first git.ipr commit

This commit is contained in:
marco cammarata 2016-05-12 15:02:42 +02:00
parent 85277ece64
commit 3ef6283df7
89 changed files with 23251 additions and 0 deletions

3
.gitignore vendored
View File

@ -1,3 +1,6 @@
mecl3616_output/
xppl3716_output/
# ---> Python
# Byte-compiled / optimized / DLL files
__pycache__/

View File

@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 0
}

15765
HOW-TO.html Normal file

File diff suppressed because one or more lines are too long

3985
HOW-TO.ipynb Normal file

File diff suppressed because one or more lines are too long

6
NOTES.txt Normal file
View File

@ -0,0 +1,6 @@
run 13, fit on first shot, foms:
{'fom': array([ 0.05494294, 0.06082832, 0.0530633 , 0.04097997, 0.04311072,
0.04868919, 0.03658052, 0.05205008, 0.02965361, 0.0349829 ,
0.05938427, 0.04889882, 0.04420127, 0.05612349, 0.05459789,
0.04026893, 0.06067866, 0.04404101, 0.05147894, 0.06231822]),

589
alignment.py Normal file
View File

@ -0,0 +1,589 @@
from __future__ import print_function,division
from skimage import transform as tf
from scipy.ndimage import gaussian_filter1d as g1d
import mcutils as mc
import joblib
import collections
import numpy as np
import matplotlib.pyplot as plt
import time
# /--------\
# | |
# | UTILS |
# | |
# \--------/
#defaultE = np.arange(1024)*0.12+7060
defaultE = (np.arange(1024)-512)*0.189+7123
__i = np.arange(1024)
__x = (__i-512)/512
g_fit_default_kw = dict(
intensity = 1.,
error_intensity = 0.02,
transx = 0,
error_transx = 3,
limit_transx = ( -400,400 ),
transy = 0,
error_transy = 3,
limit_transy = ( -50,50 ),
rotation = 0.01,
error_rotation = 0.005,
limit_rotation = (-0.06,0.06),
scalex = 1,
limit_scalex = (0.4,1.2),
error_scalex = 0.05,
scaley = 1,
error_scaley = 0.05,
limit_scaley = (0.8,1.2),
shear = 0.01,
error_shear = 0.001,
limit_shear = (-0.2,0.2),
igauss1cen = 512,
error_igauss1cen = 2.,
fix_igauss1cen = True,
igauss1sig = 4000.,
error_igauss1sig = 2.,
fix_igauss1sig = True,
igauss2cen = 512,
error_igauss2cen = 2.,
fix_igauss2cen = True,
igauss2sig = 4000.,
error_igauss2sig = 2.,
fix_igauss2sig = True,
iblur1 = 0,
limit_iblur1 = (0,20),
error_iblur1 = 0.02,
fix_iblur1 = True
)
def rebin1D(a,shape):
n0 = a.shape[0]//shape
sh = shape,n0
return a[:n0*shape].reshape(sh).mean(1)
kw_2dplot = dict(
interpolation = "none",
aspect = "auto",
cmap = plt.cm.viridis
)
fit_ret = collections.namedtuple("fit_ret",["fit_result","init_pars","final_pars",\
"final_transform1","final_transform2","im1","im2","p1","p2","fom","ratio","tneeded"] )
def calcFOM(p1,p2,ratio):
idx = ( p1>p1.max()/10 ) & (p2>p2.max()/10)
ratio = ratio[idx]
return ratio.std()/ratio.mean()
def subtractBkg(imgs,nPix=100,bkg_type="line"):
if imgs.ndim == 2: imgs = imgs[np.newaxis,:]
imgs = imgs.astype(np.float)
if bkg_type == "line":
bkg = np.median(imgs[:,:nPix,:],axis=1)
imgs = imgs-bkg[:,np.newaxis,:]
elif bkg_type == "corner":
q1 = imgs[:,:nPix,:nPix].mean(-1).mean(-1)
imgs[:,:512,:512]-=q1[:,np.newaxis,np.newaxis]
q2 = imgs[:,:nPix,-nPix:].mean(-1).mean(-1)
imgs[:,:512,-512:]-=q2[:,np.newaxis,np.newaxis]
q3 = imgs[:,-nPix:,-nPix:].mean(-1).mean(-1)
imgs[:,-512:,-512:]-=q3[:,np.newaxis,np.newaxis]
q4 = imgs[:,-nPix:,:nPix].mean(-1).mean(-1)
imgs[:,-512:,:512]-=q4[:,np.newaxis,np.newaxis]
elif bkg_type is None:
if imgs.ndim == 2: imgs = imgs[np.newaxis,:].astype(np.float)
else:
print("Background subtraction '%s' Not impleted"%bkg_type)
return imgs
def getCenterOfMax(img,axis=0,threshold=0.05):
img = img.copy()
img[img<img.max()*threshold] = 0
if axis == 1: img=img.T
p = img.mean(1)
x = np.arange(img.shape[0])
return np.sum(x*p)/np.sum(p)
def findRoi(img,height=100,axis=0):
c = int( getCenterOfMax(img,axis=axis) )
roi = slice(c-height//2,c+height//2)
return roi
# /--------------------\
# | |
# | PLOTS & CO. |
# | |
# \--------------------/
def plotShot(im1,im2,transf1=None,transf2=None,fig=None,ax=None,res=None,E=defaultE,save=None):
if transf1 is not None: im1 = transf1.transformImage(im1)
if transf2 is not None: im2 = transf2.transformImage(im2)
if fig is None and ax is None:
fig = plt.subplots(2,3,figsize=[7,5],sharex=True)[0]
ax = fig.axes
elif fig is not None:
ax = fig.axes
if E is None: E=np.arange(im1.shape[1])
n = im1.shape[0]
ax[0].imshow(im1,**kw_2dplot,extent=(E[0],E[-1],0,n))
ax[1].imshow(im2,**kw_2dplot,extent=(E[0],E[-1],0,n))
ax[2].imshow(im1-im2,**kw_2dplot,extent=(E[0],E[-1],0,n))
if res is None:
p1 = np.nansum(im1,axis=0)
p2 = np.nansum(im2,axis=0)
pr = p1/p2
else:
p1 = res.p1; p2 = res.p2; pr = res.ratio
ax[3].plot(E,p1,lw=3)
ax[4].plot(E,p1,lw=1)
ax[4].plot(E,p2,lw=3)
idx = (p1>p1.max()/10.) & (p2>p2.max()/10)
ax[5].plot(E[idx],pr[idx])
if res is not None:
ax[5].set_title("FOM: %.2f"%res.fom)
else:
ax[5].set_title("FOM: %.2f"% calcFOM(p1,p2,pr))
if (save is not None) and (save is not False): plt.savefig(save,transparent=True,dpi=500)
return fig
def plotRatios(r,fig=None,E=defaultE,save=None):
if fig is None: fig = plt.subplots(2,1,sharex=True)[0]
ax = fig.axes
n = r.shape[0]
i = ax[0].imshow(r,**kw_2dplot,extent=(E[0],E[-1],0,n))
i.set_clim(0,1.2)
idx = np.random.random_integers(0,n-1)
ax[1].plot(E,r[idx],label="Shot n %d"%idx)
ax[1].plot(E,np.nanmedian(r[:10],axis=0),label="median 10 shots")
ax[1].plot(E,np.nanmedian(r,axis=0),label="all shots")
ax[1].legend()
ax[1].set_ylim(0,1.5)
ax[1].set_xlabel("Energy")
ax[1].set_ylabel("Transmission")
ax[0].set_ylabel("Shot num")
if (save is not None) and (save is not False): plt.savefig(save,transparent=True,dpi=500)
def plotSingleShots(r,nShots=10,fig=None,E=defaultE,save=None,ErangeForStd=(7090,7150)):
if fig is None: fig = plt.subplots(2,1,sharex=True)[0]
ax = fig.axes
for i in range(nShots):
ax[0].plot(E,r[i]+i)
ax[0].set_ylim(0,nShots+0.5)
av = (1,3,10,30,100)
good = np.nanmedian(r,0)
for i,a in enumerate(av):
m = np.nanmedian(r[:a],0)
idx = (E>ErangeForStd[0]) & (E<ErangeForStd[1])
fom = np.nanstd( m[idx]/good[idx] )
print("n shots %d, std %.2f"%(a,fom) )
ax[1].plot(E,m+i,label="%d shots, std :%.2f"%(a,fom))
ax[1].legend()
ax[1].set_ylim(0,len(av)+0.5)
ax[1].set_xlabel("Energy")
ax[1].set_ylabel("Transmission")
if (save is not None) and (save is not False): plt.savefig(save,transparent=True,dpi=500)
# /--------------------\
# | |
# | TRANSFORM & CO. |
# | |
# \--------------------/
def transformImage(img,transform=None,iblur=None,intensity=1,\
igauss=None,orderRotation=1,show=False):
""" Transform is the geometrical (affine) transform)
blur is a tuple (blurx,blury); if a single value used for energy axis
i is to correct the itensity
igauss is to multiply the intensity with a gaussian along the energy axis (=0); if a single assumed centered at center of image, or has to be a tuple (cen,witdth)
"""
if transform is not None and not np.all(transform.params==np.eye(3)) :
try:
t = np.linalg.inv(transform.params)
i = tf._warps_cy._warp_fast(img,t,order=orderRotation)
except np.linalg.LinAlgError:
print("Image transformation failed, returning original image")
i = img.copy()
else:
i = img.copy()
i *= intensity
if iblur is not None:
if isinstance(iblur,(int,float)):
iblur = (iblur,None)
if (iblur[0] is not None) and (iblur[0]>0): i = g1d(i,iblur[0],axis=1)
if (iblur[1] is not None) and (iblur[1]>0): i = g1d(i,iblur[1],axis=0)
if igauss is not None:
if isinstance(igauss,(int,float)):
igauss = (__i[-1]/2,igauss); # if one parameter only, assume it is centered on image
g = mc.gaussian(__i,x0=igauss[0],sig=igauss[1],normalize=False)
i *= g
if show: plotShot(img,i)
return i
class SpecrometerTransformation(object):
def __init__(self,translation=(0,0),scale=(1,1),rotation=0,shear=0,
intensity=1,igauss=None,iblur=None):
self.affineTransform = getTransform(translation=translation,
scale = scale,rotation=rotation,shear=shear)
self.intensity=intensity
self.igauss = igauss
self.iblur = iblur
def update(self,**kw):
# current transformation, necessary because skimage transformation do not support
# setting of attributes
names = ["translation","scale","rotation","shear"]
trans_dict = dict( [(n,getattr(self.affineTransform,n)) for n in names] )
for k,v in kw.items():
if hasattr(self,k):
setattr(self,k,v)
elif k in names:
trans_dict[k] = v
self.affineTransform = getTransform(**trans_dict)
def transformImage(self,img,orderRotation=1,show=False):
return transformImage(img,self.affineTransform,iblur=self.iblur,\
intensity=self.intensity,igauss=self.igauss,orderRotation=orderRotation,\
show=show)
def saveAlignment(fname,transform,roi1,roi2):
np.save(fname, dict( transform = transform, roi1=roi1, roi2 = roi2 ) )
def loadAlignment(fname):
return np.load(fname).item()
def unravel_results(res,getBest=False):
out = dict()
parnames = res[0].fit_result.parameters
out["parameters"] = dict()
for n in parnames:
out["parameters"][n] = np.asarray( [r.final_pars[n] for r in res])
out["ratio"] = np.asarray( [r.ratio for r in res])
out["p1"] = np.asarray( [r.p1 for r in res] )
out["p2"] = np.asarray( [r.p2 for r in res] )
out["fom"] = np.asarray( [r.fom for r in res] )
return out
def getTransform(translation=(0,0),scale=(1,1),rotation=0,shear=0):
t= tf.AffineTransform(scale=scale,rotation=rotation,shear=shear,\
translation=translation)
return t
def findTransform(p1,p2,ttype="affine"):
return tf.estimate_transform(ttype,p1,p2)
#__i = np.arange(2**12)/2**11
#def _transformToIntensitylDependence(transform):
# c = 1.
# if hasattr(transform,"i_a"):
# c += transform.i_a*_i
# return c
# /--------\
# | |
# | FIT |
# | |
# \--------/
def transformIminuit(im1,im2,init_transform=dict(),show=False,verbose=True,zeroThreshold=0.05,doFit=True):
import iminuit
assert im1.dtype == im2.dtype
t0 = time.time()
# create local copy we can mess up with
im1_toFit = im1.copy()
im2_toFit = im2.copy()
# set anything below the 5% of the max to zero (one of the two opal is noisy)
im1_toFit[im1_toFit<im1.max()*zeroThreshold] = 0
im2_toFit[im2_toFit<im2.max()*zeroThreshold] = 0
p1 = im1.mean(0)
p2 = im2.mean(0)
# set errorbar
err = 3.
def transforms(intensity,
igauss1cen,igauss1sig,iblur1,
scalex,scaley,rotation,transx,transy,shear,
igauss2cen,igauss2sig):
t1 = SpecrometerTransformation(translation=(transx,transy),scale=(scalex,scaley),\
rotation=rotation,shear=shear,intensity=intensity,igauss=(igauss1cen,igauss1sig),\
iblur=iblur1)
t2 = SpecrometerTransformation(igauss=(igauss2cen,igauss2sig))
return t1,t2
def model(intensity,
igauss1cen,igauss1sig,iblur1,
scalex,scaley,rotation,transx,transy,shear,
igauss2cen,igauss2sig):
t1,t2 = transforms(intensity,
igauss1cen,igauss1sig,iblur1,
scalex,scaley,rotation,transx,transy,shear,
igauss2cen,igauss2sig)
return t1.transformImage(im1_toFit),t2.transformImage(im2_toFit)
def chi2(intensity,
igauss1cen,igauss1sig,iblur1,
scalex,scaley,rotation,transx,transy,shear,
igauss2cen,igauss2sig):
i1,i2 = model(intensity, \
igauss1cen,igauss1sig,iblur1, \
scalex,scaley,rotation,transx,transy,shear, \
igauss2cen,igauss2sig)
d = (i1-i2)/err
return np.sum(d*d)
# set default initial stepsize and limits
r = im2.mean(0).sum()/im1.mean(0).sum()
default_kw = g_fit_default_kw.copy()
default_kw["intensity"] = r
init_kw = dict()
if isinstance(init_transform,dict):
init_kw = init_transform.copy()
elif isinstance(init_transform,iminuit._libiminuit.Minuit):
init_kw = init_transform.fitarg.copy()
elif isinstance(init_transform,tf.AffineTransform):
init_kw["transx"],init_kw["transy"] = init_transform.translation
init_kw["scalex"],init_kw["scaley"] = init_transform.scale
init_kw["rotation"] = init_transform.rotation
init_kw["shear"] = init_transform.shear
if "intensity" in init_kw and init_kw["intensity"] == "auto":
r = im2.mean(0).sum()/im1.mean(0).sum()
init_kw["intensity"]= r
kw = default_kw.copy()
kw.update(init_kw)
kw["fix_shear"]=True
tofix = ("scalex","scaley","rotation","shear")
kw_tofix = dict( [("fix_%s"%p,True) for p in tofix] )
kw.update(kw_tofix)
imin = iminuit.Minuit(chi2,errordef=1.,**kw)
imin.set_strategy(1)
init_params = imin.fitarg.copy()
if show:
i1,i2 = model(*imin.args)
plotShot(i1,i2)
fig = plt.gcf()
fig.text(0.5,0.9,"Initial Pars")
input("Enter to start fit")
if doFit: imin.migrad()
pars = imin.fitarg.copy()
kw_tofree = dict( [("fix_%s"%p,False) for p in tofix] )
pars.update(kw_tofree)
imin = iminuit.Minuit(chi2,errordef=1.,**pars)
imin.set_strategy(1)
if doFit: imin.migrad()
final_params = imin.fitarg.copy()
t1,t2 = transforms(*imin.args)
i1,i2 = model(*imin.args)
if show:
plotShot(i1,i2)
fig = plt.gcf()
fig.text(0.5,0.9,"Final Pars")
p1 = np.nansum(i1,axis=0)
p2 = np.nansum(i2,axis=0)
r = p2/p1
idx = p1>np.nanmax(p1)/10.
fom = calcFOM(p1,p2,r)
return fit_ret(
fit_result = imin,
init_pars = init_params,
final_pars = final_params,
final_transform1 = t1,
final_transform2 = t2,
im1 = i1,
im2 = i2,
p1 = p1,
p2 = p2,
ratio = r,
fom = fom,
tneeded = time.time()-t0
)
# /--------\
# | |
# | MANUAL |
# | ALIGN |
# | |
# \--------/
class GuiAlignment(object):
def __init__(self,im1,im2,autostart=False):
self.im1 = im1
self.im2 = im2
self.f,self.ax=plt.subplots(1,2)
self.ax[0].imshow(im1,aspect="auto")
self.ax[1].imshow(im2,aspect="auto")
self.transform = None
if autostart:
return self.start()
else:
print("Zoom first then use the .start method")
def OnClick(self,event):
if event.button == 1:
if self._count % 2 == 0:
self.im1_p.append( (event.xdata,event.ydata) )
print("Added",event.xdata,event.ydata,"to im1")
else:
self.im2_p.append( (event.xdata,event.ydata) )
print("Added",event.xdata,event.ydata,"to im2")
self._count += 1
elif event.button == 2:
# neglect middle click
return
elif event.button == 3:
self.done = True
return
else:
return
def start(self):
self._nP = 0
self._count = 0
self.im1_p = []
self.im2_p = []
self.done = False
cid_up = self.f.canvas.mpl_connect('button_press_event', self.OnClick)
print("Press right button to finish")
while not self.done:
if self._count % 2 == 0:
print("Select point %d for left image"%self._nP)
else:
print("Select point %d for right image"%self._nP)
self._nP = self._count //2
plt.waitforbuttonpress()
self.im1_p = np.asarray(self.im1_p)
self.im2_p = np.asarray(self.im2_p)
self.transform = findTransform(self.im1_p,self.im2_p)
self.transform.intensity = 1.
return self.transform
def show(self):
if self.transform is None:
print("Do the alignment first (with .start()")
return
# just to save some tipying
im1 = self.im1; im2 = self.im2
im1_new = transformImage(im1,self.transform)
f,ax=plt.subplots(1,3)
ax[0].imshow(im1,aspect="auto")
ax[1].imshow(im1_new,aspect="auto")
ax[2].imshow(im2,aspect="auto")
def save(self,fname):
if self.transform is None:
print("Do the alignment first (with .start()")
return
else:
np.save(fname,self.transform)
def load(self,fname):
self.transform = np.load(fname).item()
def getAverageTransformation(out):
res = unravel_results(out)
# get average parameters
tx = np.median(res["transx"])
ty = np.median(res["transy"])
sx = np.median(res["scalex"])
sy = np.median(res["scaley"])
r = np.median(res["rotation"])
sh = np.median(res["shear"])
inten = np.median(res["intensity"])
t = getTransform( (tx,ty),(sx,sy),r,sh,intensity=inten )
return t
def checkAverageTransformation(out,imgs1):
t,inten = getAverageTransformation(out)
res["ratio_av"] = []
for shot,values in out.items():
i = transformImage(imgs1[shot],t)
p1 = np.nansum(i,axis=0)
r = p1/values.p2
res["ratio_av"].append( r )
res["ratio_av"] = np.asarray(res["ratio_av"])
return res
g_lastpars = None
def clearCache():
globals()["g_lastpars"]=None
def doShot(i1,i2,init_pars,doFit=True,show=False):
#if g_lastpars is not None: init_pars = g_lastpars
r = transformIminuit(i1,i2,init_pars,show=show,verbose=False,doFit=doFit)
return r
def doShots(imgs1,imgs2,initpars,nJobs=16,doFit=False,returnBestTransform=False):
clearCache()
N = imgs1.shape[0]
pool = joblib.Parallel(backend="threading",n_jobs=nJobs) \
(joblib.delayed(doShot)(imgs1[i],imgs2[i],initpars,doFit=doFit) for i in range(N))
if returnBestTransform:
idx = np.argmin( np.abs([p.fom for p in pool]) ); # abs because sometime fit screws up the give negative spectra...
print("FOM for best alignment %.2f"%pool[idx].fom)
return pool,pool[idx].final_transform1
else:
return pool
# out = collections.OrderedDict( enumerate(pool) )
# return out
# /--------\
# | |
# | TEST |
# | ALIGN |
# | |
# \--------/
def testDiling(N=100,roi=slice(350,680),doGUIalignment=False,nJobs=4,useIminuit=True):
import xppll37_mc
globals()["g_lastpars"]=None
d = xppll37_mc.readDilingDataset()
im1 = xppll37_mc.subtractBkg(d.opal1[:N])[:,roi,:]
im2 = xppll37_mc.subtractBkg(d.opal2[:N])[:,roi,:]
N = im1.shape[0]; # redefie N in case it reads less than N
# to manual alignment
if doGUIalignment:
a = GuiAlignment(im1[0],im2[0])
input("Ok to start")
init_pars = a.start()
np.save("gui_align_transform.npy",init_pars)
else:
init_pars = np.load("gui_align_transform.npy").item()
pool = joblib.Parallel(backend="threading",n_jobs=nJobs,verbose=20) \
(joblib.delayed(doShot)(im1[i],im2[i],init_pars,useIminuit=useIminuit) for i in range(N))
out = collections.OrderedDict( enumerate(pool) )
return out
if __name__ == '__main__':
pass

16
make_little_data.py Normal file
View File

@ -0,0 +1,16 @@
import os
import numpy as np
import xppll37_mc
import sys
def do(run,N):
r = xppll37_mc.readDataset(run)
o1 = r.opal0[:N]
o2 = r.opal1[:N]
np.savez("littleData/run%04d.npz" % run, opal0 = o1, opal1 = o2 )
if __name__ == "__main__":
run = int(sys.argv[1])
N=100
do(run,N)

1293
mcutils.py Normal file

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
online/last_trafo.npy Normal file

Binary file not shown.

276
online/sMhelper.py Normal file
View File

@ -0,0 +1,276 @@
import sys
import zmq
import numpy as np
import time
import pickle
import alignment
import matplotlib.pyplot as plt
import threading
import datetime
import copy
def histVec(v,oversample=1):
v = np.atleast_1d(v)
v = np.unique(v)
vd = np.diff(v)
vd = np.hstack([vd[0],vd])
#vv = np.hstack([v-vd/2,v[-1]+vd[-1]/2])
vv = np.hstack([v-vd/2.,v[-1]+vd[-1]/2.])
if oversample>1:
vvo = []
for i in range(len(vv)-1):
vvo.append(np.linspace(vv[i],vv[i+1],oversample+1)[:-1])
vvo.append(vv[-1])
vv = np.array(np.hstack(vvo))
return vv
def subtractBkg(imgs,nPix=100,dKtype='corners'):
""" Opals tend to have different backgroud for every quadrant """
if dKtype is 'corners':
if imgs.ndim == 2: imgs = imgs[np.newaxis,:]
imgs = imgs.astype(np.float)
q1 = imgs[:,:nPix,:nPix].mean(-1).mean(-1)
imgs[:,:512,:512]-=q1[:,np.newaxis,np.newaxis]
q2 = imgs[:,:nPix,-nPix:].mean(-1).mean(-1)
imgs[:,:512,-512:]-=q2[:,np.newaxis,np.newaxis]
q3 = imgs[:,-nPix:,-nPix:].mean(-1).mean(-1)
imgs[:,-512:,-512:]-=q3[:,np.newaxis,np.newaxis]
q4 = imgs[:,-nPix:,:nPix].mean(-1).mean(-1)
imgs[:,-512:,:512]-=q4[:,np.newaxis,np.newaxis]
elif dKtype is 'stripes':
if imgs.ndim == 2: imgs = imgs[np.newaxis,:]
imgs = imgs.astype(np.float)
s1 = imgs[:,:nPix,:].mean(-2)
return np.squeeze(imgs)
def getData():
t0 = time.time()
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.connect('tcp://daq-xpp-mon06:12322')
#socket.setsockopt(zmq.SUBSCRIBE, b'')
while True:
socket.send(b"Request")
ret = socket.recv()
ret = pickle.loads(ret, encoding='latin1')
print('received',ret.keys(),time.time()-t0)
t0 = time.time()
if __name__ == "__main__":
getData()
class SpecHandler(object):
def __init__(self,connectString='tcp://daq-xpp-mon06:12322',spec1name='opal0',spec2name='opal1',roi=[0,1024,0,1024]):
self.connectString = connectString
self.spec1name = spec1name
self.spec2name = spec2name
self.surveyplot = Surveyplot(spec1name=spec1name,spec2name=spec2name)
self.roi = roi
self.projsimple = ProjSimple(spec1name=spec1name,spec2name=spec2name)
self._rawContinuousTime = None
self.lastDat = None
self.openSocket()
self.dataCollector = []
self.runningPlot = RunningPlot(self.dataCollector)
def openSocket(self):
context = zmq.Context()
self.context = context
self.socket = context.socket(zmq.REQ)
self.socket.connect(self.connectString)
#self.socket.setsockopt(zmq.SUBSCRIBE, b'')
def closeSocket(self):
del self.context
del self.socket
def getData(self):
self.socket.send(b"Request")
ret = self.socket.recv()
ret = pickle.loads(ret, encoding='latin1')
for sn in [self.spec1name,self.spec2name]:
ret[sn] = np.squeeze(alignment.subtractBkg(ret[sn], nPix=100, bkg_type='line'))
self.lastDat = ret
return ret
def getRaw(self,repoenConnection=False,doAlign=False,show=False,doFit=False):
if doFit is True: doFit='iminuit'
if repoenConnection:
self.closeSocket()
self.openSocket()
dat = self.getData()
im1 = dat[self.spec1name]; im2 = dat[self.spec2name]
if doAlign:
#t = np.load("gui_align_transform_xppl3716.npy").item()
if hasattr(self,'transformer'):
algn = self.transformer
else:
algn = alignment.loadAlignment('last_trafo.npy')
t = algn['transform']
roi1 = algn['roi1']
roi2 = algn['roi2']
r = alignment.doShot( im1[roi1,:],im2[roi2,:],t, show=show, doFit=doFit)
self.transformer = dict(transform=r.final_transform,roi1=roi1,roi2=roi2)
alignment.saveAlignment('last_trafo.npy',r.final_transform,roi1,roi2)
im1 = r.im1; im2 = r.im2
showDiff = True
showRatio = True
else:
showDiff = False
showRatio = False
self.surveyplot.plotImages(im1,im2,showDiff=showDiff,showRatio=showRatio)
self.projsimple.plotProfiles(im1,im2)
if doAlign:
thres = 0.05
im1[im1<thres*np.max(im1.ravel())] = np.nan
im2[im2<thres*np.max(im2.ravel())] = np.nan
self.dataCollector.append(\
dict( time=datetime.datetime.now(),
fom=r.fom,
ratProj = np.nansum(im2/im1,axis=0),
im1Proj = np.nansum(im1,axis=0),
im2Proj = np.nansum(im2,axis=0)))
self.runningPlot.updatePlot()
def alignFeatures(self):
im1 = copy.copy(self.lastDat[self.spec1name])
im2 = copy.copy(self.lastDat[self.spec2name])
roi1 = alignment.findRoi(im1)
roi2 = alignment.findRoi(im2)
tra = alignment.GuiAlignment(im1[roi1,:],im2[roi2,:],autostart=False)
self.transformer = dict(transform=tra.start(),roi1=roi1,roi2=roi2)
def getRawContinuuous(self,sleepTime):
self._rawContinuousTime = sleepTime
if not hasattr(self,'_rawContinuousThread'):
def upd():
while not self._rawContinuousTime is None:
self.getRaw()
plt.draw()
time.sleep(self._rawContinuousTime)
self._rawContinuousThread = threading.Thread(target=upd)
self._rawContinuousThread.start()
class Surveyplot(object):
def __init__(self,spec1name='spec1',spec2name='spec2'):
self.fig,self.axs = plt.subplots(4,1,sharex=True,sharey=True)
self.axs[0].set_title(spec1name)
self.axs[1].set_title(spec2name)
self.axs[2].set_title("Difference")
self.axs[3].set_title("Ratio")
def plotImages(self,img1,img2,showDiff=False,showRatio=False):
if hasattr(self,'i1'):
self.i1.set_data(img1)
else:
self.i1 = self.axs[0].imshow(img1,origin='lower',interpolation='none')
if hasattr(self,'i2'):
self.i2.set_data(img2)
else:
self.i2 = self.axs[1].imshow(img2,origin='lower',interpolation='none')
if showDiff:
tdiff = img2-img1
if hasattr(self,'idiff'):
self.idiff.set_data(tdiff)
else:
self.idiff = self.axs[2].imshow(tdiff,interpolation='none',origin='lower')
lms = np.percentile(tdiff,[30,70])
self.idiff.set_clim(lms)
if showRatio:
tratio = img2/img1
if hasattr(self,'iratio'):
self.iratio.set_data(tratio)
else:
self.iratio = self.axs[3].imshow(tratio,interpolation='none',origin='lower')
lms = np.percentile(tratio,[30,70])
self.iratio.set_clim(lms)
class ProjSimple(object):
def __init__(self,spec1name='spec1',spec2name='spec2',roi1=[0,1024,0,1024],roi2=[0,1024,0,1024]):
self.fig,self.axs = plt.subplots(2,1)
self.roi1 = roi1
self.roi2 = roi2
self.spec1name=spec1name
self.spec2name=spec2name
#def getROI(self,specNo):
def _roiit(self,img,roi):
return img[roi[0]:roi[1],roi[2]:roi[3]]
def plotProfiles(self,img1,img2):
prof1 = np.nansum(self._roiit(img1,self.roi1),0)
prof2 = np.nansum(self._roiit(img2,self.roi2),0)
if hasattr(self,'l1'):
self.l1.set_ydata(prof1)
else:
self.l1 = self.axs[0].plot(prof1,label=self.spec1name)[0]
if hasattr(self,'l2'):
self.l2.set_ydata(prof2)
else:
self.l2 = self.axs[0].plot(prof2,label=self.spec2name)[0]
plt.legend()
if hasattr(self,'lrat'):
self.lrat.set_ydata(prof2/prof1)
else:
self.lrat = self.axs[1].plot(prof2/prof1,label='ratio')[0]
self.axs[1].set_ylim(0,2)
class RunningPlot(object):
def __init__(self,dataCollector):
self.dataCollector = dataCollector
self.fig,self.axs = plt.subplots(1,1)
def updatePlot(self):
if len(self.dataCollector)>0:
times = np.asarray(([i['time'] for i in self.dataCollector]))
foms = np.asarray(([i['fom'] for i in self.dataCollector]))
im1Proj = np.asarray(([i['im1Proj'] for i in self.dataCollector]))
im2Proj = np.asarray(([i['im2Proj'] for i in self.dataCollector]))
if hasattr(self,'fomline'):
self.fomline.set_xdata(times)
self.fomline.set_ydata(foms)
#self.axs[0].autoscale(enable=True,axis='x')
else:
self.fomline = self.axs.plot(times,foms,'o-')[0]
#if hasattr(self,'ratioimg'):
#self.ratioimg.set_data()
#self.ratioimg.set_ydata(foms)
#else:
#self.axs[0].plot(times,foms,'o-')
#def plotOrUpdate(img1,img2):
#if hasattr(self,i1):
#self.i1.set_data(img1)
#else:
#self.i1 = self.axs.imshow(img1,interpolate='none',origin='bottom')
#if hasattr(self,i1):
#self.i1.set_data(img1)
#else:
#self.i1 = self.axs.imshow(img1,interpolate='none',origin='bottom')

297
online/sMhelper_dev.py Normal file
View File

@ -0,0 +1,297 @@
import sys
import zmq
import numpy as np
import time
import pickle
import alignment
import matplotlib.pyplot as plt
import threading
import datetime
import copy
plt.rcParams['image.cmap'] = 'viridis'
def histVec(v,oversample=1):
v = np.atleast_1d(v)
v = np.unique(v)
vd = np.diff(v)
vd = np.hstack([vd[0],vd])
#vv = np.hstack([v-vd/2,v[-1]+vd[-1]/2])
vv = np.hstack([v-vd/2.,v[-1]+vd[-1]/2.])
if oversample>1:
vvo = []
for i in range(len(vv)-1):
vvo.append(np.linspace(vv[i],vv[i+1],oversample+1)[:-1])
vvo.append(vv[-1])
vv = np.array(np.hstack(vvo))
return vv
def subtractBkg(imgs,nPix=100,dKtype='corners'):
""" Opals tend to have different backgroud for every quadrant """
if dKtype is 'corners':
if imgs.ndim == 2: imgs = imgs[np.newaxis,:]
imgs = imgs.astype(np.float)
q1 = imgs[:,:nPix,:nPix].mean(-1).mean(-1)
imgs[:,:512,:512]-=q1[:,np.newaxis,np.newaxis]
q2 = imgs[:,:nPix,-nPix:].mean(-1).mean(-1)
imgs[:,:512,-512:]-=q2[:,np.newaxis,np.newaxis]
q3 = imgs[:,-nPix:,-nPix:].mean(-1).mean(-1)
imgs[:,-512:,-512:]-=q3[:,np.newaxis,np.newaxis]
q4 = imgs[:,-nPix:,:nPix].mean(-1).mean(-1)
imgs[:,-512:,:512]-=q4[:,np.newaxis,np.newaxis]
elif dKtype is 'stripes':
if imgs.ndim == 2: imgs = imgs[np.newaxis,:]
imgs = imgs.astype(np.float)
s1 = imgs[:,:nPix,:].mean(-2)
return np.squeeze(imgs)
def getData():
t0 = time.time()
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.connect('tcp://daq-xpp-mon06:12322')
#socket.setsockopt(zmq.SUBSCRIBE, b'')
while True:
socket.send(b"Request")
ret = socket.recv()
ret = pickle.loads(ret, encoding='latin1')
print('received',ret.keys(),time.time()-t0)
t0 = time.time()
if __name__ == "__main__":
getData()
class SpecHandler(object):
def __init__(self,connectString='tcp://daq-xpp-mon06:12322',spec1name='opal0',spec2name='opal1',roi=[0,1024,0,1024]):
self.connectString = connectString
self.spec1name = spec1name
self.spec2name = spec2name
self.dataCollector = []
#self.surveyplot = Surveyplot(spec1name=spec1name,spec2name=spec2name)
self.roi = roi
self.projsimple = ProjSimple(spec1name=spec1name,spec2name=spec2name,dataCollector=self.dataCollector)
self._rawContinuousTime = None
self.lastDat = None
self.openSocket()
self.runningPlot = RunningPlot(self.dataCollector)
def openSocket(self):
context = zmq.Context()
self.context = context
self.socket = context.socket(zmq.REQ)
self.socket.connect(self.connectString)
#self.socket.setsockopt(zmq.SUBSCRIBE, b'')
def closeSocket(self):
del self.context
del self.socket
def getData(self):
self.socket.send(b"Request")
ret = self.socket.recv()
ret = pickle.loads(ret, encoding='latin1')
for sn in [self.spec1name,self.spec2name]:
ret[sn] = np.squeeze(alignment.subtractBkg(ret[sn], nPix=100, bkg_type='line'))
self.lastDat = ret
return ret
def getRaw(self,repoenConnection=False,doAlign=False,show=False,doFit=False,updateImg=True,updateProj=True,updateFom=True, ispaceCorr=False,flipit=False,xshift=None):
if doFit is True: doFit='iminuit'
if repoenConnection:
self.closeSocket()
self.openSocket()
dat = self.getData()
im1 = dat[self.spec1name]; im2 = dat[self.spec2name]
if doAlign:
#t = np.load("gui_align_transform_xppl3716.npy").item()
if hasattr(self,'transformer'):
algn = self.transformer
else:
algn = alignment.loadAlignment('last_trafo.npy')
t = algn['transform']
roi1 = algn['roi1']
roi2 = algn['roi2']
im1 = im1[roi1];
if flipit:
im1 = im1[::-1]
im2 = im2[roi2]
alignment.clearCache()
r = alignment.doShot( im1,im2, t, show=show, doFit=doFit, xshift=xshift)
self.transformer = dict(transform=r.final_transform,roi1=roi1,roi2=roi2)
alignment.saveAlignment('last_trafo.npy',r.final_transform,roi1,roi2)
im1 = r.im1; im2 = r.im2
showDiff = True
showRatio = True
else:
showDiff = False
showRatio = False
if doAlign:
thres = 0.05
#im1[im1<thres*np.max(im1.ravel())] = np.nan
#im2[im2<thres*np.max(im2.ravel())] = np.nan
self.dataCollector.append(\
dict( time=datetime.datetime.now(),
fom=r.fom,
ratProj = np.nansum(im2/im1,axis=0),
im1Proj = np.nansum(im1,axis=0),
im2Proj = np.nansum(im2,axis=0)))
if updateFom:
self.runningPlot.updatePlot()
#if updateImg:
#self.surveyplot.plotImages(im1,im2,showDiff=showDiff,showRatio=showRatio)
#if updateProj:
self.projsimple.plotProfiles(im1,im2)
def alignFeatures(self,flipit=False):
im1 = copy.copy(self.lastDat[self.spec1name])
im2 = copy.copy(self.lastDat[self.spec2name])
if flipit:
im1 = im1[::-1]
roi1 = alignment.findRoi(im1)
roi2 = alignment.findRoi(im2)
tra = alignment.GuiAlignment(im1[roi1,:],im2[roi2,:],autostart=False)
self.transformer = dict(transform=tra.start(),roi1=roi1,roi2=roi2)
def getRawContinuuous(self,sleepTime,**kwargs):
self._rawContinuousTime = sleepTime
if not hasattr(self,'_rawContinuousThread'):
def upd():
while not self._rawContinuousTime is None:
self.getRaw(**kwargs)
plt.draw()
time.sleep(self._rawContinuousTime)
self._rawContinuousThread = threading.Thread(target=upd)
self._rawContinuousThread.start()
class Surveyplot(object):
def __init__(self,spec1name='spec1',spec2name='spec2'):
self.fig,self.axs = plt.subplots(4,1,sharex=True,sharey=True)
self.axs[0].set_title(spec1name)
self.axs[1].set_title(spec2name)
self.axs[2].set_title("Difference")
self.axs[3].set_title("Ratio")
def plotImages(self,img1,img2,showDiff=False,showRatio=False):
if hasattr(self,'i1'):
self.i1.set_data(img1)
else:
self.i1 = self.axs[0].imshow(img1,origin='lower',interpolation='none')
if hasattr(self,'i2'):
self.i2.set_data(img2)
else:
self.i2 = self.axs[1].imshow(img2,origin='lower',interpolation='none')
if showDiff:
tdiff = img2-img1
if hasattr(self,'idiff'):
self.idiff.set_data(tdiff)
else:
self.idiff = self.axs[2].imshow(tdiff,interpolation='none',origin='lower')
lms = np.percentile(tdiff,[30,70])
self.idiff.set_clim(lms)
if showRatio:
tratio = img2/img1
if hasattr(self,'iratio'):
self.iratio.set_data(tratio)
else:
self.iratio = self.axs[3].imshow(tratio,interpolation='none',origin='lower')
lms = np.percentile(tratio,[30,70])
self.iratio.set_clim(lms)
class ProjSimple(object):
def __init__(self,spec1name='spec1',spec2name='spec2',roi1=[0,1024,0,1024],roi2=[0,1024,0,1024],dataCollector=[]):
self.fig,self.axs = plt.subplots(2,1,sharex=True)
self.roi1 = roi1
self.roi2 = roi2
self.spec1name=spec1name
self.spec2name=spec2name
self.dataCollector = dataCollector
#def getROI(self,specNo):
def _roiit(self,img,roi):
return img[roi[0]:roi[1],roi[2]:roi[3]]
def plotProfiles(self,img1,img2):
prof1 = np.nansum(self._roiit(img1,self.roi1),0)
prof2 = np.nansum(self._roiit(img2,self.roi2),0)
if hasattr(self,'l1'):
self.l1.set_ydata(prof1)
else:
self.l1 = self.axs[0].plot(prof1,label=self.spec1name)[0]
if hasattr(self,'l2'):
self.l2.set_ydata(prof2)
else:
self.l2 = self.axs[0].plot(prof2,label=self.spec2name)[0]
plt.legend()
if hasattr(self,'lrat'):
self.lrat.set_ydata(prof2/prof1)
else:
self.lrat = self.axs[1].plot(prof2/prof1,'k',label='ratio')[0]
self.axs[1].set_ylim(0,2)
if len(self.dataCollector) > 0 :
im1Proj = np.asarray([i['im1Proj'] for i in self.dataCollector])
im2Proj = np.asarray([i['im2Proj'] for i in self.dataCollector])
#print(im1Proj.shape,im2Proj.shape)
ratAv = np.median(im2Proj[-10:],0)/np.median(im1Proj[-10:],0)
if hasattr(self,'lratAv'):
self.lratAv.set_ydata(ratAv)
else:
self.lratAv = self.axs[1].plot(ratAv,'r',label='ratio Avg')[0]
self.axs[1].set_ylim(0,2)
class RunningPlot(object):
def __init__(self,dataCollector):
self.dataCollector = dataCollector
self.fig,self.axs = plt.subplots(1,1)
def updatePlot(self):
if len(self.dataCollector)>0:
times = np.asarray(([i['time'] for i in self.dataCollector]))
foms = np.asarray(([i['fom'] for i in self.dataCollector]))
im1Proj = np.asarray(([i['im1Proj'] for i in self.dataCollector]))
im2Proj = np.asarray(([i['im2Proj'] for i in self.dataCollector]))
if hasattr(self,'fomline'):
self.fomline.set_ydata(foms)
self.fomline.set_xdata(times)
self.axs.set_xlim(np.min(times)-datetime.timedelta(0,10),np.max(times)+datetime.timedelta(0,10))
#self.axs[0].autoscale(enable=True,axis='x')
else:
self.fomline = self.axs.plot(times,foms,'o-')[0]
self.axs.autoscale(enable=True,axis='x')
#if hasattr(self,'ratioimg'):
#self.ratioimg.set_data()
#self.ratioimg.set_ydata(foms)
#else:
#self.axs[0].plot(times,foms,'o-')
#def plotOrUpdate(img1,img2):
#if hasattr(self,i1):
#self.i1.set_data(img1)
#else:
#self.i1 = self.axs.imshow(img1,interpolate='none',origin='bottom')
#if hasattr(self,i1):
#self.i1.set_data(img1)
#else:
#self.i1 = self.axs.imshow(img1,interpolate='none',origin='bottom')

345
online/sMhelper_dev_pg.py Normal file
View File

@ -0,0 +1,345 @@
import sys
import zmq
import numpy as np
import time
import pickle
import alignment
import matplotlib.pyplot as plt
import threading
import datetime
import copy
import pyqtgraph as pg
plt.rcParams['image.cmap'] = 'viridis'
def histVec(v,oversample=1):
v = np.atleast_1d(v)
v = np.unique(v)
vd = np.diff(v)
vd = np.hstack([vd[0],vd])
#vv = np.hstack([v-vd/2,v[-1]+vd[-1]/2])
vv = np.hstack([v-vd/2.,v[-1]+vd[-1]/2.])
if oversample>1:
vvo = []
for i in range(len(vv)-1):
vvo.append(np.linspace(vv[i],vv[i+1],oversample+1)[:-1])
vvo.append(vv[-1])
vv = np.array(np.hstack(vvo))
return vv
def subtractBkg(imgs,nPix=100,dKtype='corners'):
""" Opals tend to have different backgroud for every quadrant """
if dKtype is 'corners':
if imgs.ndim == 2: imgs = imgs[np.newaxis,:]
imgs = imgs.astype(np.float)
q1 = imgs[:,:nPix,:nPix].mean(-1).mean(-1)
imgs[:,:512,:512]-=q1[:,np.newaxis,np.newaxis]
q2 = imgs[:,:nPix,-nPix:].mean(-1).mean(-1)
imgs[:,:512,-512:]-=q2[:,np.newaxis,np.newaxis]
q3 = imgs[:,-nPix:,-nPix:].mean(-1).mean(-1)
imgs[:,-512:,-512:]-=q3[:,np.newaxis,np.newaxis]
q4 = imgs[:,-nPix:,:nPix].mean(-1).mean(-1)
imgs[:,-512:,:512]-=q4[:,np.newaxis,np.newaxis]
elif dKtype is 'stripes':
if imgs.ndim == 2: imgs = imgs[np.newaxis,:]
imgs = imgs.astype(np.float)
s1 = imgs[:,:nPix,:].mean(-2)
return np.squeeze(imgs)
def getData():
t0 = time.time()
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.connect('tcp://daq-xpp-mon06:12322')
#socket.setsockopt(zmq.SUBSCRIBE, b'')
while True:
socket.send(b"Request")
ret = socket.recv()
ret = pickle.loads(ret, encoding='latin1')
print('received',ret.keys(),time.time()-t0)
t0 = time.time()
if __name__ == "__main__":
getData()
class SpecHandler(object):
def __init__(self,connectString='tcp://daq-xpp-mon06:12322',spec1name='opal0',spec2name='opal1',roi=[0,1024,0,1024]):
self.connectString = connectString
self.spec1name = spec1name
self.spec2name = spec2name
self.dataCollector = []
#self.surveyplot = Surveyplot(spec1name=spec1name,spec2name=spec2name)
self.roi = roi
self.projsimple = ProjSimple(spec1name=spec1name,spec2name=spec2name,dataCollector=self.dataCollector)
self._rawContinuousTime = None
self.lastDat = None
self.openSocket()
#self.runningPlot = RunningPlot(self.dataCollector)
def openSocket(self):
context = zmq.Context()
self.context = context
self.socket = context.socket(zmq.REQ)
self.socket.connect(self.connectString)
#self.socket.setsockopt(zmq.SUBSCRIBE, b'')
def closeSocket(self):
del self.context
del self.socket
def getData(self):
self.socket.send(b"Request")
ret = self.socket.recv()
ret = pickle.loads(ret, encoding='latin1')
for sn in [self.spec1name,self.spec2name]:
ret[sn] = np.squeeze(alignment.subtractBkg(ret[sn], nPix=100, bkg_type='line'))
self.lastDat = ret
return ret
def getRaw(self,repoenConnection=False,doAlign=False,show=False,doFit=False,updateImg=True,updateProj=True,updateFom=True):
if doFit is True: doFit='iminuit'
if repoenConnection:
self.closeSocket()
self.openSocket()
dat = self.getData()
im1 = dat[self.spec1name]; im2 = dat[self.spec2name]
if doAlign:
#t = np.load("gui_align_transform_xppl3716.npy").item()
if hasattr(self,'transformer'):
algn = self.transformer
else:
algn = alignment.loadAlignment('last_trafo.npy')
t = algn['transform']
roi1 = algn['roi1']
roi2 = algn['roi2']
r = alignment.doShot( im1[roi1,:],im2[roi2,:],t, show=show, doFit=doFit)
self.transformer = dict(transform=r.final_transform,roi1=roi1,roi2=roi2)
alignment.saveAlignment('last_trafo.npy',r.final_transform,roi1,roi2)
im1 = r.im1; im2 = r.im2
showDiff = True
showRatio = True
else:
showDiff = False
showRatio = False
if doAlign:
thres = 0.05
#im1[im1<thres*np.max(im1.ravel())] = np.nan
#im2[im2<thres*np.max(im2.ravel())] = np.nan
self.dataCollector.append(\
dict( time=datetime.datetime.now(),
fom=r.fom,
ratProj = np.nansum(im2/im1,axis=0),
im1Proj = np.nansum(im1,axis=0),
im2Proj = np.nansum(im2,axis=0)))
#if updateFom:
#self.runningPlot.updatePlot()
#if updateImg:
#self.surveyplot.plotImages(im1,im2,showDiff=showDiff,showRatio=showRatio)
#if updateProj:
self.projsimple.plotProfiles(im1,im2)
def alignFeatures(self):
im1 = copy.copy(self.lastDat[self.spec1name])
im2 = copy.copy(self.lastDat[self.spec2name])
roi1 = alignment.findRoi(im1)
roi2 = alignment.findRoi(im2)
tra = alignment.GuiAlignment(im1[roi1,:],im2[roi2,:],autostart=False)
self.transformer = dict(transform=tra.start(),roi1=roi1,roi2=roi2)
def getRawContinuuous(self,sleepTime,**kwargs):
self._rawContinuousTime = sleepTime
if not hasattr(self,'_rawContinuousThread'):
def upd():
while not self._rawContinuousTime is None:
self.getRaw(**kwargs)
plt.draw()
time.sleep(self._rawContinuousTime)
self._rawContinuousThread = threading.Thread(target=upd)
self._rawContinuousThread.start()
class Surveyplot(object):
def __init __(self,spec1name='spec1',spec2name='spec2'):
self.fig,self.axs = plt.subplots(4,1,sharex=True,sharey=True)
self.axs[0].set_title(spec1name)
self.axs[1].set_title(spec2name)
self.axs[2].set_title("Difference")
self.axs[3].set_title("Ratio")
def plotImages(self,img1,img2,showDiff=False,showRatio=False):
if hasattr(self,'i1'):
self.i1.set_data(img1)
else:
self.i1 = self.axs[0].imshow(img1,origin='lower',interpolation='none')
if hasattr(self,'i2'):
self.i2.set_data(img2)
else:
self.i2 = self.axs[1].imshow(img2,origin='lower',interpolation='none')
if showDiff:
tdiff = img2-img1
if hasattr(self,'idiff'):
self.idiff.set_data(tdiff)
else:
self.idiff = self.axs[2].imshow(tdiff,interpolation='none',origin='lower')
lms = np.percentile(tdiff,[30,70])
self.idiff.set_clim(lms)
if showRatio:
tratio = img2/img1
if hasattr(self,'iratio'):
self.iratio.set_data(tratio)
else:
self.iratio = self.axs[3].imshow(tratio,interpolation='none',origin='lower')
lms = np.percentile(tratio,[30,70])
self.iratio.set_clim(lms)
class ProjSimple(object):
def __init__(self,spec1name='sp ec1',spec2name='spec2',roi1=[0,1024,0,1024],roi2=[0,1024,0,1024],dataCollector=[]):
self.fig,self.axs = plt.subplots(2,1,sharex=True)
self.roi1 = roi1
self.roi2 = roi2
self.spec1name=spec1name
self.spec2name=spec2name
self.dataCollector = dataCollector
#def getROI(self,specNo):
def _roiit(self,img,roi):
return img[roi[0]:roi[1],roi[2]:roi[3]]
def plotProfiles(self,img1,img2):
prof1 = np.nansum(self._roiit(img1,self.roi1),0)
prof2 = np.nansum(self._roiit(img2,self.roi2),0)
if hasattr(self,'l1'):
self.l1.set_ydata(prof1)
else:
self.l1 = self.axs[0].plot(prof1,label=self.spec1name)[0]
if hasattr(self,'l2'):
self.l2.set_ydata(prof2)
else:
self.l2 = self.axs[0].plot(prof2,label=self.spec2name)[0]
plt.legend()
if hasattr(self,'lrat'):
self.lrat.set_ydata(prof2/prof1)
else:
self.lrat = self.axs[1].plot(prof2/prof1,'k',label='ratio')[0]
self.axs[1].set_ylim(0,2)
if len(self.dataCollector) > 0 :
im1Proj = np.asarray([i['im1Proj'] for i in self.dataCollector])
im2Proj = np.asarray([i['im2Proj'] for i in self.dataCollector])
#print(im1Proj.shape,im2Proj.shape)
ratAv = np.median(im2Proj,0)/np.median(im1Proj,0)
if hasattr(self,'lratAv'):
self.lratAv.set_ydata(ratAv)
else:
self.lratAv = self.axs[1].plot(ratAv,'r',label='ratio Avg')[0]
self.axs[1].set_ylim(0,2)
class ProjSimplePG(object):
def __init__(self,spec1name='sp ec1',spec2name='spec2',roi1=[0,1024,0,1024],roi2=[0,1024,0,1024],dataCollector=[]):
from pyqtgraph.Qt import QtGui, QtCore
import numpy as np
import pyqtgraph as pg
self.app = QtGui.Qapplication([])
self.win = pg.GraphicsWindow(title='Single shot XANES')
pg.setConfigOptions(antialias=True)
self.sp1 = win.addPlot(title='spectrometer spectra')
self.sp2 = win.addPlot(title='Ratio')
self.fig,self.axs = plt.subplots(2,1,sharex=True)
self.roi1 = roi1
self.roi2 = roi2
self.spec1name=spec1name
self.spec2name=spec2name
self.dataCollector = dataCollector
#def getROI(self,specNo):
def _roiit(self,img,roi):
return img[roi[0]:roi[1],roi[2]:roi[3]]
def plotProfiles(self,img1,img2):
prof1 = np.nansum(self._roiit(img1,self.roi1),0)
prof2 = np.nansum(self._roiit(img2,self.roi2),0)
if hasattr(self,'l1'):
self.l1.set_ydata(prof1)
else:
self.l1 = self.axs[0].plot(prof1,label=self.spec1name)[0]
if hasattr(self,'l2'):
self.l2.set_ydata(prof2)
else:
self.l2 = self.axs[0].plot(prof2,label=self.spec2name)[0]
plt.legend()
if hasattr(self,'lrat'):
self.lrat.set_ydata(prof2/prof1)
else:
self.lrat = self.axs[1].plot(prof2/prof1,'k',label='ratio')[0]
self.axs[1].set_ylim(0,2)
if len(self.dataCollector) > 0 :
im1Proj = np.asarray([i['im1Proj'] for i in self.dataCollector])
im2Proj = np.asarray([i['im2Proj'] for i in self.dataCollector])
#print(im1Proj.shape,im2Proj.shape)
ratAv = np.median(im2Proj,0)/np.median(im1Proj,0)
if hasattr(self,'lratAv'):
self.lratAv.set_ydata(ratAv)
else:
self.lratAv = self.axs[1].plot(ratAv,'r',label='ratio Avg')[0]
self.axs[1].set_ylim(0,2)
class RunningPlot(object):
def __init__(self,dataCollector):
self.dataCollector = dataCollector
self.fig,self.axs = plt.subplots(1,1)
def updatePlot(self):
if len(self.dataCollector)>0:
times = np.asarray(([i['time'] for i in self.dataCollector]))
foms = np.asarray(([i['fom'] for i in self.dataCollector]))
im1Proj = np.asarray(([i['im1Proj'] for i in self.dataCollector]))
im2Proj = np.asarray(([i['im2Proj'] for i in self.dataCollector]))
if hasattr(self,'fomline'):
self.fomline.set_ydata(foms)
self.fomline.set_xdata(times)
self.axs.set_xlim(np.min(times)-datetime.timedelta(0,10),np.max(times)+datetime.timedelta(0,10))
#self.axs[0].autoscale(enable=True,axis='x')
else:
self.fomline = self.axs.plot(times,foms,'o-')[0]
self.axs.autoscale(enable=True,axis='x')
#if hasattr(self,'ratioimg'):
#self.ratioimg.set_data()
#self.ratioimg.set_ydata(foms)
#else:
#self.axs[0].plot(times,foms,'o-')
#def plotOrUpdate(img1,img2):
#if hasattr(self,i1):
#self.i1.set_data(img1)
#else:
#self.i1 = self.axs.imshow(img1,interpolate='none',origin='bottom')
#if hasattr(self,i1):
#self.i1.set_data(img1)
#else:
#self.i1 = self.axs.imshow(img1,interpolate='none',origin='bottom')

296
online/sMhelper_upd.py Normal file
View File

@ -0,0 +1,296 @@
import sys
import zmq
import numpy as np
import time
import pickle
import alignment
import matplotlib.pyplot as plt
import threading
import datetime
import copy
plt.rcParams['image.cmap'] = 'viridis'
def histVec(v,oversample=1):
v = np.atleast_1d(v)
v = np.unique(v)
vd = np.diff(v)
vd = np.hstack([vd[0],vd])
#vv = np.hstack([v-vd/2,v[-1]+vd[-1]/2])
vv = np.hstack([v-vd/2.,v[-1]+vd[-1]/2.])
if oversample>1:
vvo = []
for i in range(len(vv)-1):
vvo.append(np.linspace(vv[i],vv[i+1],oversample+1)[:-1])
vvo.append(vv[-1])
vv = np.array(np.hstack(vvo))
return vv
def subtractBkg(imgs,nPix=100,dKtype='corners'):
""" Opals tend to have different backgroud for every quadrant """
if dKtype is 'corners':
if imgs.ndim == 2: imgs = imgs[np.newaxis,:]
imgs = imgs.astype(np.float)
q1 = imgs[:,:nPix,:nPix].mean(-1).mean(-1)
imgs[:,:512,:512]-=q1[:,np.newaxis,np.newaxis]
q2 = imgs[:,:nPix,-nPix:].mean(-1).mean(-1)
imgs[:,:512,-512:]-=q2[:,np.newaxis,np.newaxis]
q3 = imgs[:,-nPix:,-nPix:].mean(-1).mean(-1)
imgs[:,-512:,-512:]-=q3[:,np.newaxis,np.newaxis]
q4 = imgs[:,-nPix:,:nPix].mean(-1).mean(-1)
imgs[:,-512:,:512]-=q4[:,np.newaxis,np.newaxis]
elif dKtype is 'stripes':
if imgs.ndim == 2: imgs = imgs[np.newaxis,:]
imgs = imgs.astype(np.float)
s1 = imgs[:,:nPix,:].mean(-2)
return np.squeeze(imgs)
def getData():
t0 = time.time()
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.connect('tcp://daq-xpp-mon06:12322')
#socket.setsockopt(zmq.SUBSCRIBE, b'')
while True:
socket.send(b"Request")
ret = socket.recv()
ret = pickle.loads(ret, encoding='latin1')
print('received',ret.keys(),time.time()-t0)
t0 = time.time()
if __name__ == "__main__":
getData()
class SpecHandler(object):
def __init__(self,connectString='tcp://daq-xpp-mon06:12322',spec1name='opal0',spec2name='opal1',roi=[0,1024,0,1024]):
self.connectString = connectString
self.spec1name = spec1name
self.spec2name = spec2name
self.dataCollector = []
#self.surveyplot = Surveyplot(spec1name=spec1name,spec2name=spec2name)
self.roi = roi
self.projsimple = ProjSimple(spec1name=spec1name,spec2name=spec2name,dataCollector=self.dataCollector)
self._rawContinuousTime = None
self.lastDat = None
self.openSocket()
#self.runningPlot = RunningPlot(self.dataCollector)
def openSocket(self):
context = zmq.Context()
self.context = context
self.socket = context.socket(zmq.REQ)
self.socket.connect(self.connectString)
#self.socket.setsockopt(zmq.SUBSCRIBE, b'')
def closeSocket(self):
del self.context
del self.socket
def getData(self):
self.socket.send(b"Request")
ret = self.socket.recv()
ret = pickle.loads(ret, encoding='latin1')
for sn in [self.spec1name,self.spec2name]:
ret[sn] = np.squeeze(alignment.subtractBkg(ret[sn], nPix=100, bkg_type='line'))
self.lastDat = ret
return ret
def getRaw(self,repoenConnection=False,doAlign=False,show=False,doFit=False,updateImg=True,updateProj=True,updateFom=True,flipit=False):
if doFit is True: doFit='iminuit'
if repoenConnection:
self.closeSocket()
self.openSocket()
dat = self.getData()
im1 = dat[self.spec1name]; im2 = dat[self.spec2name]
if doAlign:
#t = np.load("gui_align_transform_xppl3716.npy").item()
#if hasattr(self,'transformer'):
#algn = self.transformer
#else:
algn = alignment.loadAlignment('last_trafo.npy')
t = algn['transform']
roi1 = algn['roi1']
roi2 = algn['roi2']
im1 = im1[roi1];
if flipit:
im1 = im1[::-1]
im2 = im2[roi2]
r = alignment.doShot( im1,im2, t, show=show, doFit=doFit)
self.transformer = dict(transform=r.final_transform,roi1=roi1,roi2=roi2)
alignment.saveAlignment('last_trafo.npy',r.final_transform,roi1,roi2)
im1 = r.im1; im2 = r.im2
showDiff = True
showRatio = True
else:
showDiff = False
showRatio = False
if doAlign:
thres = 0.05
#im1[im1<thres*np.max(im1.ravel())] = np.nan
#im2[im2<thres*np.max(im2.ravel())] = np.nan
self.dataCollector.append(\
dict( time=datetime.datetime.now(),
fom=r.fom,
ratProj = np.nansum(im2/im1,axis=0),
im1Proj = np.nansum(im1,axis=0),
im2Proj = np.nansum(im2,axis=0)))
#if updateFom:
#self.runningPlot.updatePlot()
#if updateImg:
#self.surveyplot.plotImages(im1,im2,showDiff=showDiff,showRatio=showRatio)
#if updateProj:
self.projsimple.plotProfiles(im1,im2)
def alignFeatures(self):
im1 = copy.copy(self.lastDat[self.spec1name])
im2 = copy.copy(self.lastDat[self.spec2name])
roi1 = alignment.findRoi(im1)
roi2 = alignment.findRoi(im2)
tra = alignment.GuiAlignment(im1[roi1,:],im2[roi2,:],autostart=False)
self.transformer = dict(transform=tra.start(),roi1=roi1,roi2=roi2)
def getRawContinuuous(self,sleepTime,**kwargs):
self._rawContinuousTime = sleepTime
if not hasattr(self,'_rawContinuousThread'):
def upd():
while not self._rawContinuousTime is None:
self.getRaw(**kwargs)
plt.draw()
time.sleep(self._rawContinuousTime)
self._rawContinuousThread = threading.Thread(target=upd)
self._rawContinuousThread.start()
class Surveyplot(object):
def __init__(self,spec1name='spec1',spec2name='spec2'):
self.fig,self.axs = plt.subplots(4,1,sharex=True,sharey=True)
self.axs[0].set_title(spec1name)
self.axs[1].set_title(spec2name)
self.axs[2].set_title("Difference")
self.axs[3].set_title("Ratio")
def plotImages(self,img1,img2,showDiff=False,showRatio=False):
if hasattr(self,'i1'):
self.i1.set_data(img1)
else:
self.i1 = self.axs[0].imshow(img1,origin='lower',interpolation='none')
if hasattr(self,'i2'):
self.i2.set_data(img2)
else:
self.i2 = self.axs[1].imshow(img2,origin='lower',interpolation='none')
if showDiff:
tdiff = img2-img1
if hasattr(self,'idiff'):
self.idiff.set_data(tdiff)
else:
self.idiff = self.axs[2].imshow(tdiff,interpolation='none',origin='lower')
lms = np.percentile(tdiff,[30,70])
self.idiff.set_clim(lms)
if showRatio:
tratio = img2/img1
if hasattr(self,'iratio'):
self.iratio.set_data(tratio)
else:
self.iratio = self.axs[3].imshow(tratio,interpolation='none',origin='lower')
lms = np.percentile(tratio,[30,70])
self.iratio.set_clim(lms)
class ProjSimple(object):
def __init__(self,spec1name='spec1',spec2name='spec2',roi1=[0,1024,0,1024],roi2=[0,1024,0,1024],dataCollector=[]):
self.fig,self.axs = plt.subplots(2,1,sharex=True)
self.roi1 = roi1
self.roi2 = roi2
self.spec1name=spec1name
self.spec2name=spec2name
self.dataCollector = dataCollector
#def getROI(self,specNo):
def _roiit(self,img,roi):
return img[roi[0]:roi[1],roi[2]:roi[3]]
def plotProfiles(self,img1,img2):
prof1 = np.nansum(self._roiit(img1,self.roi1),0)
prof2 = np.nansum(self._roiit(img2,self.roi2),0)
if hasattr(self,'l1'):
self.l1.set_ydata(prof1)
else:
self.l1 = self.axs[0].plot(prof1,label=self.spec1name)[0]
if hasattr(self,'l2'):
self.l2.set_ydata(prof2)
else:
self.l2 = self.axs[0].plot(prof2,label=self.spec2name)[0]
plt.legend()
if hasattr(self,'lrat'):
self.lrat.set_ydata(prof2/prof1)
else:
self.lrat = self.axs[1].plot(prof2/prof1,'k',label='ratio')[0]
self.axs[1].set_ylim(0,2)
if len(self.dataCollector) > 0 :
im1Proj = np.asarray([i['im1Proj'] for i in self.dataCollector])
im2Proj = np.asarray([i['im2Proj'] for i in self.dataCollector])
#print(im1Proj.shape,im2Proj.shape)
ratAv = np.median(im2Proj[-10:,:],0)/np.median(im1Proj[-10:,:],0)
if hasattr(self,'lratAv'):
self.lratAv.set_ydata(ratAv)
else:
self.lratAv = self.axs[1].plot(ratAv,'r',label='ratio Avg')[0]
self.axs[1].set_ylim(0,2)
class RunningPlot(object):
def __init__(self,dataCollector):
self.dataCollector = dataCollector
self.fig,self.axs = plt.subplots(1,1)
def updatePlot(self):
if len(self.dataCollector)>0:
times = np.asarray(([i['time'] for i in self.dataCollector]))
foms = np.asarray(([i['fom'] for i in self.dataCollector]))
im1Proj = np.asarray(([i['im1Proj'] for i in self.dataCollector]))
im2Proj = np.asarray(([i['im2Proj'] for i in self.dataCollector]))
if hasattr(self,'fomline'):
self.fomline.set_ydata(foms)
self.fomline.set_xdata(times)
self.axs.set_xlim(np.min(times)-datetime.timedelta(0,10),np.max(times)+datetime.timedelta(0,10))
#self.axs[0].autoscale(enable=True,axis='x')
else:
self.fomline = self.axs.plot(times,foms,'o-')[0]
self.axs.autoscale(enable=True,axis='x')
#if hasattr(self,'ratioimg'):
#self.ratioimg.set_data()
#self.ratioimg.set_ydata(foms)
#else:
#self.axs[0].plot(times,foms,'o-')
#def plotOrUpdate(img1,img2):
#if hasattr(self,i1):
#self.i1.set_data(img1)
#else:
#self.i1 = self.axs.imshow(img1,interpolate='none',origin='bottom')
#if hasattr(self,i1):
#self.i1.set_data(img1)
#else:
#self.i1 = self.axs.imshow(img1,interpolate='none',origin='bottom')

41
online/server.py Normal file
View File

@ -0,0 +1,41 @@
import zmq
import time
import psana
import numpy as np
context = zmq.Context()
socket = context.socket(zmq.REP)
socket.bind("tcp://*:12322")
poller = zmq.Poller()
poller.register(socket, zmq.POLLIN)
#run = 8
#ds = psana.DataSource('exp=xppl3816:run=%d:smd' %run)
ds = psana.DataSource('shmem=XPP.0:stop=no')
epics = ds.env().epicsStore()
opal_0_detector = psana.Detector('opal_0')
opal_1_detector = psana.Detector('opal_1')
#ipm3_src = psana.Source('BldInfo(XppSb3_Ipm)')
t0 = time.time()
for i, evt in enumerate(ds.events()):
events = dict(poller.poll(0))
if socket in events and events[socket] == zmq.POLLIN:
opal_0 = opal_0_detector.raw(evt)
opal_1 = opal_1_detector.raw(evt)
cntr = ds.env().configStore().get(psana.ControlData.ConfigV3, psana.Source()).pvControls()
if len(cntr) > 0:
cpvName = cntr[0].name()
cpvValue = cntr[0].value()
else:
cpvName = None
cpvValue = None
if opal_0 is None or opal_1 is None:
print 'missing opal'
continue
message = socket.recv()
socket.send_pyobj( dict( opal0 = opal_0, opal1 = opal_1, cPv = dict(name=cpvName,value=cpvValue)) )
print 'Shot',i, 'sent; time since starting:', time.time()-t0

41
online/server_pub.py Normal file
View File

@ -0,0 +1,41 @@
import zmq
import time
import psana
import numpy as np
context = zmq.Context()
socket = context.socket(zmq.PUB)
socket.bind("tcp://*:12322")
#run = 8
#ds = psana.DataSource('exp=xppl3816:run=%d:smd' %run)
ds = psana.DataSource('shmem=XPP.0:stop=no')
epics = ds.env().epicsStore()
opal_0_detector = psana.Detector('opal_0')
opal_1_detector = psana.Detector('opal_1')
opal_1_detector = psana.Detector('opal_1')
#ipm3_src = psana.Source('BldInfo(XppSb3_Ipm)')
t0 = time.time()
for i, evt in enumerate(ds.events()):
#if i % 20 != 0:
# continue
opal_0 = opal_0_detector.raw(evt)
# opal_2 = np.random.random((1024, 1024))#opal_2_detector.raw(evt)
opal_1 = opal_1_detector.raw(evt)
cntr = ds.env().configStore().get(psana.ControlData.ConfigV3, psana.Source()).pvControls()
if len(cntr) > 0:
cpvName = cntr.pvControlsu()[0].name()
cpvValue = cntr.pvControls()[0].value()
else:
cpvName = None
cpvValue = None
if opal_0 is None or opal_1 is None:
print 'missing opal'
continue
socket.send_pyobj( dict( opal0 = opal_0, opal1 = opal_1, cPv = dict(name=cpvName,value=cpvValue)) )
print 'Shot',i, 'sent; time since starting:', time.time()-t0
time.sleep(1.0)

1
x3py_config Normal file
View File

@ -0,0 +1 @@
#cachepath = "/reg/d/psdm/xpp/xppl3716/scratch/mc/cache"

291
xanes_analyzeRun.py Normal file
View File

@ -0,0 +1,291 @@
import os
import sys
import numpy as np
np.warnings.simplefilter('ignore')
import time
import matplotlib.pyplot as plt
import h5py
import re
from x3py import x3py
import alignment
import mcutils as mc
kw_2dplot = dict(
interpolation = "none",
aspect = "auto",
cmap = plt.cm.viridis
)
g_exp = "mecl3616"
g_exp = "xppl3716"
g_bml = g_exp[:3]
x3py.config.updateBeamline(g_bml)
g_folder_init = g_exp+"_init_pars/"
g_folder_out = g_exp+"_output/"
g_folder_data = "/reg/d/psdm/"+g_bml+"/"+ g_exp +"/hdf5/"
import socket
hostname = socket.gethostname()
if hostname == "x1":
g_folder_data = "/home/marco/temp"
# set defaults based on experiment
if g_bml == "xpp":
g_roi_height = 200
g_swapx = False
g_swapy = False
else:
g_roi_height = 100
g_swapx = True
g_swapy = False
print("Working on experiment",g_exp,"(beamline %s)"%g_bml)
print(" folder data →",g_folder_data)
print(" folder init_pars →",g_folder_init)
print(" folder outout →",g_folder_out)
#g_folder = "/reg/d/psdm/xpp/xppl3716/ftc/hdf5/"
def readDataset(fnameOrRun=7,
force=False,
doBkgSub=False):
if isinstance(fnameOrRun,str) and (fnameOrRun[-3:]=="npz"):
d = x3py.toolsVarious.DropObject()
temp = np.load(fnameOrRun)
spec1 = temp["spec1"]
spec2 = temp["spec2"]
nS = spec1.shape[0]
d.spec1 = x3py.toolsDetectors.wrapArray("spec1",spec1,time=np.arange(nS))
d.spec2 = x3py.toolsDetectors.wrapArray("spec2",spec2,time=np.arange(nS))
else:
if isinstance(fnameOrRun,int):
fnameOrRun=g_folder_data+"/"+g_exp+"-r%04d.h5" % fnameOrRun
d = x3py.Dataset(fnameOrRun,detectors=["opal0","opal1","fee_spec","opal2"])
if g_bml == "xpp":
d.spec1 = d.opal0
d.spec2 = d.opal1
else:
d.spec1 = d.fee_spec
d.spec2 = d.opal2
if not hasattr(d,"scan"):
d.scan = x3py.toolsVarious.DropObject()
d.scan.scanmotor0_values = [0,]
return d
def getCenter(img,axis=0,threshold=0.05):
img = img.copy()
img[img<img.max()*threshold] = 0
if axis == 1: img=img.T
p = img.mean(1)
x = np.arange(img.shape[0])
return int(np.sum(x*p)/np.sum(p))
def showShots(im1,im2):
nS = im1.shape[0]
fig,ax = plt.subplots(2,nS,sharex=True,sharey=True)
if im1.ndim == 3:
for a,i1,i2 in zip(ax.T,im1,im2):
a[0].imshow(i1.T,**kw_2dplot)
a[1].imshow(i2.T,**kw_2dplot)
else:
for a,p1,p2 in zip(ax.T,im1,im2):
a[0].plot(p1)
a[1].plot(p2)
class AnalyzeRun(object):
def __init__(self,run,initAlign="auto",swapx=g_swapx,swapy=g_swapy):
""" swapx → swap x axis of first spectrometer
swapy swap y axis of first spectrometer
"""
self.d = readDataset(run)
if isinstance(run,str):
run = int( re.search("\d{3,4}",run).group() )
self.run = run
self.results = dict()
self.swap = (swapx,swapy)
#self.clearCache()
d = self.d
self.spec1 = d.spec1 ; # spec1 is the one that is moved
self.spec2 = d.spec2 ;
try:
self.loadTransform(initAlign)
except (AttributeError,FileNotFoundError):
if initAlign is None:
print("Set to default transform")
self.initAlign = self.setDefaultTransform()
#self.initAlign = initAlign
def getShot(self,shot=0,calib=None,bkgSub="line",roi=g_roi_height):
# read data
im1 = self.spec1.getShots(shot,calib=calib)
im2 = self.spec2.getShots(shot,calib=calib)
# subtractBkg bkg
im1 = alignment.subtractBkg(im1,bkg_type=bkgSub)
im2 = alignment.subtractBkg(im2,bkg_type=bkgSub)
# rebin and swap im1 if necessary
if im1.shape[-1] != 1024:
im1 = mc.rebin(im1, (im1.shape[0],im1.shape[1],1024) )
if self.swap[0]:
im1 = im1[:,:,::-1]
if self.swap[1]:
im1 = im1[:,::-1,:]
if roi is None:
pass
elif isinstance(roi,slice):
im1 = im1[:,roi,:]
im2 = im2[:,roi,:]
elif isinstance(roi,int):
if not hasattr(self,"roi1"): self.roi1 = alignment.findRoi(im1[0],roi)
if not hasattr(self,"roi2"): self.roi2 = alignment.findRoi(im2[0],roi)
im1 = im1[:,self.roi1,:]; im2 = im2[:,self.roi2,:]
return im1,im2
def guiAlign(self,shot=0,save="auto"):
im1,im2 = self.getShot(shot)
gui = alignment.GuiAlignment(im1[0],im2[0])
input("Enter to start")
gui.start()
if save == "auto":
fname = g_folder_init+"/run%04d_gui_align.npy" % self.run
else:
fname = save
self.initAlign = gui.transform
gui.save(fname)
def analyzeScan(self,initpars=None,nShotsPerCalib=20,nC=None,doFit=False,fitEveryCalib=False):
""" use xhift = None; in this way the fit routine does not try to automatically find the translationx parameter """
if initpars is None: initpars= self.initAlign
d = self.d
if nC is None: nC = d.opal1.nCalib
shots = slice(nShotsPerCalib)
for i in range(nC):
s1,s2 = self.getShot(shots,calib=i)
if fitEveryCalib is not False:
res = alignment.doShots(s1[:fitEveryCalib],s2[:fitEveryCalib],doFit=True,\
initpars=initpars); #
idx = np.argmin( [p.fom for p in res] )
res = res[idx]
initpars = res.final_pars; self.initAlign=res.final_pars
print("Calib cycle %d -> %.3f aligned (best FOM: %.2f)" % (i,self.d.scan.scanmotor0_values[i],res.fom))
ret = alignment.doShots(s1,s2,initpars=initpars,doFit=doFit)
res = alignment.unravel_results(ret)
self.results[i] = res
return self.results.values()
def doShot(self,shot=0,calib=None,initpars=None,im1=None,im2=None,doFit=True,show=False,showInit=False,save=False,savePlot="auto"):
if initpars is None: initpars= self.initAlign
if (im1 is None) or (im2 is None):
im1,im2 = self.getShot(shot,calib=calib); im1=im1[0]; im2=im2[0]
r = alignment.doShot(im1,im2,initpars,doFit=doFit,show=showInit)
im1 = r.im1
im2 = r.im2
self.initAlign = r.final_pars
if show:
if savePlot == "auto":
savePlot = g_folder_out+"/run%04d_calib%s_shot%04d_fit.png" % (self.run,calib,shot)
alignment.plotShot(im1,im2,res=r,save=savePlot)
if save: self.saveTransform()
return r
def doShots(self,shots=slice(0,50),calib=None,initpars=None,doFit=False,returnBestTransform=False,unravel=True):
if initpars is None: initpars= self.initAlign
d = self.d
s1,s2 = self.getShot(shots,calib=calib)
ret,t = alignment.doShots(s1,s2,initpars=initpars,doFit=doFit,\
returnBestTransform=True)
if doFit:
self.initAlign = t
ret_unravel = alignment.unravel_results(ret)
# keep it for later !
self.results[calib] = ret_unravel
if unravel: ret = ret_unravel
if returnBestTransform:
return ret,t
else:
return ret
def save(self,fname="auto",overwrite=False):
if fname == "auto":
fname = g_folder_out+"/run%04d_analysis.h5" % self.run
if os.path.exists(fname) and not overwrite:
print("File %s exists, **NOT** saving, use overwrite=True is you want ..."%fname)
return
if os.path.exists(fname) and overwrite:
os.unlink(fname)
print("Saving results to %s"%fname)
h = h5py.File(fname)
h["roi1"] = (self.roi1.start,self.roi1.stop)
h["roi2"] = (self.roi2.start,self.roi2.stop)
#h["transform"] = self.initAlign
for (c,v) in self.results.items():
cname = "calib%04d/" % c if isinstance(c,int) else "calib%s/" % c
for p,vv in v.items():
if p == "parameters":
for pname,parray in vv.items():
name = cname + p + "/" + pname
h[name] = parray
else:
h[cname + p] = vv
h.close()
def saveTransform(self,fname="auto",transform=None):
if transform is None: transform = self.initAlign
if fname == "auto":
fname = g_folder_init+"/run%04d_transform.npy" % self.run
print("Saving roi and transformation parameter to %s"%fname)
alignment.saveAlignment(fname,self.initAlign,self.roi1,self.roi2)
def loadTransform(self,fname="auto"):
if fname == "auto":
fname = g_folder_init+"/run%04d_transform.npy" % self.run
elif isinstance(fname,int):
fname = g_folder_init+"/run%04d_transform.npy" % fname
temp = np.load(fname).item()
self.initAlign = temp["transform"]
self.roi1 = temp["roi1"]
self.roi2 = temp["roi2"]
print("init transform and ROIs from %s"%fname)
def clearCache(self):
del self.roi1
del self.roi2
alignment.clearCache(); # nedded for multiprocessing can leave bad parameters in the cache
def setDefaultTransform( self ):
t = dict( scalex=0.65,rotation=0.0,transx=90, iblur1=4.3,fix_iblur1=False )
self.initAlign = t
return t
def quick_mec(run,ref=236,divideByRef=False,returnRes=False):
""" useful to analyze the runs around 140 (done with the focusing """
ref_run = 236
h=h5py.File("mecl3616_output/run%04d_analysis.h5" %ref,"r")
ref = np.nanmean(h["calibNone"]["ratio"][...],axis=0)
r = AnalyzeRun(run,initAlign=ref,swapx=True,swapy=False)
res=r.doShots(slice(5),doFit=False)
ret = res["ratio"]/ref if divideByRef else res["ratio"]
if returnRes:
return ret,res
else:
return ret
def quickAndDirty(run,nShots=300,returnAll=True,doFit=False):
""" useful to analyze the runs around 140 (done with the focusing """
r = AnalyzeRun(run,swap=True,initAlign=g_folder_init+"/run0144_transform.npy")
res=r.doShots(slice(nShots),doFit=doFit)
o = alignment.unravel_results(res)
ref = np.nanmedian(o["ratio"][:40],0)
sam = np.nanmedian(o["ratio"][50:],0)
if returnAll:
return sam/ref,o["ratio"]/ref
else:
return sam/ref

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.