from __future__ import print_function,division import numpy as np import pylab as plt import mcutils as mc import mcutils.xray as xray from mcutils.xray import id9 id9 = xray.id9 # use npz files (they can handle more stuff (list of arrays,unicode) than h5py) id9.storage_extension = '.npz' #id9.storage_extension = '.h5' def azav(folder,nQ=1500,force=False,saveChi=True, poni='auto',storageFile='auto',mask=470): if isinstance(mask,int): files = xray.utils.getFiles(folder,"*.edf*") img = xray.azav.pyFAIread(files[0]) temp = np.ones_like(img,dtype=bool) temp[:mask] = False mask = temp return id9.doFolder_azav(folder,nQ=nQ,force=force,mask=mask,saveChi=saveChi, poni=poni,storageFile=storageFile) def datared(folder,monitor=(1,5),showPlot=True,**kw): data,diffs = id9.doFolder_dataRed(folder,monitor=monitor,**kw) if showPlot: xray.utils.plotdiffs(diffs.q,diffs.data,t=diffs.scan) return data,diffs def doall(folder,force=False): azav(folder,force=force) return datared(folder) def plotCalc(scale=1): fold = "../tiox/calculated_patterns/" q,i=readtxt(fold + "alpha500K.xye.q") plt.plot(q,i*scale,label="alpha") q,i=readtxt(fold + "beta290K.xye.q") plt.plot(q,i*scale,label="beta") q,i=readtxt(fold + "lambda.xye.q") plt.plot(q,i*scale,label="lambda")