dispersiveXanes/dispersiveXanes_utils.py

71 lines
2.1 KiB
Python

from __future__ import print_function,division
import mcutils as mc
import joblib
import numpy as np
# /--------\
# | |
# | UTILS |
# | |
# \--------/
def rebin1D(a,shape):
n0 = a.shape[0]//shape
sh = shape,n0
return a[:n0*shape].reshape(sh).mean(1)
def calcFOM(p1,p2,ratio,threshold=0.1):
idx = ( p1>p1.max()*threshold )# & (p2>p2.max()/10)
ratio = ratio[idx]
return ratio.std()/np.abs(ratio.mean())
def getCenterOfMass(img,x=None,axis=0,threshold=0.05):
img = img.copy()
if img.ndim == 1: img=img[np.newaxis,:]; axis=1
img[img<img.max()*threshold] = 0
if axis == 1: img=img.T
p = img.mean(1)
if x is None: x = np.arange(img.shape[0])
return np.sum(x*p)/np.sum(p)
def maskLowIntensity(p1,p2,threshold=0.03,squeeze=True):
if p1.ndim == 1:
p1 = p1[np.newaxis,:]
p2 = p2[np.newaxis,:]
p1 = np.ma.asarray( p1.copy() )
p2 = np.ma.asarray( p2.copy() )
if threshold is not None:
m1 = np.nanmax(p1,axis=1); m2 = np.nanmax(p2,axis=1)
# find where each spectrum is smaller than threshold*max_for_that_shot; they will be masked out
idx1 = p1 < (m1[:,np.newaxis]*threshold)
#idx2 = p2 < (m2[:,np.newaxis]*threshold)
idx = idx1# & idx2
p1.mask = idx
p2.mask = idx
if squeeze:
p1 = np.squeeze(p1);
p2 = np.squeeze(p2)
return p1,p2
def ratioOfAverage(p1,p2,threshold=0.03):
"""
p1 and p2 are the energy spectrum. if 2D the first index has to be the shot number
calculate median ratio taking into account only regions where p1 and p2 are > 5% of the max """
p1,p2 = maskLowIntensity(p1,p2,threshold=threshold,squeeze=False)
# using masked array because some pixel will have zero shots contributing
av1 = np.ma.average(p1,axis=0,weights=p1)
av2 = np.ma.average(p2,axis=0,weights=p2)
return av2/av1
def medianRatio(p1,p2,threshold=0.03):
"""
p1 and p2 are the energy spectrum. if 2D the first index has to be the shot number
calculate median ratio taking into account only regions where p1 and p2 are > 5% of the max """
p1,p2 = maskLowIntensity(p1,p2,threshold=threshold,squeeze=False)
ratio = p2/p1
return np.ma.average(ratio,axis=0,weights=p1)