2017-01-06 18:10:54 +01:00
|
|
|
from __future__ import print_function,division
|
|
|
|
import numpy as np
|
|
|
|
import pylab as plt
|
|
|
|
import mcutils as mc
|
|
|
|
import mcutils.xray as xray
|
|
|
|
from mcutils.xray import id9
|
|
|
|
id9 = xray.id9
|
|
|
|
|
|
|
|
# use npz files (they can handle more stuff (list of arrays,unicode) than h5py)
|
2017-01-07 23:53:12 +01:00
|
|
|
id9.default_extension = '.npz'
|
2017-01-10 00:28:29 +01:00
|
|
|
#id9.default_extension = '.h5'
|
2017-01-06 18:10:54 +01:00
|
|
|
|
2017-01-10 00:28:29 +01:00
|
|
|
def readCalc():
|
|
|
|
fold = "../tiox/calculated_patterns/"
|
|
|
|
names = "alpha beta lam".split()
|
|
|
|
fnames = "alpha500K beta290K lambda".split()
|
|
|
|
calc = dict()
|
|
|
|
for name,fname in zip(names,fnames):
|
|
|
|
q,i=np.loadtxt(fold + "%s.xye.q"%fname,unpack=True)
|
2017-01-20 10:55:24 +01:00
|
|
|
calc[name] = dict( q=q, i=i )
|
2017-01-10 00:28:29 +01:00
|
|
|
return xray.storage.DataStorage(calc)
|
|
|
|
|
|
|
|
calc = readCalc()
|
|
|
|
|
2017-01-20 10:55:24 +01:00
|
|
|
def azav(folder,nQ=1500,force=False,saveChi=True,mask='y>470'):
|
2017-01-10 00:28:29 +01:00
|
|
|
return id9.doFolder_azav(folder,nQ=nQ,force=force,mask=mask,saveChi=saveChi)
|
2017-01-06 18:10:54 +01:00
|
|
|
|
|
|
|
def datared(folder,monitor=(1,5),showPlot=True,**kw):
|
|
|
|
data,diffs = id9.doFolder_dataRed(folder,monitor=monitor,**kw)
|
2017-01-10 00:28:29 +01:00
|
|
|
if showPlot:
|
|
|
|
xray.utils.plotdiffs(diffs.q,diffs.data,t=diffs.scan,
|
|
|
|
absSignal=diffs.dataAbsAvAll,absSignalScale=30)
|
|
|
|
plt.plot(calc.lam.q,calc.lam.i/1000+0.1,label='calc')
|
|
|
|
plt.title(folder + " norm %s" % str(monitor))
|
2017-01-06 18:10:54 +01:00
|
|
|
return data,diffs
|
|
|
|
|
|
|
|
def doall(folder,force=False):
|
|
|
|
azav(folder,force=force)
|
|
|
|
return datared(folder)
|
2017-01-10 00:28:29 +01:00
|
|
|
|
|
|
|
def anaAmplitue(run=6):
|
|
|
|
fname = "../tiox/tiox1/run%d/diffs.npz" % run
|
|
|
|
data = xray.storage.DataStorage(fname)
|
|
|
|
ranges = ( (1.75,1.85), (2.2,2.4), (3.25,3.4) )
|
|
|
|
nPlot = len(ranges)
|
|
|
|
fig,ax = plt.subplots(nPlot,1,sharex=True)
|
|
|
|
for r,a in zip(ranges,ax):
|
|
|
|
idx = (data.q>r[0]) & (data.q<r[1])
|
|
|
|
amplitude = np.abs(data.data[:,idx]).mean(axis=1)
|
|
|
|
a.plot(data.scan,amplitude,'-o')
|
|
|
|
a.set_title("Range %s"%(str(r)))
|
2017-01-06 18:10:54 +01:00
|
|
|
|
|
|
|
def plotCalc(scale=1):
|
|
|
|
fold = "../tiox/calculated_patterns/"
|
|
|
|
q,i=readtxt(fold + "alpha500K.xye.q")
|
|
|
|
plt.plot(q,i*scale,label="alpha")
|
|
|
|
q,i=readtxt(fold + "beta290K.xye.q")
|
|
|
|
plt.plot(q,i*scale,label="beta")
|
|
|
|
q,i=readtxt(fold + "lambda.xye.q")
|
|
|
|
plt.plot(q,i*scale,label="lambda")
|