/np.sqrt(shot_idx.sum()) ret = dict(scan=scan_pos,data=ret,dataUnmasked=ret.copy(),err=err, errUnmasked=err.copy(),chi2_0=chi2_0,diffsInScanPoint=diffsInScanPoint, dataAbsAvNeg = avNeg, dataAsAbs=ret+avNeg, dataAbsAvAll=avData,dataAbsAvScanPoint=data_abs,dataAbs=data.copy()) ret = storage.DataStorage(ret) return ret def calcTimeResolvedSignal(scan,data,reference="min",monitor=None,q=None, saveTxt=True,folder="./",**kw): """ reference: can be 'min', 'max', a float|integer or an array of booleans q : is needed if monitor is a tuple|list monitor : normalization vector (if it is interpreted a list it is interpreted as q-range normalization) saveTxt : will save txt outputfiles (diff_av_*) in folder other keywords are passed to averageScanPoints """ if reference == "min": isRef = (scan == scan.min()) elif reference == "max": isRef = (scan == scan.max()) elif isinstance(reference,(float,int)): isRef = (scan == reference) else: isRef = reference # normalize if needed if monitor is not None: if isinstance(monitor,(tuple,list)): assert q is not None assert data.ndim == 2 idx = (q>= monitor[0]) & (q<= monitor[1]) monitor = np.nanmedian(data[:,idx],axis=1) monitor = utils.reshapeToBroadcast(monitor,data) data = data/monitor ret = averageScanPoints(scan,data,isRef=isRef,**kw) if q is not None: ret["q"] = q return ret def errorMask(data,threshold=5): """ Q-by-Q mask ! Very simple but effective mask for zinger like noise The noise is in general lower when using nanmean instead than nanmedian but nanmean does not mask out 'spikes'. This mask mitigate this effect by using nanmedian for the q points that have an higher than usual error (proxy for spikes ...) tested with mi1245/dec2016/tiox/tiox1/run3 """ assert data.data.ndim == 2 idx_mask = [] for iscan in range(len(data.diffsInScanPoint)): temp = data.diffsInScanPoint[iscan] # sqrt(len(temp)) = sqrt(numOfDiffs); it is needed to estimate error of single Diff idx = np.abs(temp-np.median(temp,axis=0)) > threshold*data.err[iscan]*np.sqrt(len(temp)) idx_mask.append( idx ) log.debug("errorMask mask, scanpoint: %s, fraction of q points filtered out (average) %.4e [max %.4e])"%\ (data.scan[iscan],idx.sum()/idx.size,max(np.sum(idx,axis=1)/idx.shape[1])) ) if "masks" not in data: data['masks'] = dict() data['masks']['error'] = idx_mask return data def chi2Mask(data,threshold=2): """ The noise is in general lower when using nanmean instead than nanmedian but nanmean does not mask out 'spikes'. This mask mitigate this effect by using nanmedian for the q points that have an higher than usual error (proxy for spikes ...) tested with mi1245/dec2016/tiox/tiox1/run3 """ idx_mask = [] for iscan in range(len(data.diffsInScanPoint)): idx = data.chi2_0[iscan] > threshold # expand along other axis (q ...) idx = utils.reshapeToBroadcast(idx,data.diffsInScanPoint[iscan]) idx_mask.append(idx) log.debug("Chi2 mask, scanpoint: %s, curves filtereout out %d/%d (%.2f%%)"%\ (data.scan[iscan],idx.sum(),len(idx),idx.sum()/len(idx)*100) ) if "masks" not in data: data['masks'] = dict() data['masks']['chi2'] = idx_mask return data def applyMasks(data,which='all',funcForAveraging=np.nanmean): # don't do anything if no mask is defined if 'masks' not in data: return data if which == 'all': which = list(data['masks'].keys()) totmask = [] for iscan in range(len(data.diffsInScanPoint)): mask = data['masks'][which[0]][iscan] for w in which[1:]: mask = np.logical_and(mask,data['masks'][w][iscan]) mask = np.squeeze(mask) totmask.append(mask); # store for later # check is a q-by-q mask if mask.shape == data.diffsInScanPoint[iscan].shape: temp = np.ma.MaskedArray(data=data.diffsInScanPoint[iscan],mask=mask) data.data[iscan] = funcForAveraging( temp,axis=0 ) else: data.data[iscan] = funcForAveraging( data.diffsInScanPoint[iscan][~mask],axis=0) data['mask'] = totmask return data def saveTxt(folder,data,delayToStr=True,basename='auto',info="",**kw): """ data must be a DataStorage instance """ # folder ends usually with sample/run so use the last two subfolders if basename == 'auto': basename = "_".join(folder.rstrip("/").split("/")[-2:]) + "_" q = data.q if "q" in data else np.arange(data.data.shape[-1]) # save one file with all average diffs fname = "%s/%sdiff_av_matrix.txt" % (folder,basename) utils.saveTxt(fname,q,data.data,headerv=data.scan,**kw) # save error bars in the matrix form fname = "%s/%sdiff_av_matrix_err.txt" % (folder,basename) utils.saveTxt(fname,q,data.err,headerv=data.scan,**kw) for iscan,scan in enumerate(data.scan): scan = utils.timeToStr(scan) if delayToStr else "%+10.5e" % scan # try retreiving info on chi2 try: chi2_0 = data.chi2_0[iscan] info_delay = [ "# rep_num : chi2_0 , discarded by chi2masking ?", ] for irep,value in enumerate(chi2_0): info_delay.append( "# %d : %.3f" % (irep,value)) if 'chi2' in data.masks: info_delay[-1] += " %s"%str(data.masks['chi2'][iscan][irep]) info_delay = "\n".join(info_delay) if info != '': info_delay = "%s\n%s" % (info,info_delay) except AttributeError: info_delay = info # save one file per timedelay with average diff (and err) fname = "%s/%sdiff_av_%s.txt" % (folder,basename,scan) if 'mask' in data: tosave = np.vstack( (data.data[iscan],data.err[iscan], data.dataUnmasked[iscan],data.errUnmasked[iscan] ) ) columns = 'q diffmask errmask diffnomask errnomask'.split() else: tosave = np.vstack( (data.data[iscan],data.err[iscan] ) ) columns = 'q diff err'.split() utils.saveTxt(fname,q,tosave,info=info_delay,columns=columns) # save one file per timedelay with all diffs for given delay fname = "%s/%sdiffs_%s.txt" % (folder,basename,scan) utils.saveTxt(fname,q,data.diffsInScanPoint[iscan],info=info_delay,**kw) def read_diff_av(folder,plot2D=False,save=None): print("Never tested !!!") basename = folder+"/"+"diff_av*" files = glob.glob(basename) files.sort() if len(files) == 0: print("No file found (basename %s)" % basename) return None temp = [os.path.basename(f[:-4]) for f in files] delays = [f.split("_")[-1] for f in temp ] diffav = collections.OrderedDict() diffs = collections.OrderedDict() for d,f in zip(delays,files): data = np.loadtxt(f) diffav[d]=data[:,1] diffs[d] = np.loadtxt(folder+"/diffs_%s.dat"%d)[:,1:] q =data[:,0] t = np.asarray( [mc.strToTime(ti) for ti in delays] ) if plot2D: idx = t>0 i = np.asarray( diffav.values() ) plt.pcolor(np.log10(t[idx]),q,i[idx].T) plt.xlabel(r"$\log_{10}(t)$") plt.ylabel(r"q ($\AA^{-1}$)") it=np.asarray(diffav.values()) if save: tosave = np.vstack( (q,it) ) header = np.hstack( (len(it),t) ) tosave = np.vstack( (header,tosave.T) ) np.savetxt(folder + "/all_diffs_av_matrix.txt",tosave) return q,it,diffs,t