diff --git a/xanes_analyzeRun.py b/xanes_analyzeRun.py index 171ef37..d055edc 100644 --- a/xanes_analyzeRun.py +++ b/xanes_analyzeRun.py @@ -141,7 +141,8 @@ def medianRatio(p1,p2,threshold=0.03): ratio = p2/p1 return np.ma.average(ratio,axis=0,weights=p1) - +def sliceToIndices(shot_slice,nShots): + return list(range(*shot_slice.indices(nShots))) class AnalyzeRun(object): def __init__(self,run,initAlign="auto",swapx=g_swapx,swapy=g_swapy): @@ -221,27 +222,31 @@ class AnalyzeRun(object): gui.save(fname) - def analyzeScan(self,initpars=None,shots=slice(0,30),calibs="all",nImagesToFit=0,nSaveImg=5): - """ nImagesToFit: number of images to Fit per calibcycle, (int or "all") """ + def analyzeScan(self,initpars=None,nShotsPerCalib="all",calibs="all",calibsToFit="all",nImagesToFit=0,nSaveImg=5): + """ nImagesToFit: number of images to Fit per calibcycle, (int or "all") + calibs to fit could be 'all','even','odd' + """ if initpars is None: initpars= self.initAlign if calibs == "all": calibs=list(range(self.nCalib)) if isinstance(calibs,slice): calibs=list(range(self.nCalib))[calibs] nC = len(calibs) for ic,calib in enumerate(calibs): + shots = list(range(self.nShotsPerCalib[calib])) + if nShotsPerCalib != "all": shots = shots[:nShotsPerCalib] if nImagesToFit == "all": nToFit = self.nShotsPerCalib[calib] else: nToFit = nImagesToFit - #print("Memory available 1",x3py.toolsOS.memAvailable()) - s1,s2 = self.getShots(shots,calib=calib) - #print("Memory available 2",x3py.toolsOS.memAvailable()) + if calibsToFit == 'even' and (calib%2==1): nToFit=0 + if calibsToFit == 'odd' and (calib%2==0): nToFit=0 + print("Calib %d, tofit %d"%(calib,nToFit)) ret = None - if nImagesToFit > 0: - ret,bestTransf = alignment.doShots(s1[:nToFit],s2[:nToFit],doFit=True,\ + if nToFit > 0: + ret,bestTransf = self.doShots(shots=shots[:nToFit],calib=calib,doFit=True,\ initpars=initpars,nSaveImg=nSaveImg,returnBestTransform=True); initpars = bestTransf; self.initAlign=bestTransf - if nToFit < s1.shape[0]: - ret2 = alignment.doShots(s1[nToFit:],s2[nToFit:],initpars=initpars,doFit=False,nSaveImg=0) + if nToFit < len(shots): + ret2 = self.doShots(shots[nToFit:],initpars=initpars,doFit=False,nSaveImg=0) if ret is None: ret = ret2 else: @@ -268,17 +273,27 @@ class AnalyzeRun(object): if save: self.saveTransform() return r - def doShots(self,shots=slice(0,50),calib=None,initpars=None,doFit=False,returnBestTransform=False,nSaveImg='all'): + def doShots(self,shots=slice(0,50),calib=None,initpars=None,doFit=False,returnBestTransform=False,nSaveImg='all',nInChunks=250): """ shots : slice to define shots to read, use 'all' for all shots in calibcycle nSaveImg : save saveImg images in memory (self.results), use 'all' for all useful for decreasing memory footprint """ if initpars is None: initpars= self.initAlign - if shots == "all": shots = slice(self.nShotsPerCalib[calib]) - s1,s2 = self.getShots(shots,calib=calib) - ret,transformForBestFit = alignment.doShots(s1,s2,initpars=initpars,doFit=doFit,\ - returnBestTransform=True,nSaveImg=nSaveImg) + if shots == "all": shots = list(range(slice(self.nShotsPerCalib[calib]))) + if isinstance(shots,slice): + nmax = self.nShotsPerCalib[calib] if calib is not None else self.data.spec1.nShots + shots = sliceToIndices(shots,nmax) + chunks = x3py.toolsVarious.chunk(shots,nInChunks) + ret = [] + for chunk in chunks: + s1,s2 = self.getShots(chunk,calib=calib) + temp = alignment.doShots(s1,s2,initpars=initpars,doFit=doFit,\ + returnBestTransform=False,nSaveImg=nSaveImg) + ret.append(temp) + ret = alignment.unravel_results(ret) + idxBest = np.nanargmin(ret.fom) + transformForBestFit = dict( [ (p,ret.final_pars[p][idxBest]) for p in ret.final_pars.keys() ] ) if doFit: self.initAlign = transformForBestFit # keep it for later ! self.results[calib] = ret