# dispersiveXanes ```python # INSTALL THE STUFF # 1. go to psexport (and not pslogin or psana) # 2. Go in a folder where you will install the things (cd ~/my_folder) # 3. git clone https://github.com/marcocamma/x3py.git # 4. git clone https://git.ipr.univ-rennes1.fr/mcammara/dispersiveXanes.git # 5. if you want to update go to the right folder (for example cd ~/my_folder/dispersiveXanes) and type git pull. # BEFORE GETTING STARTED # 1. if at LCLS load the anaconda session # source ~marcoc/setups/ana-marco3k-setup.sh # 2. go in the right folder (cd ~/my_folder/dispersiveXanes) # → THIS IS IMPORTANT: change the experiment name in xanes_analyzeRun (line ~22) # GET STARTED # 1. start ipython (ipython3) # 2. tell python to use look for modules in the folder # 3. import sys; sys.path.insert(0,"~/my_folder") # there are two files: # 1. alignment.py (deals with images) # 2. xanes_analyzeRun.py (deals with run and images reading) %matplotlib nbagg import matplotlib import matplotlib.pylab as plt matplotlib.style.use("ggplot") import pprint import numpy as np np.warnings.simplefilter('ignore') import xanes_analyzeRun import alignment #Doing first alignment on "hole" # define starting parameters for analysis; passed directly to iminuit so things like # limits, or fix_scalex=True, etc. can be used pars = dict( scalex = 0.6, intensity = 0.1, iblur1=2,fix_iblur1 = False ) # default parameters can be found in alignment.g_fit_default_kw # you can have a look by uncommenting the following line: # pprint.pprint(alignment.g_fit_default_kw) # define the run object #### NOTE : for mec run swapx=True,swapy=False r = xanes_analyzeRun.AnalyzeRun(190,initAlign=pars,swapx=True,swapy=False) # data are d.spec1 and d.spec2 (spec1 is the one **upbeam**) # align one shot # show = True: show only output; showInit=True: show also starting parameters r0fit=r.doShot(shot=0,calib=0,showInit=True,doFit=True) # save as default transformation for run (used when reloading without initAlign keywork) r.saveTransform(); # do more shots without fitting (using last r.initAlign) # the return value is a list with lots of stuff for each shot res = r.doShots(slice(100),doFit=False) print(list(res.keys())) print(list(res["parameters"].keys())) alignment.plotRatios(res["ratio"]) ref = np.nanmedian(res["ratio"],axis=0) trash = plt.xlim(400,600) trash = plt.ylim(0,2) # analyze another run using previous alignment rShot = xanes_analyzeRun.AnalyzeRun(192,initAlign="mecl3616_init_pars/run0190_transform.npy",swapx=True,swapy=False) out = rShot.doShots(slice(0,5)) ratios = out["ratio"] plt.figure() for i,r in enumerate(ratios): plt.plot(r/ref,label="Shot %d"%i) trash = plt.ylim(0,1) trash = plt.legend(loc=2) # save results in hdf file for Andy's happiness rShot.save(overwrite=True) ```