import sys sys.path.insert(0,"../../../") import collections import os import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec import dispersiveXanes_utils as utils import xppl37_spectra import xanes_analyzeRun import mcutils as mc import trx import datastorage as ds nice_colors = ["#1b9e77", "#d95f02", "#7570b3"] nice_colors = "#1f78b4 #a6cee3 #b2df8a #33a02c".split() gradual_colors = ['#014636', '#016c59', '#02818a', '#3690c0', '#67a9cf', '#a6bddb', '#d0d1e6']#, '#ece2f0'] gradual_colors="#fec44f #fe9929 #ec7014 #cc4c02 #8c2d04".split() def get_data(runs=(155,156),threshold=0.02,force=False): run_hash = "_".join(map(str,runs)) fname = "../data/fig_fe_xas_runs_%s.h5" % run_hash if not os.path.isfile(fname) or force: E,p1,p2,Abs=xppl37_spectra.calcAbsForRun(runs,merge_calibs=True,threshold=threshold) temp = ds.DataStorage( E=E,p1=p1,p2=p2,Abs=Abs) temp.info="Abs calculated with threshold = %.3f" % threshold temp.save(fname) data = ds.read(fname) # nan is saved as -1 for masked arrays for k in data.keys(): try: data[k][data[k]==-1] =np.nan except TypeError: pass # for runs 155,156 the vernier stopped working after shots ~ 2000 if runs == (155,156): data.p1=data.p1[:2000] data.p2=data.p2[:2000] data.Abs=data.Abs[:2000] return data def get_ref(): E,data=np.loadtxt("../data/Fe_ref.txt",unpack=True) return ds.DataStorage(E=E*1e3,data=data/2.05+0.07) def get_1b(): E,data=np.loadtxt("../data/Fe_1bunch.txt",unpack=True) return ds.DataStorage(E=E*1e3,data=data/2.05+0.07) def fig_fe_exas(run=(155,156),first=7,period=70,nSpectra=5,force=False,threshold=0.1,smoothWidth=1.0,i0_filter=0.1): ref = get_ref() color_ss = '#08519c' color_av = '#238b45' color_av_all = '#d95f0e' shifty = 1 data = get_data(run,force=force) E = data.E;p1=data.p1;p2=data.p2;Abs=data.Abs E = (E-7100)*1.938+7133 p1_sum = p1.sum(-1) if i0_filter is not None: m = np.percentile(p1_sum,i0_filter*100) idx = p1_sum>m p1=p1[idx] p2=p2[idx] Abs=Abs[idx] print(idx.sum(),idx.shape[0]) p1_av = np.nanmean(p1,axis=0) p2_av = np.nanmean(p2,axis=0) shots = slice(first,None,period) p1 = p1[shots]; p2=p2[shots]; Abs = Abs[shots] if smoothWidth > 0: Abs = xppl37_spectra.smoothSpectra(E,Abs,res=smoothWidth) figure = plt.figure(figsize = [8,5]) gs = gridspec.GridSpec(1, 3, width_ratios=[1, 1, 1.5],wspace=0.15,right=0.97,left=0.05) ax = [] ax.append( plt.subplot(gs[0]) ) ax.append( plt.subplot(gs[1],sharex=ax[0],sharey=ax[0]) ) ax.append( plt.subplot(gs[2],sharex=ax[0]) ) #fig,ax = plt.subplots(1,3,sharex=True,sharey=True,squeeze=False,figsize=[6,8]) #ax = ax[0] normalization = np.nanmax( p1[:nSpectra] ) to_save = [] ref = get_ref() for ishot,(s1,s2,a) in enumerate(zip(p1[:nSpectra],p2[:nSpectra],Abs[:nSpectra])): s1_norm = s1/normalization s2_norm = s2/normalization ax[0].axhline(ishot*shifty,ls='--',color="0.9") ax[1].axhline(ishot*shifty,ls='--',color=color_ss) ax[1].plot(E,np.nanmedian(Abs[:nSpectra],0)+ishot*shifty,color=color_av_all,lw=2,zorder=10,alpha=0.8) ax[0].plot(E,s1_norm+ishot*shifty,ls = '-' ,color='0.8',lw=2) ax[0].plot(E,s2_norm+ishot*shifty,ls = '-' ,color='0.3',lw=2) ax[1].plot(E,a+ishot*shifty,color=color_ss,lw=2) to_save.append(s1_norm) to_save.append(s2_norm) to_save.append(a) ax[1].plot(ref.E,ref.data+ishot*shifty,color=nice_colors[-2],lw=2,zorder=100) nmax = int(np.floor(np.log(len(Abs))/np.log(2)))+1 print(nmax) n = 2**np.arange(nmax) for i,ni in enumerate(n): ax[2].plot(E,np.nanmedian(Abs[:ni],axis=0)+(len(n)-i)*0.2,color=gradual_colors[i],label = "%d shots"%ni) to_save.insert(i,np.nanmedian(Abs[:ni],axis=0)) ax[2].plot(ref.E,ref.data,color=nice_colors[-2],lw=2,zorder=100,label="ref ESRF") ax[2].legend() ax[0].set_title("Run %s"%str(run)) ax[1].set_ylabel("Sample Absorption") ax[2].set_ylabel("Sample Absorption") ax[0].set_ylabel("Normalized Spectra") to_save.insert(i+1,np.nanmedian(Abs[:nSpectra],axis=0)) ref = get_1b() rr = mc.interpolate(ref.E,ref.data,E) to_save.insert(0,rr) ref = get_ref() rr = mc.interpolate(ref.E,ref.data,E) to_save.insert(1,rr) to_save = np.vstack(to_save) info = "# threshold=%.2f; smoothWidth=%.2f eV" %(threshold,smoothWidth) info += "\n#E esrf_1b esrf_ref "+" ".join(["av_%d_shots"%ni for ni in n]) +" av_%d_shots " % nSpectra + "+ nshots x (spectro1 spectro2 abs)" run_hash = "_".join(map(str,run)) trx.utils.saveTxt("../data/fig_fe_exas_spectra_runs_%s.txt"%run_hash,E,to_save,info=info) ax[0].set_xlabel("Energy (keV)") ax[1].set_xlabel("Energy (keV)") ax[2].set_xlabel("Energy (keV)") ax[0].grid(axis='x',color="0.7",lw=0.5) ax[1].grid(axis='x',color="0.7",lw=0.5) ax[2].grid(color="0.7",lw=0.5) ax[0].set_xlim(7060,7300) ax[0].set_yticks( () ) ax[1].set_yticks( () ) ax[2].set_yticks( () ) ax[0].set_ylim(-0.1,nSpectra+0.2) ax[1].set_ylim(-0.1,nSpectra+0.2) ax[2].set_ylim(-0.1,1.7) #ax[2].grid(color="0.7",lw=0.5) #plt.tight_layout() plt.savefig("fig_fe_exas.png",transparent=True,dpi=300) plt.savefig("fig_fe_exas.pdf",transparent=True) #if __name__ == "__main__": fig_fe_xas()