107 lines
3.7 KiB
Python
107 lines
3.7 KiB
Python
|
from __future__ import print_function,division
|
||
|
import os
|
||
|
|
||
|
|
||
|
# prepare logging
|
||
|
import logging
|
||
|
logfname = os.path.splitext(__file__)[0] + ".log"
|
||
|
logging.basicConfig(level=logging.DEBUG,
|
||
|
format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
|
||
|
datefmt='%y-%m-%d %H:%M:%S',
|
||
|
filename=logfname,
|
||
|
filemode='w')
|
||
|
import numpy as np
|
||
|
import pylab as plt
|
||
|
import mcutils as mc
|
||
|
import mcutils.xray as xray
|
||
|
from mcutils.xray import id9
|
||
|
#id9 = xray.id9
|
||
|
|
||
|
from dualtree import dualtree
|
||
|
|
||
|
# use npz files (they can handle more stuff (list of arrays,unicode) than h5py)
|
||
|
id9.default_extension = '.npz'
|
||
|
#id9.default_extension = '.h5'
|
||
|
|
||
|
g_default_mask = '../masks/fesalen1_run8_careful.edf'
|
||
|
|
||
|
|
||
|
def prepareLog():
|
||
|
""" It allows printing to terminal on top of logfile """
|
||
|
# define a Handler which writes INFO messages or higher to the sys.stderr
|
||
|
console = logging.StreamHandler()
|
||
|
console.setLevel(logging.INFO)
|
||
|
# set a format which is simpler for console use
|
||
|
formatter = logging.Formatter('%(message)s')
|
||
|
# tell the handler to use this format
|
||
|
console.setFormatter(formatter)
|
||
|
# add the handler to the root logger
|
||
|
logging.getLogger('').addHandler(console)
|
||
|
|
||
|
prepareLog()
|
||
|
|
||
|
def findCenter():
|
||
|
files = xray.utils.getEdfFiles("../fesalen/fesalen1/run8/",nFiles=100)
|
||
|
img = xray.azav.read(files).mean(axis=0) - 10.
|
||
|
xray.azav.find_center(img)
|
||
|
|
||
|
|
||
|
def azav(folder,nQ=1500,force=False,saveChi=True,mask=g_default_mask):
|
||
|
if isinstance(mask,int):
|
||
|
files = xray.utils.getFiles(folder,"*.edf*")
|
||
|
img = xray.azav.pyFAIread(files[0])
|
||
|
temp = np.ones_like(img,dtype=bool)
|
||
|
temp[:mask] = False
|
||
|
mask = temp
|
||
|
return id9.doFolder_azav(folder,nQ=nQ,force=force,mask=mask,saveChi=saveChi)
|
||
|
|
||
|
|
||
|
def removeBaseline(folder,qlims=(0.6,3),max_iter=30):
|
||
|
data = azav(folder)
|
||
|
idx = (data.q>qlims[0]) & (data.q<qlims[1])
|
||
|
data['q'] = data.q[idx]
|
||
|
data['data'] = data.data[:,idx]
|
||
|
for i in range(len(data.data)):
|
||
|
data['data'][i]=data.data[i]-dualtree.baseline(data.data[i],max_iter=max_iter)
|
||
|
fname = os.path.splitext(data.filename)[0] + "_nobaseline" + id9.default_extension
|
||
|
data.save(fname)
|
||
|
return data
|
||
|
|
||
|
def datared(folder,monitor=(0.5,4),showPlot=True,errMask=5,chi2Mask=2,
|
||
|
qlims=(0.6,3),withBaseline=False,storageFile='auto',force=False,**kw):
|
||
|
# ice contributes to a lot of noise, filter to q<2
|
||
|
if storageFile == 'auto':
|
||
|
if withBaseline:
|
||
|
storageFile = folder + "/" + "pyfai_1d" + id9.default_extension
|
||
|
else:
|
||
|
storageFile = folder + "/" + "pyfai_1d_nobaseline" + id9.default_extension
|
||
|
if not os.path.exists(storageFile) or force: removeBaseline(folder)
|
||
|
data = xray.storage.DataStorage(storageFile)
|
||
|
data,diffs = id9.doFolder_dataRed(folder,storageFile=data,monitor=monitor,
|
||
|
errMask=errMask,chi2Mask=chi2Mask,qlims=qlims,**kw)
|
||
|
if showPlot:
|
||
|
xray.utils.plotdiffs(diffs.q,diffs.data,t=diffs.scan,
|
||
|
absSignal=diffs.dataAbsAvAll,absSignalScale=30)
|
||
|
plt.title(folder + " norm %s" % str(monitor))
|
||
|
plt.figure()
|
||
|
xray.utils.plotdiffs(diffs.q,diffs.dataAbsAvScanPoint,t=diffs.scan)
|
||
|
plt.title(folder + " norm %s" % str(monitor))
|
||
|
return data,diffs
|
||
|
|
||
|
|
||
|
def doall(folder,force=False,removeBaseline=True):
|
||
|
azav(folder,force=force)
|
||
|
return datared(folder)
|
||
|
|
||
|
def anaAmplitue(run=6):
|
||
|
fname = "../tiox/tiox1/run%d/diffs.npz" % run
|
||
|
data = xray.storage.DataStorage(fname)
|
||
|
ranges = ( (1.75,1.85), (2.2,2.4), (3.25,3.4) )
|
||
|
nPlot = len(ranges)
|
||
|
fig,ax = plt.subplots(nPlot,1,sharex=True)
|
||
|
for r,a in zip(ranges,ax):
|
||
|
idx = (data.q>r[0]) & (data.q<r[1])
|
||
|
amplitude = np.abs(data.data[:,idx]).mean(axis=1)
|
||
|
a.plot(data.scan,amplitude,'-o')
|
||
|
a.set_title("Range %s"%(str(r)))
|