import sys sys.path.insert(0,"../../../") import collections import os import numpy as np import matplotlib.pyplot as plt import dispersiveXanes_utils as utils import xppl37_spectra import xanes_analyzeRun import trx import datastorage as ds nice_colors = ["#1b9e77", "#d95f02", "#7570b3"] nice_colors = "#1f78b4 #a6cee3 #b2df8a #33a02c".split() gradual_colors = ['#014636', '#016c59', '#02818a', '#3690c0', '#67a9cf', '#a6bddb', '#d0d1e6']#, '#ece2f0'] def get_data(run,threshold=0.02,force=False): if run == 80: refCalibs=slice(1,None,2) elif run == 84: refCalibs=slice(None,None,2) elif run == 76: refCalibs=slice(None,None) else: refCalibs=slice(None,None,2) fname = "../data/fig_fel_modes_run%04d.h5" % run if not os.path.isfile(fname) or force: r = xanes_analyzeRun.AnalyzeRun(run=run) r.load() E = r.E calibs = list(r.results.keys()) calibs.sort() calibs = calibs[refCalibs] p1 = np.vstack( [r.results[c].p1 for c in calibs] ) p2 = np.vstack( [r.results[c].p2 for c in calibs] ) #temp = ds.DataStorage( E=E,p1=p1.astype(np.float16),p2=p2.astype(np.float16)) temp = ds.DataStorage( E=E,p1=p1,p2=p2) _,_,Abs = xppl37_spectra.calcAbs( temp, threshold=0.02 ) temp.Abs = Abs #.astype(np.float16) temp.info="Abs calculated with threshold = 0.02" temp.save(fname) data = ds.read(fname) # nan is saved as -1 for masked arrays for k in data.keys(): try: data[k][data[k]==-1] =np.nan except (TypeError,AttributeError): pass print("Run %d → nshots = %d"%(run,len(data.p1))) p1,p2,Abs = xppl37_spectra.calcAbs( data, threshold=threshold ) data.Abs = Abs return data def fig_fel_modes(shots_per_run = slice(10,13),showAv=True,force=False,threshold=0.02,smootWidth=0.3): runs = [28,39,54,76,80,84] runs = [80,76,84] #runs = [28,54,76,80,84] figsize = [6,8] fig,axes = plt.subplots( len(runs),2 , sharex=True, sharey=True,figsize=figsize) #fig,axes = plt.subplots( 2,len(runs) , sharex=True, sharey='row') #axes = axes.T for run,ax in zip(runs,axes): data = get_data(run,threshold=threshold,force=force) E = data.E s2 = data.p2[shots_per_run] s1 = data.p1[shots_per_run] norm = s2.max()*1.1 if showAv: ax[0].fill_between(E,0,data.p2.mean(0)/norm,color='#d95f0e',alpha=0.4) for ispectrum,(spectrum1,spectrum2,a) in enumerate(zip(s1,s2,data.Abs)): c = nice_colors[ispectrum] ax[0].axhline(ispectrum,ls='--',lw=0.5,color=c) # ax[1].axhline(ispectrum,ls='--',lw=0.5,color=c) ax[0].plot(E,spectrum1/norm+ispectrum,lw=2,color=c) ax[1].axhline(0.25+ispectrum,ls='--',lw=1,color=c) # smooth does not work with nan's... #if smootWidth > 0: # a = xppl37_spectra.smoothSpectra(E,a,res=smootWidth)[0] ax[1].plot(E,a+0.25+ispectrum,lw=2,color=c) noise = np.nanstd(a) ax[1].text(7135,0.4+ispectrum,"σ = %.2f"%noise) ax[0].set_ylabel("Spectrum (a.u.) (run %d)"%run) ax[1].set_ylabel("Absorption (run %d)"%run) ax[0].grid(color="0.8",lw=0.5) ax[1].grid(axis='x',color="0.8",lw=0.5) tosave = np.vstack( (data.p2.mean(0)/norm,s2/norm) ) trx.utils.saveTxt("../data/fig_fel_modes_run%04d_spectra.txt"%run,E,tosave,info="E average_spectrum spectra") trx.utils.saveTxt("../data/fig_fel_modes_run%04d_abs.txt"%run,E,data.Abs[shots_per_run],info="# threshold = %.2f\n# E Abs"%threshold) axes[0,0].set_yticks(()) ax[0].set_xlim(7070,7180) ax[0].set_ylim(-0.2,3.2) axes[-1,0].set_xlabel("Energy (keV)") axes[-1,1].set_xlabel("Energy (keV)") #plt.subplots_adjust(left=0.07,right=0.95 plt.tight_layout() plt.savefig("fig_fel_modes.png",transparent=True,dpi=300) plt.savefig("fig_fel_modes.pdf",transparent=True) if __name__ == "__main__": fig_fel_modes()