dispersiveXanes/xppl37_spectra.py

146 lines
5.4 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import copy
import argparse
import collections
import xanes_analyzeRun
parser = argparse.ArgumentParser(description='Process argv')
parser.add_argument('--run', type=int,default=82,help='which run to analyze')
parser.add_argument('--force', action="store_true",help='force calculation')
args = parser.parse_args()
profile_ret = collections.namedtuple("profile_ret",["run","p1","p2","calibs"])
nice_colors = ["#1b9e77", "#d95f02", "#7570b3"]
def calcProfilesForRun(run=82,calibs="all",realign=False,init="auto",alignCalib=0):
""" init and alignCalib are used only if realignment is performed:
init = run for initial alignment, use auto is you want to use same run
alignCalib = calibcycle for alignment
"""
if init=="auto": init=run
if isinstance(run,int):
r = xanes_analyzeRun.AnalyzeRun(run,initAlign=init)
else:
r = run
if realign:
r.doShots(slice(20),calib=refCalib,doFit=True)
r.saveTransform()
# next line is used to force calculations in case of realignment
fname = 'auto' if not realign else "thisfiledoesnotexists"
if len(r.results) == 0:
try:
r.load(fname)
print("Loading previously saved results")
except FileNotFoundError:
r.analyzeScan(shots=slice(600),calibs=calibs,nImagesToFit=0,nSaveImg=4)
r.save(overwrite=True)
# cannot take the output from r.results because it might have been calculated for
# a bigger range than asked for.
if isinstance(calibs,int):
calibsForOut = (calibs,)
elif isinstance(calibs,slice):
calibsForOut = list(range(r.nCalib))[calibs]
elif calibs == "all":
calibsForOut = list(range(r.nCalib))
else:
calibsForOut = calibs
p1 = [r.results[calib].p1 for calib in calibsForOut]
p2 = [r.results[calib].p2 for calib in calibsForOut]
return profile_ret( run =r, p1 =p1, p2=p2,calibs=calibsForOut)
def calcProfilesForRefAndSample(run=82,refCalibs=0,force=False):
if isinstance(run,int):
refRun = xanes_analyzeRun.AnalyzeRun(run)
sampleRun = refRun
if isinstance(refCalibs,slice): refCalibs = list(range(refRun.nCalib))[refCalibs]
if isinstance(refCalibs,int): refCalibs = (refCalibs,)
sampleCalibs = [c+1 for c in refCalibs]
elif isinstance(run,(list,tuple)):
refRun = xanes_analyzeRun.AnalyzeRun(run[0])
sampleRun = xanes_analyzeRun.AnalyzeRun(run[1],initAlign=run[0])
refCalibs = [0,]
sampleCalibs = [0,]
if refRun == sampleRun:
# otherwise same does not save them both
temp = calcProfilesForRun(refRun,calibs=sampleCalibs+refCalibs);
ref = calcProfilesForRun(refRun,calibs=refCalibs)
sample = calcProfilesForRun(sampleRun,calibs=sampleCalibs)
return ref,sample
def calcRef(r1,r2,calibs=None,threshold=0.05):
""" r1 and r2 are list of 2d arrays (nShots,nPixels) for each calibcycle """
if calibs is None: calibs = list(range(len(r1)))
out = collections.OrderedDict()
out["ratioOfAverage"] = dict()
out["medianOfRatios"] = dict()
for p1,p2,n in zip(r1,r2,calibs):
out["ratioOfAverage"][n] = xanes_analyzeRun.ratioOfAverage(p1,p2,threshold=threshold)
out["medianOfRatios"][n] = xanes_analyzeRun.medianRatio(p1,p2,threshold=threshold)
# add curves with all calib together
p1 = np.vstack(r1)
p2 = np.vstack(r2)
n = ",".join(map(str,calibs))
ref1 = xanes_analyzeRun.ratioOfAverage(p1,p2,threshold=threshold)
ref2 = xanes_analyzeRun.medianRatio(p1,p2,threshold=threshold)
out["ratioOfAverage"][n] = xanes_analyzeRun.ratioOfAverage(p1,p2,threshold=threshold)
out["medianOfRatios"][n] = xanes_analyzeRun.medianRatio(p1,p2,threshold=threshold)
out["ratioOfAverage"]['all'] = out["ratioOfAverage"][n]
out["medianOfRatios"]['all'] = out["medianOfRatios"][n]
return out
def showDifferentRefs(run=82,refCalibs=slice(None,None,2),threshold=0.05):
""" example plots showing how stable are the different ways of taking spectra """
prof = calcProfilesForRun(run,calibs=refCalibs)
refs = calcRef(prof.p1,prof.p2,calibs=prof.calibs)
kind_of_av = list(refs.keys())
fig,ax=plt.subplots(len(kind_of_av)+1,1,sharex=True,sharey=True)
E = prof.run.E
calibs = list(refs[kind_of_av[0]].keys())
for ikind,kind in enumerate(kind_of_av):
for calib in calibs:
if isinstance(calib,int):
ax[ikind].plot(E,refs[kind][calib],label="calib %s"%calib)
else:
if calibs == 'all': continue
ax[ikind].plot(E,refs[kind][calib],label="calib %s"%calib,lw=2,color='k',alpha=0.7)
ax[-1].plot(E,refs[kind][calib],label="calib all, %s"%kind,lw=1.5,color=nice_colors[ikind],alpha=0.8)
for ikind,kind in enumerate(kind_of_av): ax[ikind].set_title("Run %d, %s"%(run,kind))
ax[0].set_ylim(0.88,1.12)
ax[0].set_ylim(0.88,1.12)
ax[-2].legend()
ax[-1].legend()
for a in ax: a.grid()
def calcSampleAbs(run=82,refCalibs=slice(None,None,2),threshold=0.05,refKind="medianOfRatios"):
""" example of use
ratio = calcSampleAbs(82)
ratio = calcSampleAbs( (155,156) )
"""
ref,sample = calcProfilesForRefAndSample(run,refCalibs=refCalibs)
temp = calcRef(ref.p1,ref.p2,calibs=ref.calibs,threshold=threshold)
ref = temp[refKind]['all']
p1 = np.vstack( sample.p1 )
p2 = np.vstack( sample.p2 )
print(p1.shape)
p1,p2 = xanes_analyzeRun.maskLowIntensity(p1,p2,threshold=0.1)
ratio = p2/p1
ratio = ratio/ref
return ratio
def main(run,refCalib=0,force=False):
pass
#r = calcProfiles(run,refCalibs=refCalib,force=force)
if __name__ == "__main__":
main(args.run,force=args.force)