finalize npz save function and worked a bit on funcitons to make ratios

This commit is contained in:
Marco Cammarata 2016-11-25 15:29:42 +01:00
parent 77b28612b4
commit eb1e2b4ce8
1 changed files with 43 additions and 33 deletions

View File

@ -101,37 +101,8 @@ def showShots(im1,im2):
a[0].plot(p1) a[0].plot(p1)
a[1].plot(p2) a[1].plot(p2)
def ratioOfAverage(p1,p2,threshold=0.03):
""" def maskLowIntensity(p1,p2,threshold=0.03,squeeze=True):
p1 and p2 are the energy spectrum. if 2D the first index has to be the shot number
calculate median ratio taking into account only regions where p1 and p2 are > 5% of the max """
# check if they are 2D
if p1.ndim == 1:
p1 = p1[np.newaxis,:]
p2 = p2[np.newaxis,:]
# w1 and w2 are the weights
w1 = p1.copy(); w2 = p2.copy()
if threshold is not None:
# weights will be set to zero if intensity is smaller than 5% of max
# for each shots, get maximum
m1 = np.nanmax(p1,axis=1); m2 = np.nanmax(p2,axis=1)
# find where each spectrum is smaller than threshold*max_for_that_shot; they will be masked out
idx1 = p1 < (m1[:,np.newaxis]*threshold)
idx2 = p2 < (m2[:,np.newaxis]*threshold)
w1[idx1]=0
w2[idx2]=0
# using masked array because some pixel will have zero shots contributing
av1 = np.ma.average(p1,axis=0,weights=w1)
av1[av1.mask] = np.nan
av2 = np.ma.average(p2,axis=0,weights=w2)
av2[av2.mask] = np.nan
return av2/av1
def medianRatio(p1,p2,threshold=0.03):
"""
p1 and p2 are the energy spectrum. if 2D the first index has to be the shot number
calculate median ratio taking into account only regions where p1 and p2 are > 5% of the max """
# check if they are 2D
if p1.ndim == 1: if p1.ndim == 1:
p1 = p1[np.newaxis,:] p1 = p1[np.newaxis,:]
p2 = p2[np.newaxis,:] p2 = p2[np.newaxis,:]
@ -145,6 +116,28 @@ def medianRatio(p1,p2,threshold=0.03):
idx = idx1 & idx2 idx = idx1 & idx2
p1.mask = idx p1.mask = idx
p2.mask = idx p2.mask = idx
if squeeze:
p1 = np.squeeze(p1);
p2 = np.squeeze(p2)
return p1,p2
def ratioOfAverage(p1,p2,threshold=0.03):
"""
p1 and p2 are the energy spectrum. if 2D the first index has to be the shot number
calculate median ratio taking into account only regions where p1 and p2 are > 5% of the max """
p1,p2 = maskLowIntensity(p1,p2,threshold=threshold,squeeze=False)
# using masked array because some pixel will have zero shots contributing
av1 = np.ma.average(p1,axis=0,weights=p1)
av2 = np.ma.average(p2,axis=0,weights=p2)
return av2/av1
def medianRatio(p1,p2,threshold=0.03):
"""
p1 and p2 are the energy spectrum. if 2D the first index has to be the shot number
calculate median ratio taking into account only regions where p1 and p2 are > 5% of the max """
p1,p2 = maskLowIntensity(p1,p2,threshold=threshold,squeeze=False)
ratio = p2/p1 ratio = p2/p1
return np.ma.average(ratio,axis=0,weights=p1) return np.ma.average(ratio,axis=0,weights=p1)
@ -294,13 +287,30 @@ class AnalyzeRun(object):
return ret return ret
def save(self,fname="auto",overwrite=False): def save(self,fname="auto",overwrite=False):
if len(self.results) == 0: print("self.results are empty, returning without saving") if len(self.results) == 0:
print("self.results are empty, returning without saving")
if not os.path.isdir(g_folder_out): os.makedirs(g_folder_out) if not os.path.isdir(g_folder_out): os.makedirs(g_folder_out)
if fname == "auto": if fname == "auto":
fname = g_folder_out+"/run%04d_analysis" % self.run fname = g_folder_out+"/run%04d_analysis.npz" % self.run
if os.path.exists(fname) and not overwrite: if os.path.exists(fname) and not overwrite:
print("File %s exists, **NOT** saving, use overwrite=True is you want ..."%fname) print("File %s exists, **NOT** saving, use overwrite=True is you want ..."%fname)
return return
h = dict()
h["roi1"] = (self.roi1.start,self.roi1.stop)
h["roi2"] = (self.roi2.start,self.roi2.stop)
if hasattr(self.data.scan,"scanmotor0"):
h["scanmot0"] = self.data.scan.scanmotor0
else:
h["scanmot0"] = 'notascan'
h["scanpos0"] = self.data.scan.scanmotor0_values
if hasattr(self.data.scan,"scanmotor1"):
h["scanmot1"] = self.data.scan.scanmotor1
h["scanpos1"] = self.data.scan.scanmotor1_values
h["results"] = self.results
h["E"] = self.E
np.savez(fname,**h)
#h["transform"] = self.initAlign
def load(self,fname="auto"): def load(self,fname="auto"):
if fname == "auto": fname = g_folder_out+"/run%04d_analysis.npz" % self.run if fname == "auto": fname = g_folder_out+"/run%04d_analysis.npz" % self.run