clean up and improved cell submodule, has also an helper for printing reflections on figure

This commit is contained in:
Marco Cammarata 2017-01-20 10:42:44 +01:00
parent 07a9311f16
commit 5a10ad1a78
1 changed files with 47 additions and 17 deletions

View File

@ -1,4 +1,6 @@
from __future__ import division,print_function from __future__ import division,print_function
import collections
import itertools
import numpy as np import numpy as np
from numpy import sin,cos from numpy import sin,cos
@ -34,35 +36,63 @@ class Triclinic(object):
d = self.V/np.sqrt(temp) d = self.V/np.sqrt(temp)
return d return d
def q(self,h,k,l): def Q(self,h,k,l):
return 2*np.pi/self.d(h,k,l) return 2*np.pi/self.d(h,k,l)
def reflection_list(self,maxQ=3,lim=10):
ret=dict()
# prepare hkl
i = range(-lim,lim+1)
prod = itertools.product( i,i,i )
hkl = np.asarray( list( itertools.product( i,i,i ) ) )
h,k,l = hkl.T
q = self.Q(h,k,l)
idx = q<maxQ;
q = q[idx]
hkl = hkl[idx]
qunique = np.unique(q)
ret = []
for qi in qunique:
reflec = hkl[ q == qi ]
ret.append( (qi,tuple(np.abs(reflec)[0]),len(reflec),reflec) )
return qunique,ret
# for h in range(-lim,lim+1):
# for j in range(-lim,lim+1):
class Orthorombic(Triclinic): class Orthorombic(Triclinic):
def __init__(self,a=1,b=1,c=1): def __init__(self,a=1,b=1,c=1):
Triclinic.__init__(self,a=a,b=b,c=c,alpha=90,beta=90,gamma=90) Triclinic.__init__(self,a=a,b=b,c=c,alpha=90,beta=90,gamma=90)
class Monoclinic(object): class Monoclinic(object):
def __init__(self,a=1,b=1,c=1,beta=90.): def __init__(self,a=1,b=1,c=1,beta=90.):
self.a = a Triclinic.__init__(self,a=a,b=b,c=c,alpha=90,beta=beta,gamma=90)
self.b = b
self.c = c
beta = beta/np.pi*180
self.beta = beta
self.V = (a*b*c)
def __call__(self,h,k,l): return self.Q(h,k,l)
def Q(self,h,k,l):
temp = h**2/self.a**2 + (k*sin(self.beta))**2/self.b**2+l**2/self.c**2+2*h*l*cos(self.beta)/self.a/self.c
d = 1/np.sqrt(temp)
print(d)
return 2*np.pi/d
def plotReflections(cell_instance,ax=None,line_kw=dict(),text_kw=dict()):
import matplotlib.pyplot as plt
from matplotlib import lines
import matplotlib.transforms as transforms
_,refl_info = cell_instance.reflection_list()
if ax is None: ax = plt.gca()
# the x coords of this transformation are data, and the
# y coord are axes
trans = transforms.blended_transform_factory(ax.transData, ax.transAxes)
txt_kw = dict( horizontalalignment='center', rotation=45)
txt_kw.update(**text_kw)
for reflection in refl_info[1:]:
q,hkl,n,_ = reflection
line = lines.Line2D( [q,q],[1,1.1],transform=trans,**line_kw)
line.set_clip_on(False)
ax.add_line(line)
ax.text(q,1.15,str(hkl),transform=trans,**txt_kw)
ti3o5_lambda = Triclinic(a = 9.83776, b = 3.78674, c = 9.97069, beta = 91.2567) ti3o5_lambda = Triclinic(a = 9.83776, b = 3.78674, c = 9.97069, beta = 91.2567)
ti3o5_beta = Triclinic(a = 9.7382 , b = 3.8005 , c = 9.4333 , beta = 91.496) ti3o5_beta = Triclinic(a = 9.7382 , b = 3.8005 , c = 9.4333 , beta = 91.496)
#ti3o5_beta = Monoclinic(a = 9.7382 , b = 3.8005 , c = 9.4333 , beta = 91.496) #ti3o5_beta = Monoclinic(a = 9.7382 , b = 3.8005 , c = 9.4333 , beta = 91.496)
ti3o5_alpha = Triclinic(a = 9.8372, b = 3.7921, c = 9.9717) ti3o5_alpha = Triclinic(a = 9.8372, b = 3.7921, c = 9.9717)
#ti3o5_alpha1 = Orthorombic(a = 9.8372, b = 3.7921, c = 9.9717) ti3o5_alpha1 = Orthorombic(a = 9.8372, b = 3.7921, c = 9.9717)