new module with filtering functions
This commit is contained in:
parent
87d9a19242
commit
d571c4435f
|
@ -0,0 +1,85 @@
|
||||||
|
"""
|
||||||
|
module that contains filters and outliers removal procedures
|
||||||
|
most of them return the data array and a dictionary with additional info
|
||||||
|
(parameters, statistics, etc)
|
||||||
|
"""
|
||||||
|
from __future__ import print_function,division
|
||||||
|
from . import utils
|
||||||
|
import logging
|
||||||
|
import statsmodels.robust
|
||||||
|
log = logging.getLogger(__name__) # __name__ is "foo.bar" here
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
np.seterr(all='ignore')
|
||||||
|
|
||||||
|
def removeZingers(curves,errs=None,norm='auto',threshold=10,useDerivative=False):
|
||||||
|
""" curves will be normalized internally
|
||||||
|
if errs is None, calculate mad based noise
|
||||||
|
useDerivative for data with trends ..
|
||||||
|
"""
|
||||||
|
# normalize
|
||||||
|
if norm == 'auto':
|
||||||
|
norm = np.nanmean(curves,axis=1)
|
||||||
|
norm = utils.reshapeToBroadcast(norm,curves)
|
||||||
|
|
||||||
|
if useDerivative:
|
||||||
|
data = np.gradient(curves/norn,axis=0)
|
||||||
|
else:
|
||||||
|
data = curves/norm
|
||||||
|
|
||||||
|
median = np.median(data,axis=0)
|
||||||
|
|
||||||
|
# calculate or normalize error
|
||||||
|
if errs is None:
|
||||||
|
errs = statsmodels.robust.mad(data,axis=0)
|
||||||
|
else:
|
||||||
|
errs = errs/norm
|
||||||
|
|
||||||
|
diff = np.abs(data-median)/errs
|
||||||
|
idx = diff > threshold
|
||||||
|
log.debug("Removed %d zingers from %d curves"%(idx.sum(),len(curves)))
|
||||||
|
print("Removed %d zingers from %d curves"%(idx.sum(),len(curves)))
|
||||||
|
if idx.sum()>0:
|
||||||
|
curves[idx]=np.nan
|
||||||
|
#curves = np.ma.MaskedArray(data=curves,mask=idx)
|
||||||
|
return curves
|
||||||
|
|
||||||
|
def filterOutlier(curves,errs=None,norm=None,threshold=10):
|
||||||
|
# normalize
|
||||||
|
if norm == 'auto':
|
||||||
|
norm = np.nanmean(curves,axis=1)
|
||||||
|
norm = utils.reshapeToBroadcast(n,curves)
|
||||||
|
elif norm is None:
|
||||||
|
norm = 1
|
||||||
|
|
||||||
|
curves = curves/norm
|
||||||
|
if errs is None:
|
||||||
|
errs = statsmodels.robust.mad(curves,axis=0)
|
||||||
|
else:
|
||||||
|
errs = errs/norm
|
||||||
|
|
||||||
|
median = np.median(curves)
|
||||||
|
diff = np.abs(curves-median)/errs
|
||||||
|
chi2 = np.sum(diff**2)/len(curves)
|
||||||
|
idx = chi2 < threshold
|
||||||
|
return curves[idx]
|
||||||
|
|
||||||
|
def chi2Filter(diffs,threshold=10):
|
||||||
|
""" Contrary to removeZingers, this removes entire curves """
|
||||||
|
idx_mask = []
|
||||||
|
for iscan in range(len(diffs.diffsInScanPoint)):
|
||||||
|
idx = diffs.chi2_0[iscan] > threshold
|
||||||
|
# expand along other axis (q ...)
|
||||||
|
#idx = utils.reshapeToBroadcast(idx,data.diffsInScanPoint[iscan])
|
||||||
|
idx_mask.append(idx)
|
||||||
|
log.debug("Chi2 mask, scanpoint: %s, curves filtereout out %d/%d (%.2f%%)"%\
|
||||||
|
(data.scan[iscan],idx.sum(),len(idx),idx.sum()/len(idx)*100) )
|
||||||
|
print("Chi2 mask, scanpoint: %s, curves filtereout out %d/%d (%.2f%%)"%\
|
||||||
|
(data.scan[iscan],idx.sum(),len(idx),idx.sum()/len(idx)*100) )
|
||||||
|
|
||||||
|
if "masks" not in data: data['masks'] = dict()
|
||||||
|
if "masks_pars" not in data: data['masks_pars'] = dict()
|
||||||
|
data['masks']['chi2'] = idx_mask
|
||||||
|
data['masks_pars']['chi2_threshold'] = threshold
|
||||||
|
return data
|
||||||
|
|
Loading…
Reference in New Issue