new submodules (peaks,cell) and new functions (like backgorundSubtraction (in azav.py)
This commit is contained in:
parent
69df940711
commit
af9ecfc181
|
@ -1,6 +1,7 @@
|
|||
from . import storage
|
||||
from . import utils
|
||||
from . import mask
|
||||
from . import peaks
|
||||
try:
|
||||
from . import azav
|
||||
except ImportError:
|
||||
|
|
38
xray/azav.py
38
xray/azav.py
|
@ -52,7 +52,14 @@ def ai_as_dict(ai):
|
|||
|
||||
def ai_as_str(ai):
|
||||
""" ai is a pyFAI azimuthal intagrator"""
|
||||
return "#" + str(ai).replace("\n","\n#")
|
||||
s=[ "# Detector : %s" % ai.detector.name,
|
||||
"# Pixel [um] : %.2fx%.2f" % (ai.pixel1*1e6,ai.pixel2*1e6),
|
||||
"# Distance [mm] : %.3f" % (ai.dist*1e3),
|
||||
"# Center [mm] : %.3f,%.3f" % (ai.poni1*1e3,ai.poni2*1e3),
|
||||
"# Center [px] : %.3f,%.3f" % (ai.poni1/ai.pixel1,ai.poni2/ai.pixel2),
|
||||
"# Wavelength [A] : %.5f" % (ai.wavelength*1e10),
|
||||
"# rot[1,2,3] [rad]: %.3f,%.3f,%.3f" % (ai.rot1,ai.rot2,ai.rot3) ]
|
||||
return "\n".join(s)
|
||||
|
||||
def do1d(ai, imgs, mask = None, npt_radial = 600, method = 'csr',safe=True,dark=10., polCorr = 1):
|
||||
""" ai is a pyFAI azimuthal intagrator
|
||||
|
@ -218,7 +225,9 @@ def leastsq_circle(x,y):
|
|||
residu = np.sum((Ri - R)**2)
|
||||
return xc, yc, R
|
||||
|
||||
def find_center(img,psize=100e-6,dist=0.1,wavelength=0.8e-10,**kwargs):
|
||||
def find_center(img,psize=100e-6,dist=0.1,wavelength=0.8e-10,center=None,reference=None,**kwargs):
|
||||
""" center is the initial centr (can be None)
|
||||
reference is a reference position to be plot in 2D plots """
|
||||
plt.ion()
|
||||
kw = dict( pixel1 = psize, pixel2 = psize, dist = dist,wavelength=wavelength )
|
||||
kw.update(kwargs)
|
||||
|
@ -232,23 +241,30 @@ def find_center(img,psize=100e-6,dist=0.1,wavelength=0.8e-10,**kwargs):
|
|||
ans = ""
|
||||
print("Enter 'end' when done")
|
||||
while ans != "end":
|
||||
if ans == "":
|
||||
if center is None:
|
||||
print("Click on beam center:")
|
||||
plt.sca(ax_img); # set figure to use for mouse interaction
|
||||
xc,yc = plt.ginput()[0]
|
||||
else:
|
||||
xc,yc = map(float,ans.split(","))
|
||||
print("Selected center:",xc,yc)
|
||||
ai.set_poni1(xc*psize)
|
||||
ai.set_poni2(yc*psize)
|
||||
center = plt.ginput()[0]
|
||||
print("Selected center:",center)
|
||||
ai.set_poni1(center[0]*psize)
|
||||
ai.set_poni2(center[1]*psize)
|
||||
q,az,i = do2d(ai,img)
|
||||
mesh = ax_pyfai.pcolormesh(q,az,i)
|
||||
mesh.set_clim( *np.percentile(i,(2,95) ) )
|
||||
ax_pyfai.set_title(str( (xc,yc) ))
|
||||
ax_pyfai.set_title(str(center))
|
||||
if reference is not None: ax_pyfai.axvline(reference)
|
||||
plt.pause(0.01)
|
||||
plt.draw()
|
||||
ans=input("Enter to continue with clinking or enter xc,yc values ")
|
||||
print("Final values: (in pixels) %.3f %.3f"%(xc,yc))
|
||||
if ans == '':
|
||||
center = None
|
||||
else:
|
||||
try:
|
||||
center = list(map(float,ans.split(",")))
|
||||
except Exception as e:
|
||||
center = None
|
||||
if center == []: center = None
|
||||
print("Final values: (in pixels) %.3f %.3f"%(center[0],center[1]))
|
||||
return ai
|
||||
|
||||
def average(fileOrFolder,delays=slice(None),scale=1,norm=None,returnAll=False,plot=False,
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
from __future__ import division,print_function
|
||||
import numpy as np
|
||||
from numpy import sin,cos
|
||||
|
||||
class Triclinic(object):
|
||||
def __init__(self,a=1,b=1,c=1,alpha=90,beta=90,gamma=90):
|
||||
self.a = a
|
||||
self.b = b
|
||||
self.c = c
|
||||
alpha = alpha*np.pi/180
|
||||
beta = beta*np.pi/180
|
||||
gamma = gamma*np.pi/180
|
||||
self.alpha = alpha
|
||||
self.beta = beta
|
||||
self.gamma = gamma
|
||||
|
||||
self._s11 = b**2 * c**2 * sin(alpha)**2
|
||||
self._s22 = a**2 * c**2 * sin(beta)**2
|
||||
self._s33 = a**2 * b**2 * sin(gamma)**2
|
||||
self._s12 = a*b*c**2*(cos(alpha) * cos(beta) - cos(gamma))
|
||||
self._s23 = a**2*b*c*(cos(beta) * cos(gamma) - cos(alpha))
|
||||
self._s13 = a*b**2*c*(cos(gamma) * cos(alpha) - cos(beta))
|
||||
self.V = (a*b*c)*np.sqrt(1-cos(alpha)**2 - cos(beta)**2 - cos(gamma)**2 + 2*cos(alpha)*cos(beta)*cos(gamma))
|
||||
|
||||
def __call__(self,h,k,l): return self.q(h,k,l)
|
||||
|
||||
def d(self,h,k,l):
|
||||
temp = self._s11*h**2 + \
|
||||
self._s22*k**2 + \
|
||||
self._s33*l**2 + \
|
||||
2*self._s12*h*k+ \
|
||||
2*self._s23*k*l+ \
|
||||
2*self._s13*h*l
|
||||
d = self.V/np.sqrt(temp)
|
||||
return d
|
||||
|
||||
def q(self,h,k,l):
|
||||
return 2*np.pi/self.d(h,k,l)
|
||||
|
||||
class Orthorombic(Triclinic):
|
||||
def __init__(self,a=1,b=1,c=1):
|
||||
Triclinic.__init__(self,a=a,b=b,c=c,alpha=90,beta=90,gamma=90)
|
||||
|
||||
class Monoclinic(object):
|
||||
def __init__(self,a=1,b=1,c=1,beta=90.):
|
||||
self.a = a
|
||||
self.b = b
|
||||
self.c = c
|
||||
beta = beta/np.pi*180
|
||||
self.beta = beta
|
||||
|
||||
self.V = (a*b*c)
|
||||
|
||||
def __call__(self,h,k,l): return self.Q(h,k,l)
|
||||
|
||||
def Q(self,h,k,l):
|
||||
temp = h**2/self.a**2 + (k*sin(self.beta))**2/self.b**2+l**2/self.c**2+2*h*l*cos(self.beta)/self.a/self.c
|
||||
d = 1/np.sqrt(temp)
|
||||
print(d)
|
||||
return 2*np.pi/d
|
||||
|
||||
|
||||
|
||||
ti3o5_lambda = Triclinic(a = 9.83776, b = 3.78674, c = 9.97069, beta = 91.2567)
|
||||
ti3o5_beta = Triclinic(a = 9.7382 , b = 3.8005 , c = 9.4333 , beta = 91.496)
|
||||
#ti3o5_beta = Monoclinic(a = 9.7382 , b = 3.8005 , c = 9.4333 , beta = 91.496)
|
||||
ti3o5_alpha = Triclinic(a = 9.8372, b = 3.7921, c = 9.9717)
|
||||
#ti3o5_alpha1 = Orthorombic(a = 9.8372, b = 3.7921, c = 9.9717)
|
|
@ -73,8 +73,10 @@ def averageScanPoints(scan,data,isRef=None,lpower=None,useRatio=False,\
|
|||
if isRef.sum()>0:
|
||||
# create a copy (subtractReferences works in place)
|
||||
diff = subtractReferences(data.copy(),np.argwhere(isRef), useRatio=useRatio)
|
||||
avNeg = funcForAveraging(data[isRef],axis=0)
|
||||
else:
|
||||
diff = data
|
||||
avNeg = np.zeros_like(avData)
|
||||
|
||||
# normalize signal for laser intensity if provided
|
||||
if lpower is not None:
|
||||
|
@ -116,10 +118,10 @@ def averageScanPoints(scan,data,isRef=None,lpower=None,useRatio=False,\
|
|||
|
||||
# store error of mean
|
||||
err[i] = noise/np.sqrt(shot_idx.sum())
|
||||
|
||||
ret = dict(scan=scan_pos,data=ret,dataUnmasked=ret.copy(),err=err,errUnmasked=err.copy(),
|
||||
chi2_0=chi2_0,diffsInScanPoint=diffsInScanPoint,dataAbsAvAll=avData,dataAbsAvScanPoint=data_abs,
|
||||
dataAbs=data.copy())
|
||||
ret = dict(scan=scan_pos,data=ret,dataUnmasked=ret.copy(),err=err,
|
||||
errUnmasked=err.copy(),chi2_0=chi2_0,diffsInScanPoint=diffsInScanPoint,
|
||||
dataAbsAvNeg = avNeg, dataAsAbs=ret+avNeg,
|
||||
dataAbsAvAll=avData,dataAbsAvScanPoint=data_abs,dataAbs=data.copy())
|
||||
ret = storage.DataStorage(ret)
|
||||
return ret
|
||||
|
||||
|
|
|
@ -0,0 +1,70 @@
|
|||
from __future__ import division,print_function
|
||||
import numpy as np
|
||||
from numpy import sin,cos
|
||||
|
||||
|
||||
|
||||
class Triclinic(object):
|
||||
def __init__(self,a=1,b=1,c=1,alpha=90,beta=90,gamma=90):
|
||||
self.a = a
|
||||
self.b = b
|
||||
self.c = c
|
||||
alpha = alpha*np.pi/180
|
||||
beta = beta*np.pi/180
|
||||
gamma = gamma*np.pi/180
|
||||
self.alpha = alpha
|
||||
self.beta = beta
|
||||
self.gamma = gamma
|
||||
|
||||
self._s11 = b**2 * c**2 * sin(alpha)**2
|
||||
self._s22 = a**2 * c**2 * sin(beta)**2
|
||||
self._s33 = a**2 * b**2 * sin(gamma)**2
|
||||
self._s12 = a*b*c**2*(cos(alpha) * cos(beta) - cos(gamma))
|
||||
self._s23 = a**2*b*c*(cos(beta) * cos(gamma) - cos(alpha))
|
||||
self._s13 = a*b**2*c*(cos(gamma) * cos(alpha) - cos(beta))
|
||||
self.V = (a*b*c)*np.sqrt(1-cos(alpha)**2 - cos(beta)**2 - cos(gamma)**2 + 2*cos(alpha)*cos(beta)*cos(gamma))
|
||||
|
||||
def __call__(self,h,k,l): return self.q(h,k,l)
|
||||
|
||||
def d(self,h,k,l):
|
||||
temp = self._s11*h**2 + \
|
||||
self._s22*k**2 + \
|
||||
self._s33*l**2 + \
|
||||
2*self._s12*h*k+ \
|
||||
2*self._s23*k*l+ \
|
||||
2*self._s13*h*l
|
||||
d = self.V/np.sqrt(temp)
|
||||
return d
|
||||
|
||||
def q(self,h,k,l):
|
||||
return 2*np.pi/self.d(h,k,l)
|
||||
|
||||
class Orthorombic(Triclinic):
|
||||
def __init__(self,a=1,b=1,c=1):
|
||||
Triclinic.__init__(self,a=a,b=b,c=c,alpha=90,beta=90,gamma=90)
|
||||
|
||||
class Monoclinic(object):
|
||||
def __init__(self,a=1,b=1,c=1,beta=90.):
|
||||
self.a = a
|
||||
self.b = b
|
||||
self.c = c
|
||||
beta = beta/np.pi*180
|
||||
self.beta = beta
|
||||
|
||||
self.V = (a*b*c)
|
||||
|
||||
def __call__(self,h,k,l): return self.Q(h,k,l)
|
||||
|
||||
def Q(self,h,k,l):
|
||||
temp = h**2/self.a**2 + (k*sin(self.beta))**2/self.b**2+l**2/self.c**2+2*h*l*cos(self.beta)/self.a/self.c
|
||||
d = 1/np.sqrt(temp)
|
||||
print(d)
|
||||
return 2*np.pi/d
|
||||
|
||||
|
||||
|
||||
ti3o5_lambda = Triclinic(a = 9.83776, b = 3.78674, c = 9.97069, beta = 91.2567)
|
||||
ti3o5_beta = Triclinic(a = 9.7382 , b = 3.8005 , c = 9.4333 , beta = 91.496)
|
||||
#ti3o5_beta = Monoclinic(a = 9.7382 , b = 3.8005 , c = 9.4333 , beta = 91.496)
|
||||
ti3o5_alpha = Triclinic(a = 9.8372, b = 3.7921, c = 9.9717)
|
||||
#ti3o5_alpha1 = Orthorombic(a = 9.8372, b = 3.7921, c = 9.9717)
|
27
xray/id9.py
27
xray/id9.py
|
@ -45,18 +45,21 @@ def doFolder_azav(folder,nQ=1500,force=False,mask=None,saveChi=True,
|
|||
return azav.doFolder(folder,files="*.edf*",nQ=nQ,force=force,mask=mask,
|
||||
saveChi=saveChi,poni=poni,storageFile=storageFile,diagnostic=diag)
|
||||
|
||||
def doFolder_dataRed(folder,storageFile='auto',monitor=None,
|
||||
funcForAveraging=np.nanmean,errMask=5,chi2Mask=2,qlims=None):
|
||||
""" storageFile cab the the basename of the file (to look for in folder) or
|
||||
a DataStorage instance """
|
||||
def doFolder_dataRed(azavStorage,monitor=None,funcForAveraging=np.nanmean,
|
||||
errMask=5,chi2Mask=2,qlims=None,outStorageFile='auto'):
|
||||
""" azavStorage if a DataStorage instance or the filename to read """
|
||||
|
||||
if storageFile == 'auto' : storageFile = folder + "/" + "pyfai_1d" + default_extension
|
||||
|
||||
if isinstance(storageFile,storage.DataStorage):
|
||||
data = storageFile
|
||||
if isinstance(azavStorage,storage.DataStorage):
|
||||
data = azavStorage
|
||||
folder = os.path.dirname(data.filename) if data.filename is not None else "./"
|
||||
elif os.path.exists(azavStorage):
|
||||
folder = os.path.dirname(azavStorage)
|
||||
data = storage.DataStorage(azavStorage)
|
||||
else:
|
||||
# read azimuthal averaged curves
|
||||
data = storage.DataStorage(storageFile)
|
||||
# assume is just a folder name
|
||||
folder = azavStorage
|
||||
azavStorage = folder + "/pyfai_1d" + default_extension
|
||||
data = storage.DataStorage(azavStorage)
|
||||
|
||||
if qlims is not None:
|
||||
idx = (data.q>qlims[0]) & (data.q<qlims[1])
|
||||
|
@ -76,6 +79,8 @@ def doFolder_dataRed(folder,storageFile='auto',monitor=None,
|
|||
|
||||
# save txt and npz file
|
||||
dataReduction.saveTxt(folder,diffs,info=data.pyfai_info)
|
||||
diffs.save(folder + "/" + "diffs" + default_extension)
|
||||
if outStorageFile == 'auto':
|
||||
outStorageFile = folder + "/diffs" + default_extension
|
||||
diffs.save(outStorageFile)
|
||||
|
||||
return data,diffs
|
||||
|
|
|
@ -0,0 +1,20 @@
|
|||
import lmfit
|
||||
import numpy as np
|
||||
|
||||
pv = lmfit.models.PseudoVoigtModel()
|
||||
|
||||
def fitPeak(x,y,autorange=False):
|
||||
if autorange:
|
||||
# find fwhm
|
||||
idx = np.ravel(np.argwhere( y<y.max()/2 ))
|
||||
# find first crossing
|
||||
p1 = idx[idx<np.argmax(y)][-1]
|
||||
p2 = idx[idx>np.argmax(y)][0]
|
||||
c = int( (p1+p2)/2 )
|
||||
dp = int( np.abs(p1-p2) )
|
||||
idx = slice(c-dp,c+dp)
|
||||
x = x[idx]
|
||||
y = y[idx]
|
||||
pars = pv.guess(y,x=x)
|
||||
ret = pv.fit(y,x=x,params=pars)
|
||||
return ret
|
|
@ -27,7 +27,7 @@ def unwrapArray(a,recursive=True,readH5pyDataset=True):
|
|||
a = dict(a); # convert to dict, otherwise can't asssign values
|
||||
for key,value in a.items(): a[key] = unwrapArray(value)
|
||||
elif isinstance(a,list):
|
||||
for index in range(len(a)): a[index] = unwrapArray(a[i])
|
||||
for index in range(len(a)): a[index] = unwrapArray(a[index])
|
||||
else:
|
||||
pass
|
||||
if isinstance(a,dict): a = DataStorage(a)
|
||||
|
@ -80,25 +80,29 @@ def read(fname):
|
|||
extension = os.path.splitext(fname)[1]
|
||||
log.info("Reading storage file %s"%fname)
|
||||
if extension == ".npz":
|
||||
return npzToDict(fname)
|
||||
return DataStorage(npzToDict(fname))
|
||||
elif extension == ".h5":
|
||||
return h5ToDict(fname)
|
||||
return DataStorage(h5ToDict(fname))
|
||||
else:
|
||||
raise ValueError("Extension must be h5 or npz, it was %s"%extension)
|
||||
|
||||
def save(fname,d):
|
||||
extension = os.path.splitext(fname)[1]
|
||||
log.info("Saving storage file %s"%fname)
|
||||
try:
|
||||
if extension == ".npz":
|
||||
return dictToNpz(fname,d)
|
||||
elif extension == ".h5":
|
||||
return dictToH5(fname,d)
|
||||
else:
|
||||
raise ValueError("Extension must be h5 or npz")
|
||||
except Exception as e:
|
||||
log.exception("Could not save %s"%fname)
|
||||
|
||||
class DataStorage(dict):
|
||||
""" Storage for 1d integrated info """
|
||||
def __init__(self,fileOrDict,default_name='pyfai_1d',default_ext='npz'):
|
||||
def __init__(self,fileOrDict,recursive=True,
|
||||
default_name='pyfai_1d',default_ext='npz'):
|
||||
if isinstance(fileOrDict,dict):
|
||||
self.filename = None
|
||||
d = fileOrDict
|
||||
|
@ -109,6 +113,11 @@ class DataStorage(dict):
|
|||
self.filename = fileOrDict
|
||||
d = read(fileOrDict)
|
||||
|
||||
if recursive:
|
||||
for k in d.keys():
|
||||
if not isinstance(d[k],DataStorage) and isinstance(d[k],dict):
|
||||
d[k] = DataStorage(d[k])
|
||||
|
||||
# allow accessing with .data, .delays, etc.
|
||||
for k,v in d.items(): setattr(self,k,v)
|
||||
|
||||
|
@ -128,6 +137,31 @@ class DataStorage(dict):
|
|||
delattr(self,key)
|
||||
super().__delitem__(key)
|
||||
|
||||
def __str__(self):
|
||||
keys = list(self.keys())
|
||||
keys.sort()
|
||||
return "DataStorage obj containing: %s" % ",".join(keys)
|
||||
|
||||
def __repr__(self):
|
||||
keys = list(self.keys())
|
||||
keys.sort()
|
||||
nchars = max(map(len,keys))
|
||||
fmt = "%%%ds %%s" % (nchars)
|
||||
s = ["DataStorage obj containing (sorted): ",]
|
||||
for k in keys:
|
||||
if isinstance(self[k],np.ndarray):
|
||||
value_str = "array %s"% "x".join(map(str,self[k].shape))
|
||||
elif isinstance(self[k],DataStorage):
|
||||
value_str = str(self[k])[:50] + "..."
|
||||
elif isinstance(self[k],(str,DataStorage)):
|
||||
value_str = self[k][:50] + "..."
|
||||
elif self[k] is None:
|
||||
value_str = "None"
|
||||
else:
|
||||
value_str = str(self[k])
|
||||
s.append( fmt % (k,value_str) )
|
||||
return "\n".join(s)
|
||||
|
||||
def save(self,fname=None):
|
||||
if fname is None: fname = self.filename
|
||||
assert fname is not None
|
||||
|
|
|
@ -9,6 +9,7 @@ import os
|
|||
import glob
|
||||
import pathlib
|
||||
import re
|
||||
import numbers
|
||||
from . import storage as storage
|
||||
|
||||
try:
|
||||
|
@ -72,6 +73,30 @@ def removeExt(fname):
|
|||
def getBasename(fname):
|
||||
return removeExt(os.path.basename(fname));
|
||||
|
||||
def findSlice(array,lims):
|
||||
start = np.ravel(np.argwhere(array>lims[0]))[0]
|
||||
stop = np.ravel(np.argwhere(array<lims[1]))[-1]
|
||||
return slice(int(start),int(stop))
|
||||
|
||||
def removeBackground(x,data,xlims=None,max_iter=100,background_regions=[],**kw):
|
||||
from dualtree import dualtree
|
||||
if data.ndim == 1: data = data[np.newaxis,:]
|
||||
if xlims is not None:
|
||||
idx = findSlice(x,xlims)
|
||||
x = x[idx]
|
||||
data = data[:,idx].copy()
|
||||
else:
|
||||
data = data.copy(); # create local copy
|
||||
# has to be a list of lists ..
|
||||
if background_regions != [] and isinstance(background_regions[0],numbers.Real):
|
||||
background_regions = [background_regions,]
|
||||
background_regions = [findSlice(x,brange) for brange in background_regions]
|
||||
for i in range(len(data)):
|
||||
data[i] = data[i] - dualtree.baseline(data[i],max_iter=max_iter,
|
||||
background_regions=background_regions,**kw)
|
||||
return x,np.squeeze(data)
|
||||
|
||||
|
||||
def plotdata(q,data,x=None,plot=True,showTrend=True,title=None,clim='auto'):
|
||||
if not (plot or showTrend): return
|
||||
if x is None: x = np.arange(data.shape[0])
|
||||
|
@ -108,7 +133,7 @@ def plotdiffs(q,diffs,t,select=None,err=None,absSignal=None,absSignalScale=10,
|
|||
indices = range(len(t))
|
||||
lines = []
|
||||
if absSignal is not None:
|
||||
line = plt.plot(q,absSignal/absSignalScale,
|
||||
line = plt.plot(q,absSignal/absSignalScale,lw=3,
|
||||
color='k',label="absSignal/%s"%str(absSignalScale))[0]
|
||||
lines.append(line)
|
||||
for idiff in indices:
|
||||
|
|
Loading…
Reference in New Issue