improved calculations (calcSpectraForRefAndSample) and plotting (showSpectra and showAbs)
This commit is contained in:
parent
66dd58a94b
commit
527f88b50c
|
@ -3,6 +3,7 @@ import matplotlib.pyplot as plt
|
|||
import copy
|
||||
import argparse
|
||||
import collections
|
||||
import alignment
|
||||
import xanes_analyzeRun
|
||||
|
||||
parser = argparse.ArgumentParser(description='Process argv')
|
||||
|
@ -16,8 +17,10 @@ profile_ret = collections.namedtuple("profile_ret",["run","p1","p2","calibs"])
|
|||
|
||||
|
||||
nice_colors = ["#1b9e77", "#d95f02", "#7570b3"]
|
||||
gradual_colors = ['#014636', '#016c59', '#02818a', '#3690c0', '#67a9cf', '#a6bddb', '#d0d1e6']#, '#ece2f0']
|
||||
|
||||
def calcProfilesForRun(run=82,calibs="all",realign=False,init="auto",alignCalib=0):
|
||||
|
||||
def calcSpectraForRun(run=82,calibs="all",realign=False,init="auto",alignCalib=0,force=False):
|
||||
""" init and alignCalib are used only if realignment is performed:
|
||||
init = run for initial alignment, use auto is you want to use same run
|
||||
alignCalib = calibcycle for alignment
|
||||
|
@ -32,12 +35,13 @@ def calcProfilesForRun(run=82,calibs="all",realign=False,init="auto",alignCalib=
|
|||
r.saveTransform()
|
||||
# next line is used to force calculations in case of realignment
|
||||
fname = 'auto' if not realign else "thisfiledoesnotexists"
|
||||
if force: fname = "thisfiledoesnotexists"
|
||||
if len(r.results) == 0:
|
||||
try:
|
||||
r.load(fname)
|
||||
print("Loading previously saved results")
|
||||
except FileNotFoundError:
|
||||
r.analyzeScan(shots=slice(600),calibs=calibs,nImagesToFit=0,nSaveImg=4)
|
||||
r.analyzeScan(calibs=calibs,nImagesToFit=0,nSaveImg=4)
|
||||
r.save(overwrite=True)
|
||||
# cannot take the output from r.results because it might have been calculated for
|
||||
# a bigger range than asked for.
|
||||
|
@ -54,23 +58,41 @@ def calcProfilesForRun(run=82,calibs="all",realign=False,init="auto",alignCalib=
|
|||
return profile_ret( run =r, p1 =p1, p2=p2,calibs=calibsForOut)
|
||||
|
||||
|
||||
def calcProfilesForRefAndSample(run=82,refCalibs=0,force=False):
|
||||
def calcSpectraForRefAndSample(run=82,refCalibs=slice(None,None,2),forceSpectraCalculation=False):
|
||||
""" Function to calculate the Spectra with and without (ref) the sample.
|
||||
It can analyze two kinds of runs:
|
||||
* Single run with that alternates IN and OUT (like run 82)
|
||||
in this case use something like:
|
||||
calcSpectraForRefAndSample(82,refCalibs=slice(None,None,2)
|
||||
or
|
||||
calcSpectraForRefAndSample(82,refCalibs=(0,2,4,6))
|
||||
* Multiple runs (one with reference and one with sample) like run 155 and 156
|
||||
in this case use something like:
|
||||
calcSpectraForRefAndSample( run=(155,156) )
|
||||
where the first is the reference run and the second the one with the sample.
|
||||
in this second case the refCalibs does not play a role
|
||||
use forceSpectraCalculation = True, to re-read the images
|
||||
"""
|
||||
if isinstance(run,int):
|
||||
refRun = xanes_analyzeRun.AnalyzeRun(run)
|
||||
sampleRun = refRun
|
||||
if isinstance(refCalibs,slice): refCalibs = list(range(refRun.nCalib))[refCalibs]
|
||||
if isinstance(refCalibs,int): refCalibs = (refCalibs,)
|
||||
run = xanes_analyzeRun.AnalyzeRun(run)
|
||||
if isinstance(refCalibs,slice): refCalibs = list(range(run.nCalib))[refCalibs]
|
||||
if isinstance(refCalibs,int): refCalibs = [refCalibs,]
|
||||
sampleCalibs = [c+1 for c in refCalibs]
|
||||
# need a single call (for sample and ref) to save all calibcycles
|
||||
calcSpectraForRun(run,calibs=refCalibs+sampleCalibs,\
|
||||
force=forceSpectraCalculation);
|
||||
|
||||
ref = calcSpectraForRun(run,calibs=refCalibs)
|
||||
sample = calcSpectraForRun(run,calibs=sampleCalibs)
|
||||
elif isinstance(run,(list,tuple)):
|
||||
refRun = xanes_analyzeRun.AnalyzeRun(run[0])
|
||||
sampleRun = xanes_analyzeRun.AnalyzeRun(run[1],initAlign=run[0])
|
||||
refCalibs = [0,]
|
||||
sampleCalibs = [0,]
|
||||
if refRun == sampleRun:
|
||||
# otherwise same does not save them both
|
||||
temp = calcProfilesForRun(refRun,calibs=sampleCalibs+refCalibs);
|
||||
ref = calcProfilesForRun(refRun,calibs=refCalibs)
|
||||
sample = calcProfilesForRun(sampleRun,calibs=sampleCalibs)
|
||||
ref = calcSpectraForRun(refRun,calibs=refCalibs,\
|
||||
force=forceSpectraCalculation)
|
||||
sample = calcSpectraForRun(sampleRun,calibs=sampleCalibs,\
|
||||
force=forceSpectraCalculation)
|
||||
return ref,sample
|
||||
|
||||
def calcRef(r1,r2,calibs=None,threshold=0.05):
|
||||
|
@ -96,7 +118,7 @@ def calcRef(r1,r2,calibs=None,threshold=0.05):
|
|||
|
||||
def showDifferentRefs(run=82,refCalibs=slice(None,None,2),threshold=0.05):
|
||||
""" example plots showing how stable are the different ways of taking spectra """
|
||||
prof = calcProfilesForRun(run,calibs=refCalibs)
|
||||
prof = calcSpectraForRun(run,calibs=refCalibs)
|
||||
refs = calcRef(prof.p1,prof.p2,calibs=prof.calibs)
|
||||
kind_of_av = list(refs.keys())
|
||||
fig,ax=plt.subplots(len(kind_of_av)+1,1,sharex=True,sharey=True)
|
||||
|
@ -117,29 +139,112 @@ def showDifferentRefs(run=82,refCalibs=slice(None,None,2),threshold=0.05):
|
|||
ax[-1].legend()
|
||||
for a in ax: a.grid()
|
||||
|
||||
def calcSampleAbs(run=82,refCalibs=slice(None,None,2),threshold=0.05,refKind="medianOfRatios"):
|
||||
def calcSampleAbs(run=82,refCalibs=slice(None,None,2),threshold=0.05,refKind="medianOfRatios",forceSpectraCalculation=False):
|
||||
""" example of use
|
||||
ratio = calcSampleAbs(82)
|
||||
ratio = calcSampleAbs( (155,156) )
|
||||
"""
|
||||
ref,sample = calcProfilesForRefAndSample(run,refCalibs=refCalibs)
|
||||
ref,sample = calcSpectraForRefAndSample(run,refCalibs=refCalibs,forceSpectraCalculation=forceSpectraCalculation)
|
||||
temp = calcRef(ref.p1,ref.p2,calibs=ref.calibs,threshold=threshold)
|
||||
ref = temp[refKind]['all']
|
||||
p1 = np.vstack( sample.p1 )
|
||||
p2 = np.vstack( sample.p2 )
|
||||
print(p1.shape)
|
||||
p1,p2 = xanes_analyzeRun.maskLowIntensity(p1,p2,threshold=0.1)
|
||||
p1,p2 = xanes_analyzeRun.maskLowIntensity(p1,p2,threshold=threshold)
|
||||
ratio = p2/p1
|
||||
ratio = ratio/ref
|
||||
return ratio
|
||||
return p1,p2,-np.log10(ratio)
|
||||
|
||||
def showSpectra(run=82,shots=slice(5),calibs=0,averageEachCalib=False,
|
||||
normalization="auto",shifty=1,xlim=(7060,7180),showAv=True):
|
||||
""" averageEachCalib: if True, plot only one (averaged) spectrum per calibcycle
|
||||
normalization: if "auto", the max of the spectra that will be plotted will be used
|
||||
"""
|
||||
r = xanes_analyzeRun.AnalyzeRun(run=run)
|
||||
r.load()
|
||||
calibsSaved = list(r.results.keys()); calibsSaved.sort()
|
||||
res = [ r.results[c].p2 for c in calibsSaved ]
|
||||
if isinstance(calibs,slice): res=res[calibs]
|
||||
if isinstance(calibs,int): res=[res[calibs],]
|
||||
avCalibs = [ np.nanmedian(spectra,axis=0) for spectra in res ]
|
||||
if averageEachCalib:
|
||||
res = avCalibs
|
||||
showAv = False; # it does not make sense to plot it twice !
|
||||
fig,ax = plt.subplots(len(res),1,sharex=True,sharey=True,squeeze=False)
|
||||
if normalization == "auto": normalization = np.nanmax( [temp[shots] for temp in res] )
|
||||
for (av,spectra,a) in zip(avCalibs,res,ax[:,0]):
|
||||
spectra_norm = spectra[shots]/normalization
|
||||
av_norm = av/normalization
|
||||
for i,spectrum in enumerate(spectra_norm):
|
||||
color = gradual_colors[i%len(gradual_colors)]
|
||||
a.axhline(i*shifty,ls='--',color=color)
|
||||
if showAv: a.fill_between(r.E,i*shifty,av_norm+i*shifty,color='#d95f0e',alpha=0.4)
|
||||
print(i)
|
||||
a.plot(r.E,spectrum+i*shifty,color=color,lw=2)
|
||||
ax[0][0].set_xlim(*xlim)
|
||||
ax[0][0].set_title("Run %d"%run)
|
||||
if not averageEachCalib: ax[0][0].set_ylim(0,shifty*(len(spectra_norm)))
|
||||
|
||||
def showAbs(run=82,shots=slice(5),normalization="auto",shifty=1,xlim=(7080,7180),showAv=True,smoothWidth=0):
|
||||
""" normalization: if "auto", the max of the spectra that will be plotted will be used
|
||||
"""
|
||||
E = alignment.defaultE
|
||||
p1,p2,abs = calcSampleAbs(run=run,threshold=0.01)
|
||||
p1_av = np.nanmedian(p1,axis=0)
|
||||
p2_av = np.nanmedian(p2,axis=0)
|
||||
abs_av = np.nanmedian(abs,axis=0)
|
||||
p1 = p1[shots]; p2=p2[shots]; abs = abs[shots]
|
||||
if smoothWidth > 0: abs = smoothSpectra(E,abs,res=smoothWidth)
|
||||
fig,ax = plt.subplots(1,2,sharex=True,sharey=True,squeeze=False)
|
||||
ax = ax[0]
|
||||
if normalization == "auto": normalization = np.nanmax( p1 )
|
||||
for ishot,(s1,s2,a) in enumerate(zip(p1,p2,abs)):
|
||||
s1_norm = s1/normalization
|
||||
s2_norm = s2/normalization
|
||||
color = gradual_colors[ishot%len(gradual_colors)]
|
||||
ax[0].axhline(ishot*shifty,ls='--',color=color)
|
||||
ax[1].axhline(ishot*shifty,ls='--',color=color)
|
||||
if showAv:
|
||||
if ishot == 0: ax[0].fill_between(E,ishot*shifty,p1_av/normalization+ishot*shifty,color='#d95f0e',alpha=0.6)
|
||||
ax[1].plot(E,abs_av+ishot*shifty,color='#d95f0e',lw=2,zorder=20)
|
||||
ax[0].plot(E,s1_norm+ishot*shifty,ls = '-' ,color='0.8',lw=2)
|
||||
ax[0].plot(E,s2_norm+ishot*shifty,ls = '-' ,color='0.3',lw=2)
|
||||
ax[1].plot(E,a+ishot*shifty,color=color,lw=2)
|
||||
ax[0].set_xlim(*xlim)
|
||||
ax[0].set_title("Run %d"%run)
|
||||
ax[1].set_ylabel("Sample Absorption")
|
||||
ax[0].set_ylabel("Normalized Spectra")
|
||||
ax[0].set_ylim(0,shifty*(p1.shape[0]))
|
||||
|
||||
def smoothSpectra(E,abs_spectra,res=0.5):
|
||||
from scipy import integrate
|
||||
if abs_spectra.ndim == 1: abs_spectra=abs_spectra[np.newaxis,:]
|
||||
out = np.empty_like(abs_spectra)
|
||||
for ispectrum in range(abs_spectra.shape[0]):
|
||||
idx = np.isfinite(abs_spectra[ispectrum])
|
||||
Eclean = E[idx]
|
||||
for i in range(len(E)):
|
||||
g = 1/np.sqrt(2*np.pi)/res*np.exp(-(E-E[i])**2/2/res**2)
|
||||
tointegrate = g*abs_spectra[ispectrum]
|
||||
# filter out nans
|
||||
tointegrate = tointegrate[idx]
|
||||
out[ispectrum,i] = integrate.simps(tointegrate,x=Eclean)
|
||||
return out
|
||||
|
||||
def main(run,refCalib=0,force=False):
|
||||
pass
|
||||
#r = calcProfiles(run,refCalibs=refCalib,force=force)
|
||||
def doLongCalc():
|
||||
#calcSpectraForRefAndSample(82,forceSpectraCalculation=True)
|
||||
|
||||
# scanning requires a lower level call
|
||||
r = xanes_analyzeRun.AnalyzeRun(84)
|
||||
r.analyzeScan(nShotsPerCalib="all",calibs="all",nSaveImg=2,calibsToFit='even',nImagesToFit=3)
|
||||
r.save(overwrite=True)
|
||||
#calcSpectraForRefAndSample(84,forceSpectraCalculation=False)
|
||||
|
||||
calcSpectraForRefAndSample(96,forceSpectraCalculation=True)
|
||||
calcSpectraForRefAndSample((155,156),forceSpectraCalculation=True)
|
||||
#r = calcSpectra(run,refCalibs=refCalib,force=force)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(args.run,force=args.force)
|
||||
pass
|
||||
#main(args.run,force=args.force)
|
||||
|
|
Loading…
Reference in New Issue