dispersiveXanes/xppl37_calibration.py

43 lines
1.3 KiB
Python
Raw Permalink Normal View History

import matplotlib.pyplot as plt
import numpy as np
import xanes_analyzeRun
import mcutils as mc
colors = "#a6cee3 #1f78b4 #b2df8a #33a02c #fb9a99 #e31a1c #fdbf6f #ff7f00 #cab2d6 #6a3d9a #ffff99 #b15928".split()
def myc(i):
return colors[i%len(colors)]
def doRun(run=77):
""" Since p1 is transformed, for the calibration look at p2 """
r = xanes_analyzeRun.AnalyzeRun(run)
r.load()
calibs = list(r.results.keys())
calibs.sort()
p2 = [ np.nanmedian(r.results[c].p1,axis=0) for c in calibs ]
p2 = np.asarray(p2)
ref = np.nanmedian( p2 ,axis=0)
# normalize p2
p2 = p2/ref
# remove non-flat part
_x = np.arange(p2.shape[1],dtype=float)
p2 = [s-mc.poly_approximant(_x,s,order=20)(_x) for s in p2]
p2 = np.asarray(p2)
x = np.asarray( [_x for _ in p2])
x[p2>-0.15] = np.nan
x[x<100] = np.nan; # below pixel 200 is noise
pos = np.nanmean(x,axis=1)
fig,ax=plt.subplots(1,2,sharey=True)
xshift = 0.2
pcalib = []
for icalib,(xi,p2i) in enumerate(zip(x,p2)):
ppar = dict ( color = myc(icalib) )
ax[0].plot(p2i+icalib*xshift,_x,'--',lw=1,alpha=0.5,**ppar)
ax[0].plot(p2i+icalib*xshift,xi,lw=2,**ppar)
pcalib.append( np.nanmedian(xi) )
ax[1].plot(r.scanpos[icalib],pcalib[icalib],'o',**ppar)
polycal = np.polyfit(pcalib,r.scanpos,1)
ax[1].plot(np.polyval(polycal,_x),_x)
print("polynomial calibration",polycal)