few more pyFAI related functions includind a neat way to quickly find the center and some utility (pyFAI_dict)

This commit is contained in:
Marco Cammarata 2017-01-04 17:14:35 +01:00
parent 518fc6175e
commit 0a7b628ac1
1 changed files with 71 additions and 0 deletions

View File

@ -1220,6 +1220,24 @@ def insertInSortedArray(a,v):
a[idx]=v
return a
##### X-ray images #############
def pyFAIread(fname):
import fabio
f = fabio.open(fname)
data = f.data
del f
return data
def pyFAI_dict(ai):
""" ai is a pyFAI azimuthal intagrator"""
methods = dir(ai)
methods = [m for m in methods if m.find("get_") == 0]
names = [m[4:] for m in methods]
values = [getattr(ai,m)() for m in methods]
ret = dict( zip(names,values) )
return ret
def pyFAI1d(ai, imgs, mask = None, npt_radial = 600, method = 'csr',safe=True,dark=10., polCorr = 1):
""" ai is a pyFAI azimuthal intagrator
it can be defined with pyFAI.load(ponifile)
@ -1252,6 +1270,59 @@ def pyFAI2d(ai, imgs, mask = None, npt_radial = 600, npt_azim=360,method = 'csr'
out[_i] = i2d
return q,azTheta,np.squeeze(out)
def _calc_R(x,y, xc, yc):
""" calculate the distance of each 2D points from the center (xc, yc) """
return np.sqrt((x-xc)**2 + (y-yc)**2)
def _chi2(c, x, y):
""" calculate the algebraic distance between the data points and the mean
circle centered at c=(xc, yc) """
Ri = _calc_R(x, y, *c)
return Ri - Ri.mean()
def leastsq_circle(x,y):
from scipy import optimize
# coordinates of the barycenter
center_estimate = np.nanmean(x), np.nanmean(y)
center, ier = optimize.leastsq(_chi2, center_estimate, args=(x,y))
xc, yc = center
Ri = _calc_R(x, y, *center)
R = Ri.mean()
residu = np.sum((Ri - R)**2)
return xc, yc, R
def pyFAI_find_center(img,psize=100e-6,dist=0.1,wavelength=0.8e-10,**kwargs):
import pyFAI
plt.ion()
kw = dict( pixel1 = psize, pixel2 = psize, dist = dist,wavelength=wavelength )
kw.update(kwargs)
ai = pyFAI.azimuthalIntegrator.AzimuthalIntegrator(**kw)
fig_img,ax_img = plt.subplots(1,1)
fig_pyfai,ax_pyfai = plt.subplots(1,1)
fig_pyfai = plt.figure(2)
ax_img.imshow(img)
plt.sca(ax_img); # set figure to use for mouse interaction
ans = ""
print("Enter 'end' when done")
while ans != "end":
if ans == "":
print("Click on beam center:")
plt.sca(ax_img); # set figure to use for mouse interaction
xc,yc = plt.ginput()[0]
else:
xc,yc = map(float,ans.split(","))
print("Selected center:",xc,yc)
ai.set_poni1(xc*psize)
ai.set_poni2(yc*psize)
q,az,i = pyFAI2d(ai,img)
ax_pyfai.pcolormesh(q,az,i)
ax_pyfai.set_title(str( (xc,yc) ))
plt.pause(0.01)
plt.draw()
ans=input("Enter to continue with clinking or enter xc,yc values")
print("Final values: (in pixels) %.3f %.3f"%(xc,yc))
return ai
### Objects ###