import matplotlib.pyplot as plt import numpy as np import xanes_analyzeRun import mcutils as mc colors = "#a6cee3 #1f78b4 #b2df8a #33a02c #fb9a99 #e31a1c #fdbf6f #ff7f00 #cab2d6 #6a3d9a #ffff99 #b15928".split() def myc(i): return colors[i%len(colors)] def doRun(run=77): """ Since p1 is transformed, for the calibration look at p2 """ r = xanes_analyzeRun.AnalyzeRun(run) r.load() calibs = list(r.results.keys()) calibs.sort() p2 = [ np.nanmedian(r.results[c].p1,axis=0) for c in calibs ] p2 = np.asarray(p2) ref = np.nanmedian( p2 ,axis=0) # normalize p2 p2 = p2/ref # remove non-flat part _x = np.arange(p2.shape[1],dtype=float) p2 = [s-mc.poly_approximant(_x,s,order=20)(_x) for s in p2] p2 = np.asarray(p2) x = np.asarray( [_x for _ in p2]) x[p2>-0.15] = np.nan x[x<100] = np.nan; # below pixel 200 is noise pos = np.nanmean(x,axis=1) fig,ax=plt.subplots(1,2,sharey=True) xshift = 0.2 pcalib = [] for icalib,(xi,p2i) in enumerate(zip(x,p2)): ppar = dict ( color = myc(icalib) ) ax[0].plot(p2i+icalib*xshift,_x,'--',lw=1,alpha=0.5,**ppar) ax[0].plot(p2i+icalib*xshift,xi,lw=2,**ppar) pcalib.append( np.nanmedian(xi) ) ax[1].plot(r.scanpos[icalib],pcalib[icalib],'o',**ppar) polycal = np.polyfit(pcalib,r.scanpos,1) ax[1].plot(np.polyval(polycal,_x),_x) print("polynomial calibration",polycal)