diff --git a/xray/azav.py b/xray/azav.py index 2d96448..c1c691c 100644 --- a/xray/azav.py +++ b/xray/azav.py @@ -12,6 +12,7 @@ import glob import pathlib from . import storage from . import utils +import re import fabio import pyFAI @@ -130,6 +131,48 @@ def getAI(poni,folder=None): ai = pyFAI.load(fname) return ai +g_mask_str = re.compile("(\w)\s*(<|>)\s*(\d+)") + +def interpretMask(mask,shape=None): + """ + if mask is an existing filename, returns it + if mask is a string like [x|y] [<|>] int; + for example y>500 will dis-regard out for y>500 + """ + maskout = None + if isinstance(mask,str) and os.path.isfile(mask): + maskout = read(mask).astype(np.bool) + elif isinstance(mask,str) and not os.path.isfile(mask): + err_msg = ValueError("The string '%s' could not be interpreted as simple\ + mask; it should be something like x>10"%mask) + assert shape is not None + # interpret string + maskout = np.zeros(shape,dtype=bool) + match = g_mask_str.match(mask) + if match is None: raise err_msg + (axis,sign,lim) = match.groups() + if axis not in ("x","y"): raise err_msg + if sign not in (">","<"): raise err_msg + lim = int(lim) + idx = slice(lim,None) if sign == ">" else slice(None,lim) + if axis == 'y': + maskout[idx,:] = True + else: + maskout[:,idx] = True + elif isinstance(mask,np.ndarray): + maskout = mask.astype(np.bool) + elif mask is None: + assert shape is not None + maskout = np.zeros(shape,dtype=bool) + else: + maskout = None + raise ValueError("Could not interpret %s as mask input"%mask) + + if shape is not None and maskout.shape != shape: + raise ValueError("The mask shape %s does not match the shape given as\ + argument %s"%(maskout.shape,shape)) + return maskout + def doFolder(folder,files='*.edf*',nQ = 1500,force=False,mask=None, saveChi=True,poni='pyfai.poni',storageFile='auto',diagnostic=None): @@ -167,11 +210,8 @@ def doFolder(folder,files='*.edf*',nQ = 1500,force=False,mask=None, files = [f for f in files if utils.getBasename(f) not in saved["files"]] if len(files) > 0: - # work out mask to use - if isinstance(mask,np.ndarray): - mask = mask.astype(bool) - elif mask is not None: - mask = read(mask).astype(bool) + shape = read(files[0]).shape + mask = interpretMask(mask,shape) data = np.empty( (len(files),nQ) ) err = np.empty( (len(files),nQ) )