bug fix in index for reference + removed filtering
This commit is contained in:
parent
02186d220f
commit
c9ef0f42a6
|
@ -3,7 +3,6 @@ from __future__ import print_function,division
|
|||
import logging
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
import numpy as np
|
||||
np.seterr(all='ignore')
|
||||
from . import utils
|
||||
|
@ -19,36 +18,55 @@ def subtractReferences(i,idx_ref, useRatio = False):
|
|||
iref=np.empty_like(i)
|
||||
idx_ref = np.squeeze(idx_ref)
|
||||
idx_ref = np.atleast_1d(idx_ref)
|
||||
# sometime there is just one reference (e.g. sample scans)
|
||||
if idx_ref.shape[0] == 1:
|
||||
return i-i[idx_ref]
|
||||
if useRatio:
|
||||
return i/i[idx_ref]
|
||||
else:
|
||||
return i-i[idx_ref]
|
||||
# references before first ref are "first ref"
|
||||
iref[:idx_ref[0]] = i[idx_ref[0]]
|
||||
# references after last ref are "last ref"
|
||||
iref[idx_ref[-1]:] = i[idx_ref[-1]]
|
||||
_ref = 0
|
||||
for _i in range(idx_ref[0],idx_ref[-1]):
|
||||
if _i in idx_ref: continue
|
||||
idx_ref_before = idx_ref[_ref]
|
||||
idx_ref_after = idx_ref[_ref+1]
|
||||
ref_before = i[idx_ref_before]
|
||||
ref_after = i[idx_ref_after]
|
||||
weight_before = float(_i-idx_ref_before)/(idx_ref_after-idx_ref_before)
|
||||
weight_after = 1-weight_before
|
||||
if weight_after == 1:
|
||||
iref[_i] = ref_before
|
||||
elif weight_before == 1:
|
||||
iref[_i] = ref_after
|
||||
else:
|
||||
# normal reference for an on chi, the weighted average
|
||||
iref[_i] = weight_before*ref_before + weight_after*ref_after
|
||||
if _i>=idx_ref_after-1: _ref += 1
|
||||
log.debug("For image %d : %d-%d"%(_i,idx_ref_before,idx_ref_after))
|
||||
# take care of the reference for the references ...
|
||||
if len(idx_ref) > 2:
|
||||
iref[idx_ref[0]] = i[idx_ref[1]]
|
||||
iref[idx_ref[-1]] = i[idx_ref[-2]]
|
||||
for _i in range(1,len(idx_ref)-1):
|
||||
idx_ref_before = idx_ref[_i-1]
|
||||
idx_ref_after = idx_ref[_i+1]
|
||||
ref_before = i[idx_ref_before]
|
||||
ref_after = i[idx_ref_after]
|
||||
weight_before = float(idx_ref[_i]-idx_ref_before)/(idx_ref_after-idx_ref_before)
|
||||
weight_after = 1-weight_before
|
||||
# normal reference for an on chi, the weighted average
|
||||
iref[_i] = weight_before*ref_before + weight_after*ref_after
|
||||
if _i>=idx_ref_after: _ref += 1
|
||||
log.debug("SubtractRederence For image %d : %d-%d"%(_i,idx_ref_before,idx_ref_after))
|
||||
iref[idx_ref[_i]] = weight_before*ref_before + weight_after*ref_after
|
||||
log.debug("For reference image %d : %d-%d"%(idx_ref[_i],idx_ref_before,idx_ref_after))
|
||||
else:
|
||||
#print(idx_ref)
|
||||
#print(iref[idx_ref])
|
||||
iref[idx_ref]=i[idx_ref[0]]
|
||||
#print(iref[idx_ref])
|
||||
if useRatio:
|
||||
i /= iref
|
||||
else:
|
||||
i -= iref
|
||||
return i
|
||||
|
||||
def averageScanPoints(scan,data,isRef=None,lpower=None,useRatio=False,\
|
||||
def averageScanPoints(scan,data,errAbs=None,isRef=None,lpower=None,useRatio=False,\
|
||||
funcForAveraging=np.nanmean):
|
||||
""" given scanpoints in 'scan' and corresponding data in 'data'
|
||||
average all data corresponding the exactly the same scanpoint.
|
||||
|
@ -98,15 +116,21 @@ def averageScanPoints(scan,data,isRef=None,lpower=None,useRatio=False,\
|
|||
|
||||
# select data for the scan point
|
||||
diff_for_scan = diff[shot_idx]
|
||||
#if errAbs is not None:
|
||||
# noise = np.nanmean(errAbs[shot_idx],axis = 0)
|
||||
#else:
|
||||
noise = np.nanstd(diff_for_scan, axis = 0)
|
||||
|
||||
# if it is the reference take only every second ...
|
||||
if np.all( shot_idx == isRef ):
|
||||
diff_for_scan = diff_for_scan[::2]
|
||||
|
||||
diffsInScanPoint.append( diff_for_scan )
|
||||
|
||||
# calculate average
|
||||
ret[i] = funcForAveraging(diff_for_scan,axis=0)
|
||||
data_abs[i] = funcForAveraging(data[shot_idx],axis=0)
|
||||
|
||||
# calculate std
|
||||
noise = np.nanstd(diff[shot_idx], axis = 0)
|
||||
|
||||
# calculate chi2 of different repetitions
|
||||
chi2 = np.power( (diff_for_scan - ret[i])/noise,2)
|
||||
# sum over all axis but first
|
||||
|
@ -120,13 +144,13 @@ def averageScanPoints(scan,data,isRef=None,lpower=None,useRatio=False,\
|
|||
err[i] = noise/np.sqrt(shot_idx.sum())
|
||||
ret = dict(scan=scan_pos,data=ret,dataUnmasked=ret.copy(),err=err,
|
||||
errUnmasked=err.copy(),chi2_0=chi2_0,diffsInScanPoint=diffsInScanPoint,
|
||||
dataAbsAvNeg = avNeg, dataAsAbs=ret+avNeg,
|
||||
dataAbsAvNeg = avNeg, dataAsAbs=ret+avNeg,errAbs=errAbs,
|
||||
dataAbsAvAll=avData,dataAbsAvScanPoint=data_abs,dataAbs=data.copy())
|
||||
ret = storage.DataStorage(ret)
|
||||
return ret
|
||||
|
||||
|
||||
def calcTimeResolvedSignal(scan,data,reference="min",monitor=None,q=None,
|
||||
def calcTimeResolvedSignal(scan,data,err=None,reference="min",monitor=None,q=None,
|
||||
saveTxt=True,folder="./",**kw):
|
||||
"""
|
||||
reference: can be 'min', 'max', a float|integer or an array of booleans
|
||||
|
@ -153,83 +177,18 @@ def calcTimeResolvedSignal(scan,data,reference="min",monitor=None,q=None,
|
|||
monitor = np.nanmedian(data[:,idx],axis=1)
|
||||
monitor = utils.reshapeToBroadcast(monitor,data)
|
||||
data = data/monitor
|
||||
ret = averageScanPoints(scan,data,isRef=isRef,**kw)
|
||||
if err is not None: err = err/monitor
|
||||
ret = averageScanPoints(scan,data,errAbs=err,isRef=isRef,**kw)
|
||||
if q is not None: ret["q"] = q
|
||||
return ret
|
||||
|
||||
def errorMask(data,threshold=5):
|
||||
""" Q-by-Q mask !
|
||||
Very simple but effective mask for zinger like noise
|
||||
The noise is in general lower when using nanmean instead than
|
||||
nanmedian but nanmean does not mask out 'spikes'.
|
||||
This mask mitigate this effect by using nanmedian for the q points
|
||||
that have an higher than usual error (proxy for spikes ...)
|
||||
tested with mi1245/dec2016/tiox/tiox1/run3
|
||||
"""
|
||||
assert data.data.ndim == 2
|
||||
idx_mask = []
|
||||
for iscan in range(len(data.diffsInScanPoint)):
|
||||
temp = data.diffsInScanPoint[iscan]
|
||||
# sqrt(len(temp)) = sqrt(numOfDiffs); it is needed to estimate error of single Diff
|
||||
idx = np.abs(temp-np.median(temp,axis=0)) > threshold*data.err[iscan]*np.sqrt(len(temp))
|
||||
idx_mask.append( idx )
|
||||
|
||||
log.debug("errorMask mask, scanpoint: %s, fraction of q points filtered out (average) %.4e [max %.4e])"%\
|
||||
(data.scan[iscan],idx.sum()/idx.size,max(np.sum(idx,axis=1)/idx.shape[1])) )
|
||||
if "masks" not in data: data['masks'] = dict()
|
||||
if "masks_pars" not in data: data['masks_pars'] = dict()
|
||||
data['masks']['error'] = idx_mask
|
||||
data['masks_pars']['errormask_threshold'] = threshold
|
||||
return data
|
||||
|
||||
def chi2Mask(data,threshold=2):
|
||||
"""
|
||||
The noise is in general lower when using nanmean instead than
|
||||
nanmedian but nanmean does not mask out 'spikes'.
|
||||
This mask mitigate this effect by using nanmedian for the q points
|
||||
that have an higher than usual error (proxy for spikes ...)
|
||||
tested with mi1245/dec2016/tiox/tiox1/run3
|
||||
"""
|
||||
idx_mask = []
|
||||
for iscan in range(len(data.diffsInScanPoint)):
|
||||
idx = data.chi2_0[iscan] > threshold
|
||||
# expand along other axis (q ...)
|
||||
idx = utils.reshapeToBroadcast(idx,data.diffsInScanPoint[iscan])
|
||||
idx_mask.append(idx)
|
||||
log.debug("Chi2 mask, scanpoint: %s, curves filtereout out %d/%d (%.2f%%)"%\
|
||||
(data.scan[iscan],idx.sum(),len(idx),idx.sum()/len(idx)*100) )
|
||||
if "masks" not in data: data['masks'] = dict()
|
||||
if "masks_pars" not in data: data['masks_pars'] = dict()
|
||||
data['masks']['chi2'] = idx_mask
|
||||
data['masks_pars']['chi2_threshold'] = threshold
|
||||
return data
|
||||
|
||||
def applyMasks(data,which='all',funcForAveraging=np.nanmean):
|
||||
# don't do anything if no mask is defined
|
||||
if 'masks' not in data: return data
|
||||
if which == 'all': which = list(data['masks'].keys())
|
||||
totmask = []
|
||||
for iscan in range(len(data.diffsInScanPoint)):
|
||||
mask = data['masks'][which[0]][iscan]
|
||||
for w in which[1:]:
|
||||
mask = np.logical_and(mask,data['masks'][w][iscan])
|
||||
mask = np.squeeze(mask)
|
||||
totmask.append(mask); # store for later
|
||||
# check is a q-by-q mask
|
||||
if mask.shape == data.diffsInScanPoint[iscan].shape:
|
||||
temp = np.ma.MaskedArray(data=data.diffsInScanPoint[iscan],mask=mask)
|
||||
data.data[iscan] = funcForAveraging( temp,axis=0 )
|
||||
else:
|
||||
data.data[iscan] = funcForAveraging( data.diffsInScanPoint[iscan][~mask],axis=0)
|
||||
data['mask'] = totmask
|
||||
return data
|
||||
|
||||
|
||||
def saveTxt(folder,data,delayToStr=True,basename='auto',info="",**kw):
|
||||
""" data must be a DataStorage instance """
|
||||
# folder ends usually with sample/run so use the last two subfolders
|
||||
# the abspath is needed in case we analyze the "./"
|
||||
folder = os.path.abspath(folder);
|
||||
if basename == 'auto':
|
||||
basename = "_".join(folder.rstrip("/").split("/")[-2:]) + "_"
|
||||
basename = "_".join(folder.rstrip("/").split("/")[-2:]) + "_"
|
||||
q = data.q if "q" in data else np.arange(data.data.shape[-1])
|
||||
# save one file with all average diffs
|
||||
fname = "%s/%sdiff_av_matrix.txt" % (folder,basename)
|
||||
|
|
Loading…
Reference in New Issue