during marion visit

This commit is contained in:
Marco Cammarata 2017-06-07 14:13:59 +02:00
parent 0df7c7b2f1
commit 487d8dae3d
14 changed files with 4047 additions and 3987 deletions

File diff suppressed because one or more lines are too long

View File

@ -19,9 +19,12 @@
# 2. tell python to use look for modules in the folder # 2. tell python to use look for modules in the folder
# 3. import sys; sys.path.insert(0,"~/my_folder") # 3. import sys; sys.path.insert(0,"~/my_folder")
# there are two files: # these are the important files:
# 1. alignment.py (deals with images) # 1. alignment.py (deals with images)
# 2. xanes_analyzeRun.py (deals with run and images reading) # 2. xanes_analyzeRun.py (deals with run and images reading)
# 3. xppl37_calibration.py (deals with spectrometer calibration)
# 4. xppl37_theta_scan.py (deals with theta scans)
# 5. xppl37_spectra.py (deals with calculation of absorption spectra for IN/OUT scans, etc.
%matplotlib nbagg %matplotlib nbagg
import matplotlib import matplotlib
@ -45,6 +48,8 @@ pars = dict( scalex = 0.6, intensity = 0.1, iblur1=2,fix_iblur1 = False )
# define the run object # define the run object
#### NOTE : for mec run swapx=True,swapy=False #### NOTE : for mec run swapx=True,swapy=False
#### NOTE : for xpp un-focused run: swapx=False,swapy=False
#### NOTE : for xpp focused run: swapx=False,swapy=True
r = xanes_analyzeRun.AnalyzeRun(190,initAlign=pars,swapx=True,swapy=False) r = xanes_analyzeRun.AnalyzeRun(190,initAlign=pars,swapx=True,swapy=False)
# data are d.spec1 and d.spec2 (spec1 is the one **upbeam**) # data are d.spec1 and d.spec2 (spec1 is the one **upbeam**)

View File

@ -84,6 +84,27 @@ def findRoi(img,height=100,axis=0):
return roi return roi
def subtractBkg(imgs,nPix=100,bkg_type="line"):
if imgs.ndim == 2: imgs = imgs[np.newaxis,:]
imgs = imgs.astype(np.float)
if bkg_type == "line":
bkg = np.median(imgs[:,:nPix,:],axis=1)
imgs = imgs-bkg[:,np.newaxis,:]
elif bkg_type == "corner":
q1 = imgs[:,:nPix,:nPix].mean(-1).mean(-1)
imgs[:,:512,:512]-=q1[:,np.newaxis,np.newaxis]
q2 = imgs[:,:nPix,-nPix:].mean(-1).mean(-1)
imgs[:,:512,-512:]-=q2[:,np.newaxis,np.newaxis]
q3 = imgs[:,-nPix:,-nPix:].mean(-1).mean(-1)
imgs[:,-512:,-512:]-=q3[:,np.newaxis,np.newaxis]
q4 = imgs[:,-nPix:,:nPix].mean(-1).mean(-1)
imgs[:,-512:,:512]-=q4[:,np.newaxis,np.newaxis]
elif bkg_type is None:
if imgs.ndim == 2: imgs = imgs[np.newaxis,:].astype(np.float)
else:
print("Background subtraction '%s' Not impleted"%bkg_type)
return imgs
# /--------------------\ # /--------------------\
# | | # | |
# | PLOTS & CO. | # | PLOTS & CO. |
@ -313,7 +334,7 @@ def findTransform(p1,p2,ttype="affine"):
# \--------/ # \--------/
def transformIminuit(im1,im2,init_transform=dict(),show=False,verbose=True,zeroThreshold=0.05,doFit=True): def transformIminuit(im1,im2,init_transform=dict(),show=False,verbose=True,zeroThreshold=0.0,doFit=True):
import iminuit import iminuit
assert im1.dtype == im2.dtype assert im1.dtype == im2.dtype
t0 = time.time() t0 = time.time()
@ -321,7 +342,7 @@ def transformIminuit(im1,im2,init_transform=dict(),show=False,verbose=True,zeroT
im1_toFit = im1.copy() im1_toFit = im1.copy()
im2_toFit = im2.copy() im2_toFit = im2.copy()
# set anything below the 5% of the max to zero (one of the two opal is noisy) # set anything below the zeroThreshold of the max to zero (one of the two opal is noisy)
im1_toFit[im1_toFit<im1.max()*zeroThreshold] = 0 im1_toFit[im1_toFit<im1.max()*zeroThreshold] = 0
im2_toFit[im2_toFit<im2.max()*zeroThreshold] = 0 im2_toFit[im2_toFit<im2.max()*zeroThreshold] = 0
p1 = im1.mean(0) p1 = im1.mean(0)
@ -365,8 +386,8 @@ def transformIminuit(im1,im2,init_transform=dict(),show=False,verbose=True,zeroT
# set default initial stepsize and limits # set default initial stepsize and limits
r = im2.mean(0).sum()/im1.mean(0).sum() r = im2.mean(0).sum()/im1.mean(0).sum()
default_kw = g_fit_default_kw.copy() default_kw = g_fit_default_kw.copy()
# will be used only if not in initpars
default_kw["intensity"] = r default_kw["intensity"] = r
init_kw = dict() init_kw = dict()
@ -400,6 +421,7 @@ def transformIminuit(im1,im2,init_transform=dict(),show=False,verbose=True,zeroT
plotShot(i1,i2) plotShot(i1,i2)
fig = plt.gcf() fig = plt.gcf()
fig.text(0.5,0.9,"Initial Pars") fig.text(0.5,0.9,"Initial Pars")
plt.draw()
input("Enter to start fit") input("Enter to start fit")
if doFit: imin.migrad() if doFit: imin.migrad()

View File

@ -156,10 +156,8 @@ class AnalyzeRun(object):
# rebin and swap im1 if necessary # rebin and swap im1 if necessary
if im1.shape[-1] != 1024: if im1.shape[-1] != 1024:
im1 = mc.rebin(im1, (im1.shape[0],im1.shape[1],1024) ) im1 = mc.rebin(im1, (im1.shape[0],im1.shape[1],1024) )
if self.swap[0]: if self.swap[0]: im1 = im1[:,:,::-1]
im1 = im1[:,:,::-1] if self.swap[1]: im1 = im1[:,::-1,:]
if self.swap[1]:
im1 = im1[:,::-1,:]
if roi is None: if roi is None:
pass pass
elif isinstance(roi,slice): elif isinstance(roi,slice):
@ -268,6 +266,7 @@ class AnalyzeRun(object):
def save(self,fname="auto",overwrite=False): def save(self,fname="auto",overwrite=False):
if len(self.results) == 0: if len(self.results) == 0:
print("self.results are empty, returning without saving") print("self.results are empty, returning without saving")
return
if not os.path.isdir(g_folder_out): os.makedirs(g_folder_out) if not os.path.isdir(g_folder_out): os.makedirs(g_folder_out)
if fname == "auto": if fname == "auto":
fname = g_folder_out+"/run%04d_analysis.npz" % self.run fname = g_folder_out+"/run%04d_analysis.npz" % self.run

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -22,8 +22,11 @@ gradual_colors = ['#014636', '#016c59', '#02818a', '#3690c0', '#67a9cf', '#a6bdd
def calcSpectraForRun(run=82,calibs="all",realign=False,init="auto",alignCalib=0,force=False): def calcSpectraForRun(run=82,calibs="all",realign=False,init="auto",alignCalib=0,force=False):
""" init and alignCalib are used only if realignment is performed: """ Calculate spectra (spec1, spec2) for run based on alignment.
init = run for initial alignment, use auto is you want to use same run
Alignment can be 'forced' with realign=True.
In such a case
init = run for initial alignment
alignCalib = calibcycle for alignment alignCalib = calibcycle for alignment
""" """
if init=="auto": init=run if init=="auto": init=run
@ -51,11 +54,17 @@ def calcSpectraForRun(run=82,calibs="all",realign=False,init="auto",alignCalib=0
elif isinstance(calibs,slice): elif isinstance(calibs,slice):
calibsForOut = list(range(r.nCalib))[calibs] calibsForOut = list(range(r.nCalib))[calibs]
elif calibs == "all": elif calibs == "all":
calibsForOut = list(range(r.nCalib)) calibsForOut = r.results.keys()
else: else:
calibsForOut = calibs calibsForOut = calibs
# focused data have one single calibcycle ...
if len(r.results) > 1:
p1 = [r.results[calib].p1 for calib in calibsForOut] p1 = [r.results[calib].p1 for calib in calibsForOut]
p2 = [r.results[calib].p2 for calib in calibsForOut] p2 = [r.results[calib].p2 for calib in calibsForOut]
else:
idx = r.results[None].fom < 0.5
p1 = [ r.results[None].p1[idx], r.results[None].p1[~idx] ]
p2 = [ r.results[None].p2[idx], r.results[None].p2[~idx] ]
return profile_ret( run =r, p1 =p1, p2=p2,calibs=calibsForOut) return profile_ret( run =r, p1 =p1, p2=p2,calibs=calibsForOut)
@ -80,9 +89,13 @@ def calcSpectraForRefAndSample(run=82,refCalibs=slice(None,None,2),forceSpectraC
if isinstance(refCalibs,int): refCalibs = [refCalibs,] if isinstance(refCalibs,int): refCalibs = [refCalibs,]
sampleCalibs = [c+1 for c in refCalibs] sampleCalibs = [c+1 for c in refCalibs]
# need a single call (for sample and ref) to save all calibcycles # need a single call (for sample and ref) to save all calibcycles
calcSpectraForRun(run,calibs=refCalibs+sampleCalibs,\ data= calcSpectraForRun(run,calibs=refCalibs+sampleCalibs,\
force=forceSpectraCalculation); force=forceSpectraCalculation);
# for focused runs
if len(data.run.results) == 1:
ref = profile_ret(run=data.run,p1=[data.p1[0],],p2=[data.p2[0],],calibs=[0,])
sample = profile_ret(run=data.run,p1=[data.p1[1],],p2=[data.p2[1],],calibs=[0,])
else:
ref = calcSpectraForRun(run,calibs=refCalibs) ref = calcSpectraForRun(run,calibs=refCalibs)
sample = calcSpectraForRun(run,calibs=sampleCalibs) sample = calcSpectraForRun(run,calibs=sampleCalibs)
elif isinstance(run,(list,tuple)): elif isinstance(run,(list,tuple)):