modify the filenames to differentiate planar and pyramidal geometry

This commit is contained in:
jean paul nshuti 2025-10-10 09:44:10 +02:00
parent 977dcab593
commit 30790a924d
4 changed files with 1200 additions and 1 deletions

View File

@ -100,7 +100,7 @@ genann_objects = geNNetic.o iNNterface.o puNNch.o \
# Objects depending on model # Objects depending on model
#mod_objects = nnmodel.o nncoords.o #mod_objects = nnmodel.o nncoords.o
pln_objects = invariants_no3.o nncoords_no3.o genetic_param_nh3_pyr.o model_nh3.o nnadia_nh3.o pln_objects = invariants_nh3_py.o nncoords_nh3_py.o genetic_param_nh3_pyr.o model_nh3_py.o nnadia_nh3.o
# Objects belonging to internal library # Objects belonging to internal library

View File

@ -0,0 +1,82 @@
Module invariants_mod
implicit none
contains
!----------------------------------------------------
subroutine invariants(a,xs,ys,xb,yb,b,inv)
implicit none
!include "nnparams.incl"
double precision, intent(in) :: a, xs, ys, xb, yb, b
double precision, intent(out) :: inv(4)
double precision:: invar(24)
complex(8) :: q1, q2
LOGICAL,PARAMETER:: debg =.false.
integer :: i
! express the coordinate in complex
q1 = dcmplx(xs, ys)
q2 = dcmplx(xb, yb)
! compute the invariants
invar(24) = a
invar(23) =b**2
! INVARIANTS OF KIND II
!------------------------
invar(1) = dreal( q1 * conjg(q1) ) ! r11
invar(2) = dreal( q1 * conjg(q2) ) ! r12
invar(3) = dreal( q2 * conjg(q2) ) ! r22
invar(4) = (dimag(q1 * conjg(q2)) )**2 ! rho 12**2
!INVATIANTS OF KIND III
!------------------------
invar(5) = dreal( q1 * q1 * q1 ) ! r111
invar(6) = dreal( q1 * q1 * q2 ) ! r112
invar(7) = dreal( q1 * q2 * q2 ) ! r122
invar(8) = dreal( q2 * q2 * q2 ) ! r222
invar(9) = (dimag( q1 * q1 * q1 ))**2 ! rho111**2
invar(10) = (dimag( q1 * q1 * q2 ))**2 ! rho112 **2
invar(11) = (dimag( q1 * q2 * q2 ))**2 ! rho122**2
invar(12) = (dimag( q2 * q2 * q2 ))**2 ! rho222
! INVARIANTS OF KIND IV
!-------------------------
invar(13) = (dimag( q1 * conjg(q2)) * dimag( q1 * q1 * q1 ))
invar(14) = (dimag( q1 * conjg(q2)) * dimag( q1 * q1 * q2 ))
invar(15) = (dimag( q1 * conjg(q2)) * dimag( q1 * q2 * q2 ))
invar(16) = (dimag( q1 * conjg(q2)) * dimag( q2 * q2 * q2 ))
! INVARIANTS OF KIND V
!----------------------
invar(17) = (dimag( q1 * q1 * q1 ) * dimag( q1 * q1 * q2 ))
invar(18) = (dimag( q1 * q1 * q1 ) * dimag( q1 * q2 * q2 ))
invar(19) = (dimag( q1 * q1 * q1 ) * dimag( q2 * q2 * q2 ))
invar(20) = (dimag( q1 * q1 * q2 ) * dimag( q1 * q2 * q2 ))
invar(21) = (dimag( q1 * q1 * q2 ) * dimag( q2 * q2 * q2 ))
invar(22) = (dimag( q1 * q2 * q2 ) * dimag( q2 * q2 * q2 ))
! the only non zero invariant for bend pure cuts
inv(1) = invar(1)
inv(2) = invar(5)
inv(3) = invar(9)
inv(4) = invar(23)
if (debg) then
write(14,"(A,*(f10.5))")"Invar II", (invar(i),i=1,4)
write(14,"(A,*(f10.5))") "Invar III", (invar(i),i=5,12)
write(14,"(A,*(f10.5))")"Invar IV", (invar(i),i=13,16)
write(14,"(A,*(f10.5))")"Invar V", (invar(i),i=17,22)
write(14,*)"THE INPUT COORDINATE IN COMPLEX REPRES"
write(14,*)"---------------------------------------"
write(14,*)"xs =",dreal(q1), "ys=",dimag(q1)
endif
! modify the invariants to only consider few of them
!
!invar(13:22)=0.0d0
end subroutine invariants
end module invariants_mod

401
src/model/model_nh3_py.f90 Normal file
View File

@ -0,0 +1,401 @@
module diabmodel
use iso_fortran_env, only: idp => int32, dp => real64
use dip_param
implicit none
include "nnparams.incl"
integer(idp),parameter:: ndiab=4
logical :: debug=.false.
contains
subroutine diab_x(e,q,nn_out)
real(dp),intent(in)::q(maxnin)
real(dp),intent(inout):: nn_out(maxnout)
real(dp),intent(out)::e(ndiab,ndiab)
integer(idp) id,i,j ,ii
real(dp) xs,xb,ys,yb,a,b,ss,sb,v3_vec(8)
real(dp),dimension(21):: shift,scal
xs=q(6)
ys=q(7)
xb=q(8)
yb=q(9)
a=q(5)
b=q(10)
call init_dip_planar_data()
! modify the parametr
shift=1.0_dp
scal=1.0d-2
!scal = [0.69753,0.44797,51.14259,2.76924,1.45300,91.58246, &
! 14.07390,1.02550,1.68623,4.80804,7.69958,0.97871]
!shift = [0.23479,0.26845,35.05940,2.27175,-0.33017,117.48895, &
! -1.68211,0.79418,-1.60443,-10.41309,8.47695,1.25334]
! V term of A2''
ii=1
do i =1,np
if (p(i) .ne. 0.0d0) then
p(i) =p(i)*(shift(ii) + scal(ii)*nn_out(ii) )
ii=ii+1
else
p(i) = p(i)
endif
enddo
ss=xs**2+ys**2 ! totaly symmetric term
sb=xb**2+yb**2
v3_vec( 1) = xs*(xs**2-3*ys**2)
v3_vec( 2) = xb*(xb**2-3*yb**2)
v3_vec( 3) = xb*(xs**2-ys**2) - 2*yb*xs*ys
v3_vec( 4) = xs*(xb**2-yb**2) - 2*ys*xb*yb
v3_vec( 5) = ys*(3*xs**2-ys**2)
v3_vec( 6) = yb*(3*xb**2-yb**2)
v3_vec( 7) = yb*(xs**2-ys**2)+2*xb*xs*ys
v3_vec( 8) = ys*(xb**2-yb**2)+2*xs*xb*yb
e=0.0d0
id=1 !1
! V-term
! order 1
e(1,1)=e(1,1)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
id=id+1 !2
e(2,2)=e(2,2)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
e(3,3)=e(3,3)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
id=id+1 !3
e(4,4)=e(4,4)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
! order 2
id=id+1 !4
e(1,1)=e(1,1)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
+p(pst(1,id)+2)*(xs*xb-ys*yb)
id=id+1 !5
e(2,2)=e(2,2)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) +&
p(pst(1,id)+2)*(xs*xb-ys*yb)
e(3,3)=e(3,3)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) +&
p(pst(1,id)+2)*(xs*xb-ys*yb)
id=id+1 !6
e(4,4)=e(4,4)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) + &
p(pst(1,id)+2)*(xs*xb-ys*yb)
! order 3
id=id+1 !7
e(1,1)=e(1,1)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb
id=id+1 !8
e(2,2)=e(2,2)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb
e(3,3)=e(3,3)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb
id=id+1 !9
e(4,4)=e(4,4)+p(pst(1,id))*xs*ss+p(pst(1,id)+1)*xb*sb
! JAHN TELLER COUPLING W AND Z
! order 0
id=id+1 !10
e(2,2)=e(2,2)+p(pst(1,id))
e(3,3)=e(3,3)-p(pst(1,id))
! order 1
id=id+1 !11
e(2,2)=e(2,2)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
e(3,3)=e(3,3)-p(pst(1,id))*xs-p(pst(1,id)+1)*xb
e(2,3)=e(2,3)-p(pst(1,id))*ys-p(pst(1,id)+1)*yb
! order 2
id=id+1 !12
e(2,2)=e(2,2)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
+p(pst(1,id)+2)*(xs*xb-ys*yb)+p(pst(1,id)+3)*ss+p(pst(1,id)+4)*sb
e(3,3)=e(3,3)-(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
+p(pst(1,id)+2)*(xs*xb-ys*yb)+p(pst(1,id)+3)*ss+p(pst(1,id)+4)*sb)
e(2,3)=e(2,3)+p(pst(1,id))*2*xs*ys+p(pst(1,id)+1)*2*xb*yb+ &
p(pst(1,id)+2)*(xs*yb+xb*ys)
! order 3
id=id+1 !13
do i=1,4
j=i-1
e(2,2)=e(2,2)+(p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i)
e(3,3)=e(3,3)-(p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i)
e(2,3)=e(2,3)+(-p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i+4)
enddo
e(2,2)=e(2,2)+p(pst(1,id)+8)*xs*ss+p(pst(1,id)+9)*xb*sb
e(3,3)=e(3,3)-(p(pst(1,id)+8)*xs*ss+p(pst(1,id)+9)*xb*sb)
e(2,3)=e(2,3)-p(pst(1,id)+8)*ys*ss-p(pst(1,id)+9)*yb*sb
! PSEUDO JAHN TELLER
! A2 ground state coupled with E
! ###################################################
! ###################################################
! order 0
id=id+1 !14
e(1,2)=e(1,2)+b*p(pst(1,id))
! order 1
id=id+1 !15
e(1,2)=e(1,2)+b*(p(pst(1,id))*xs+p(pst(1,id)+1)*xb)
e(1,3)=e(1,3)+b*(p(pst(1,id))*ys+p(pst(1,id)+1)*yb)
! order 2
id=id+1 !16
e(1,2)=e(1,2)+b*(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
+p(pst(1,id)+2)*(xs*xb-ys*yb) + p(pst(1,id)+3)*(xs**2+ys**2))
e(1,3)=e(1,3)-b*(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)&
+p(pst(1,id)+2)*(xs*yb+xb*ys))
! order 3
id =id+1 ! 17
do i=1,4
e(1,2)=e(1,2)+b*(p(pst(1,id)+(i-1))+p(pst(1,id)+(i+3)))*v3_vec(i)
e(1,3)=e(1,3)+b*(p(pst(1,id)+(i-1))-p(pst(1,id)+(i+3)))*v3_vec(i+4)
enddo
!! THE COUPLING OF A2 WITH A1
!####################################################
!####################################################
! order 1
id=id+1 !18
e(1,4)=e(1,4)+b*(p(pst(1,id))*xs+p(pst(1,id)+1)*xb)
id=id+1 !19
e(1,4)=e(1,4)+b*(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
+p(pst(1,id)+2)*(xs*xb-ys*yb))
!!! THE COUPLING OF A1 WITH E
!!####################################################
!####################################################
! order 0
id=id+1 !20
e(2,4)=e(2,4)+p(pst(1,id))
! order 1
id=id+1 !21
e(2,4)=e(2,4)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
e(3,4)=e(3,4)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
! order 2
id=id+1 !22
e(2,4)=e(2,4)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
+p(pst(1,id)+2)*(xs*xb-ys*yb) +p(pst(1,id)+3)*(xs**2+ys**2)
e(3,4)=e(3,4)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
-p(pst(1,id)+2)*(xs*yb+xb*ys)
! order 3
id=id+1 !23
do i=1,4
e(2,4)=e(2,4)+(p(pst(1,id)+(i-1))+p(pst(1,id)+(i+3)))*v3_vec(i)
e(3,4)=e(3,4)+(p(pst(1,id)+(i-1))-p(pst(1,id)+(i+3)))*v3_vec(i+4)
enddo
!! End of the model
e(2,1)=e(1,2)
e(3,1)=e(1,3)
e(3,2)=e(2,3)
e(4,1)=e(1,4)
e(4,2)=e(2,4)
e(4,3)=e(3,4)
end subroutine diab_x
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! THE Y COMPONENT OF DIPOLE
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine diab_y(e,q,nn_out)
real(dp),intent(in)::q(maxnin)
real(dp),intent(inout):: nn_out(maxnout)
real(dp),intent(out)::e(ndiab,ndiab)
integer(idp) id,i,j, ii
real(dp) xs,xb,ys,yb,a,b,ss,sb,v3_vec(8)
real(dp),dimension(21):: shift,scal
xs=q(6)
ys=q(7)
xb=q(8)
yb=q(9)
a=q(5)
b=q(10)
call init_dip_planar_data()
! modify the parametr
shift=1.0_dp
scal=1.0d-2
!scal = [0.69753,0.44797,51.14259,2.76924,1.45300,91.58246, &
! 14.07390,1.02550,1.68623,4.80804,7.69958,0.97871]
!shift = [0.23479,0.26845,35.05940,2.27175,-0.33017,117.48895, &
! -1.68211,0.79418,-1.60443,-10.41309,8.47695,1.25334]
! V term of A2''
ii=1
do i =1,np
if (p(i) .ne. 0) then
p(i) =p(i)*(shift(ii) + scal(ii)*nn_out(ii) )
ii=ii+1
else
p(i) = p(i)
endif
enddo
ss=xs**2+ys**2 ! totaly symmetric term
sb=xb**2+yb**2
v3_vec( 1) = xs*(xs**2-3*ys**2)
v3_vec( 2) = xb*(xb**2-3*yb**2)
v3_vec( 3) = xb*(xs**2-ys**2) - 2*yb*xs*ys
v3_vec( 4) = xs*(xb**2-yb**2) - 2*ys*xb*yb
v3_vec( 5) = ys*(3*xs**2-ys**2)
v3_vec( 6) = yb*(3*xb**2-yb**2)
v3_vec( 7) = yb*(xs**2-ys**2)+2*xb*xs*ys
v3_vec( 8) = ys*(xb**2-yb**2)+2*xs*xb*yb
e=0.0d0
! V-term
id=1 !1
e(1,1)=e(1,1)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
id=id+1 !2
e(2,2)=e(2,2)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
e(3,3)=e(3,3)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
id=id+1 !3
e(4,4)=e(4,4)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
! order 2
id=id+1 !4
e(1,1)=e(1,1)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
-p(pst(1,id)+2)*(xs*yb+xb*ys)
id=id+1 !5
e(2,2)=e(2,2)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
-p(pst(1,id)+2)*(xs*yb+xb*ys)
e(3,3)=e(3,3)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
-p(pst(1,id)+2)*(xs*yb+xb*ys)
id=id+1 !6
e(4,4)=e(4,4)-p(pst(1,id))*(2*xs*ys)-p(pst(1,id)+1)*(2*xb*yb) &
-p(pst(1,id)+2)*(xs*yb+xb*ys)
! order 3
id=id+1 !7
e(1,1)=e(1,1)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb
id=id+1 !8
e(2,2)=e(2,2)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb
e(3,3)=e(3,3)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb
id=id+1 !9
e(4,4)=e(4,4)+p(pst(1,id))*ys*ss+p(pst(1,id)+1)*yb*sb
! V- term + totally symmetric coord a
! JAHN TELLER COUPLING TERM
! order 0
id=id+1 !10
e(2,3)=e(2,3)+p(pst(1,id))
! order 1
id=id+1 !11
e(2,2)=e(2,2)-p(pst(1,id))*ys-p(pst(1,id)+1)*yb
e(3,3)=e(3,3)+p(pst(1,id))*ys+p(pst(1,id)+1)*yb
e(2,3)=e(2,3)-p(pst(1,id))*xs-p(pst(1,id)+1)*xb
!id=id+1 !12
! order 2
id=id+1 !12
e(2,2)=e(2,2)+p(pst(1,id))*2*xs*ys+p(pst(1,id)+1)*2*xb*yb+p(pst(1,id)+2)*(xs*yb+xb*ys)
e(3,3)=e(3,3)-p(pst(1,id))*2*xs*ys-p(pst(1,id)+1)*2*xb*yb-p(pst(1,id)+2)*(xs*yb+xb*ys)
e(2,3)=e(2,3)-(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)) &
-p(pst(1,id)+2)*(xs*xb-ys*yb)+p(pst(1,id)+3)*ss+p(pst(1,id)+4)*sb
! order 3
id=id+1 !13
do i=1,4
j=i-1
e(2,2)=e(2,2)+(p(pst(1,id)+j)-p(pst(1,id)+j+4))*v3_vec(i+4)
e(3,3)=e(3,3)-(p(pst(1,id)+j)-p(pst(1,id)+j+4))*v3_vec(i+4)
e(2,3)=e(2,3)+(p(pst(1,id)+j)+p(pst(1,id)+j+4))*v3_vec(i)
enddo
e(2,2)=e(2,2)-p(pst(1,id)+8)*ys*ss-p(pst(1,id)+9)*yb*sb
e(3,3)=e(3,3)+p(pst(1,id)+8)*ys*ss+p(pst(1,id)+9)*yb*sb
e(2,3)=e(2,3)-p(pst(1,id)+8)*xs*ss-p(pst(1,id)+1)*xb*sb
! PSEUDO JAHN TELLER
! ORDER 0
! THE COUPLING OF A2 GROUND STATE WITH E
! ###################################################
! ###################################################
! order 0
id=id+1 !14
e(1,3)=e(1,3)-b*(p(pst(1,id)))
! order 1
id=id+1 !15
e(1,2)=e(1,2)-b*(p(pst(1,id))*ys+p(pst(1,id)+1)*yb)
e(1,3)=e(1,3)+b*(p(pst(1,id))*xs+p(pst(1,id)+1)*xb)
! order 2
id=id+1 !16
e(1,2)=e(1,2)+b*(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)&
+p(pst(1,id)+2)*(xs*yb+xb*ys))
e(1,3)=e(1,3)+b*(p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2)&
+p(pst(1,id)+2)*(xs*xb-ys*yb) - p(pst(1,id)+3)*(xs**2+ys**2))
! order 3
id = id+1 ! 17
do i=1,4
e(1,2)=e(1,2)+b*(p(pst(1,id)+(i-1))-p(pst(1,id)+(i+3)))*v3_vec(i+4)
e(1,3)=e(1,3)-b*(p(pst(1,id)+(i-1))+p(pst(1,id)+(i+3)))*v3_vec(i)
enddo
! THE COUPLING OF A2 WITH A1
!####################################################
!####################################################
! order 1
id=id+1 !17
e(1,4)=e(1,4)+b*(p(pst(1,id))*ys+p(pst(1,id)+1)*yb)
! order 2
id=id+1 !18
e(1,4)=e(1,4)-b*(p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb)&
+p(pst(1,id)+2)*(xs*yb+xb*ys))
! THE COUPLING OF A1 WITH E
!####################################################
!####################################################
! order 0
id=id+1 !19
e(3,4)=e(3,4)-p(pst(1,id))
! order 1
id=id+1 !20
e(2,4)=e(2,4)-p(pst(1,id))*ys-p(pst(1,id)+1)*yb
e(3,4)=e(3,4)+p(pst(1,id))*xs+p(pst(1,id)+1)*xb
! order 2
id=id+1 !21
e(2,4)=e(2,4)+p(pst(1,id))*(2*xs*ys)+p(pst(1,id)+1)*(2*xb*yb) &
+p(pst(1,id)+2)*(xs*yb+xb*ys)
e(3,4)=e(3,4)+p(pst(1,id))*(xs**2-ys**2)+p(pst(1,id)+1)*(xb**2-yb**2) &
+p(pst(1,id)+2)*(xs*xb-ys*yb) - p(pst(1,id)+3)*(xs**2+ys**2)
id =id+1 ! 23
! order 3
do i=1,4
e(2,4)=e(2,4)+(p(pst(1,id)+(i-1))-p(pst(1,id)+(i+3)))*v3_vec(i+4)
e(3,4)=e(3,4)-(p(pst(1,id)+(i-1))+p(pst(1,id)+(i+3)))*v3_vec(i)
enddo
! end of the model
e(2,1)=e(1,2)
e(3,1)=e(1,3)
e(3,2)=e(2,3)
e(4,1)=e(1,4)
e(4,2)=e(2,4)
e(4,3)=e(3,4)
end subroutine diab_y
subroutine copy_2_lower_triangle(mat)
real(dp), intent(inout) :: mat(:, :)
integer :: m, n
! write lower triangle of matrix symmetrical
do n = 2, size(mat, 1)
do m = 1, n - 1
mat(n, m) = mat(m, n)
end do
end do
end subroutine copy_2_lower_triangle
end module diabmodel

View File

@ -0,0 +1,716 @@
!--------------------------------------------------------------------------------------
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! % SUBROUTINE CTRANS(...)
! %
! % M. Vossel 21.03.2023
! %
! % Routine to transform symmetryinput coordinates to symmetrized
! % coordinates. Distances Are discribet by Morse coordinates or
! % TMC depending on Set Parameters in the Genetic Input.
! %
! % input variables
! % q:
! % q(1): H1x
! % q(2): y
! % q(3): z
! % q(4): H2x
! % q(5): y
! % q(6): z
! % q(7): H3x
! % q(8): y
! % q(9): z
!
!
!
! % Internal variables:
! % t: primitive coordinates (double[qn])
! % t(1):
! % t(2):
! % t(3):
! % t(4):
! % t(5):
! % t(6):
! % t(7):
! % t(8):
! % t(9):
! % t: dummy (double[qn])
! % p: parameter vector
! % npar: length of parameter vector
! %
! % Output variables
! % s: symmetrized coordinates (double[qn])
! % s(1): CH-symetric streatch
! % s(2): CH-asymetric streatch-ex
! % s(3): CH-asymetric streatch-ey
! % s(4): CH-bend-ex
! % s(5): CH-bend-ey
! % s(6): CH-umbrella
! % s(7): CH-umbrella**2
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
module ctrans_mod
implicit none
!include 'only_model.incl'
include 'nnparams.incl'
! precalculate pi, 2*pi and angle to radian conversion
double precision, parameter :: pii = 4.00d0*datan(1.00d0)
double precision, parameter :: pi2 = 2.00d0*pii
double precision, parameter :: ang2rad = pii/180.00d0
! precalculate roots
double precision, parameter:: sq2 = 1.00d0/dsqrt(2.00d0)
double precision, parameter:: sq3 = 1.00d0/dsqrt(3.00d0)
double precision, parameter:: sq6 = 1.00d0/dsqrt(6.00d0)
! change distances for equilibrium
double precision, parameter :: dchequi = 1.0228710942d0 ! req NH3+
contains
subroutine ctrans(q)
!use dim_parameter, only: qn
use invariants_mod, only: invariants
integer k !running indices
double precision, intent(inout) :: q(maxnin) !given coordinates
double precision :: s(maxnin) !output coordinates symmetry adapted and scaled
double precision :: t(maxnin) !output coordinates symmetry adapted but not scaled
! ANN Variables
!double precision, optional, intent(out) :: invariants(:)
! kartesian coordianates copy from MeF+ so substitute c by n and removed f
double precision ch1(3), ch2(3), ch3(3), c_atom(3)
double precision nh1(3), nh2(3), nh3(3)
double precision zaxis(3), xaxis(3), yaxis(3)
double precision ph1(3), ph2(3), ph3(3)
! primitive coordinates
double precision dch1, dch2, dch3 !nh-distances
double precision umb !Umbrella Angle from xy-plane
! Symmetry coordinates
double precision aR !a1-modes H-Dist.,
double precision exR, exAng !ex components H-Dist., H-Ang.
double precision eyR, eyAng !ey components H-Dist., H-Ang.
double precision inv(4)
! debugging
logical, parameter :: dbg = .false.
! initialize coordinate vectors
s = 0.0d0
t = 0.0d0
! write kartesian coords for readability
c_atom(1:3) = 0.0d0 ! N-atom at origin
do k = 1, 3
ch1(k) = q(k )
ch2(k) = q(k + 3)
ch3(k) = q(k + 6)
end do
q=0.d0
! construct z-axis
nh1 = normalized(ch1)
nh2 = normalized(ch2)
nh3 = normalized(ch3)
zaxis = create_plane(nh1, nh2, nh3)
! calculate bonding distance
dch1 = norm(ch1)
dch2 = norm(ch2)
dch3 = norm(ch3)
! construct symmertic and antisymmetric strech
aR = symmetrize(dch1 - dchequi, dch2 - dchequi, dch3 - dchequi, 'a')
exR = symmetrize(dch1, dch2, dch3, 'x')
eyR = symmetrize(dch1, dch2, dch3, 'y')
! construc x-axis and y axis
ph1 = normalized(project_point_into_plane(nh1, zaxis, c_atom))
xaxis = normalized(ph1)
yaxis = xproduct(zaxis, xaxis) ! right hand side koordinates
! project H atoms into C plane
ph2 = normalized(project_point_into_plane(nh2, zaxis, c_atom))
ph3 = normalized(project_point_into_plane(nh3, zaxis, c_atom))
call construct_HBend(exAng, eyAng, ph1, ph2, ph3, xaxis, yaxis)
umb = construct_umbrella(nh1, nh2, nh3, zaxis)
! set symmetry coordinates and even powers of umbrella
!s(1) = dch1-dchequi!aR
!s(2) = dch2-dchequi!exR
!s(3) = dch3-dchequi!eyR
! call invariants and get them
! 24 invariants
call invariants(aR,exR,eyR,exAng,eyAng,umb,inv)
q(1:4)=inv(1:4)
q(5) = aR
q(6) = exR
q(7) = eyR
q(8) = exAng
q(9) = eyAng
q(10) = -umb
! pairwise distances as second coordinate set
!call pair_distance(q, t(1:6))
!if (dbg) write (6, '("sym coords s=",9f16.8)') s(1:qn)
!if (dbg) write (6, '("sym coords t=",9f16.8)') t(1:qn)
!if (present(invariants)) then
! call get_invariants(s, invariants)
!end if
! RETURN Q AS INTERNAL COORD
end subroutine ctrans
! subroutine ctrans(q)
! use invariants_mod, only: invariants
! implicit none
! double precision, intent(inout):: q(maxnin)
! double precision:: invar(24)
! double precision:: a,b,esx,esy,ebx,eby
! a=q(1)
! esx=q(2)
! esy=q(3)
! ebx=q(4)
! eby=q(5)
! b=q(6)
! call invariants(a,esx,esy,ebx,eby,b,invar)
!
! q(1:24)=invar(1:24)
! q(25)=esx
! q(26)=esy
! q(27)=ebx
! q(28)=eby
! q(29)=b
! end subroutine ctrans
subroutine pair_distance(q, r)
double precision, intent(in) :: q(9)
double precision, intent(out) :: r(6)
double precision :: atom(3, 4)
integer :: n, k, count
!atom order: H1 H2 H3 N
atom(:, 1:3) = reshape(q, [3, 3])
atom(:, 4) = (/0.00d0, 0.00d0, 0.00d0/)
! disntace order 12 13 14 23 24 34
count = 0
do n = 1, size(atom, 2)
do k = n + 1, size(atom, 2)
count = count + 1
r(count) = sqrt(sum((atom(:, k) - atom(:, n))**2))
end do
end do
end subroutine pair_distance
function morse_and_symmetrize(x,p,pst) result(s)
double precision, intent(in),dimension(3) :: x
double precision, intent(in),dimension(11) :: p
integer, intent(in),dimension(2) :: pst
integer :: k
double precision, dimension(3) :: s
double precision, dimension(3) :: t
! Morse transform
do k=1,3
t(k) = morse_transform(x(k), p, pst)
end do
s(1) = symmetrize(t(1), t(2), t(3), 'a')
s(2) = symmetrize(t(1), t(2), t(3), 'x')
s(3) = symmetrize(t(1), t(2), t(3), 'y')
end function morse_and_symmetrize
! subroutine get_invariants(s, inv_out)
! use dim_parameter, only: qn
! use select_monom_mod, only: v_e_monom, v_ee_monom
! double precision, intent(in) :: s(qn)
! double precision, intent(out) :: inv_out(:)
! ! double precision, parameter :: ck = 1.00d0, dk = 1.00d0/ck ! scaling for higher order invariants
! double precision inv(24)
! integer, parameter :: inv_order(12) = & ! the order in which the invariants are selected
! & [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
! double precision Rch, umb, xR, yR, xAng, yAng
!! for readability
! Rch = s(1)
! xR = s(2)
! yR = s(3)
! xAng = s(4)
! yAng = s(5)
! umb = s(6)**2
!! invarianten
!! a moden
! inv(1) = Rch
! inv(2) = umb
!! invariante e pairs
! inv(3) = v_e_monom(xR, yR, 1)
! inv(4) = v_e_monom(xAng, yAng, 1)
!! third order e pairs
! inv(5) = v_e_monom(xR, yR, 2)
! inv(6) = v_e_monom(xAng, yAng, 2)
! ! invariant ee coupling
! inv(7) = v_ee_monom(xR, yR, xAng, yAng, 1)
! ! mode combinations
! inv(8) = Rch*umb
!
! inv(9) = Rch*v_e_monom(xR, yR, 1)
! inv(10) = umb*v_e_monom(xR, yR, 1)
!
! inv(11) = Rch*v_e_monom(xAng, yAng, 1)
! inv(12) = umb*v_e_monom(xAng, yAng, 1)
!
!! damp coordinates because of second order and higher invariants
! inv(3) = sign(sqrt(abs(inv(3))), inv(3))
! inv(4) = sign(sqrt(abs(inv(4))), inv(4))
! inv(5) = sign((abs(inv(5))**(1./3.)), inv(5))
! inv(6) = sign((abs(inv(6))**(1./3.)), inv(6))
! inv(7) = sign((abs(inv(7))**(1./3.)), inv(7))
! inv(8) = sign(sqrt(abs(inv(8))), inv(8))
! inv(9) = sign((abs(inv(9))**(1./3.)), inv(9))
! inv(10) = sign((abs(inv(10))**(1./3.)), inv(10))
! inv(11) = sign((abs(inv(11))**(1./3.)), inv(11))
! inv(12) = sign((abs(inv(12))**(1./3.)), inv(12))
!
! inv_out(:) = inv(inv_order(1:size(inv_out, 1)))
!
! end subroutine get_invariants
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! % real part of spherical harmonics
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! Ylm shifted to 0 for theta=0
! double precision function ylm(theta, phi, l, m)
! implicit none
! double precision theta, phi
! integer l, m
! ylm = plm2(dcos(theta), l, m)*cos(m*phi) - plm2(1.00d0, l, m)
! end function ylm
!!----------------------------------------------------------
! double precision function plm2(x, l, n)
! implicit none
! double precision x
! integer l, m, n
!
! double precision pmm, p_mp1m, pllm
! integer ll
!
!! negative m und bereich von x abfangen
! if ((l .lt. 0)&
! &.or. (abs(n) .gt. abs(l))&
! &.or. (abs(x) .gt. 1.)) then
! write (6, '(''bad arguments in legendre'')')
! stop
! end if
!
!! fix sign of m to compute the positiv m
! m = abs(n)
!
! pmm = (-1)**m*dsqrt(fac(2*m))*1./((2**m)*fac(m))& !compute P(m,m) not P(l,l)
! &*(dsqrt(1.-x**2))**m
!
! if (l .eq. m) then
! plm2 = pmm !P(l,m)=P(m,m)
! else
! p_mp1m = x*dsqrt(dble(2*m + 1))*pmm !compute P(m+1,m)
! if (l .eq. m + 1) then
! plm2 = p_mp1m !P(l,m)=P(m+1,m)
! else
! do ll = m + 2, l
! pllm = x*(2*ll - 1)/dsqrt(dble(ll**2 - m**2))*p_mp1m& ! compute P(m+2,m) up to P(l,m) recursively
! &- dsqrt(dble((ll - 1)**2 - m**2))&
! &/dsqrt(dble(l**2 - m**2))*pmm
!! schreibe m+2 und m+1 jeweils fuer die naechste iteration
! pmm = p_mp1m !P(m,m) = P(m+1,m)
! p_mp1m = pllm !P(m+1,m) = P(m+2,m)
! end do
! plm2 = pllm !P(l,m)=P(m+k,m), k element N
! end if
! end if
!
!! sets the phase of -m term right (ignored to gurantee Ylm=(Yl-m)* for JT terms
!! if(n.lt.0) then
!! plm2 = (-1)**m * plm2 !* fac(l-m)/fac(l+m)
!! endif
!
! end function
!----------------------------------------------------------------------------------------------------
double precision function fac(i)
integer i
select case (i)
case (0)
fac = 1.00d0
case (1)
fac = 1.00d0
case (2)
fac = 2.00d0
case (3)
fac = 6.00d0
case (4)
fac = 24.00d0
case (5)
fac = 120.00d0
case (6)
fac = 720.00d0
case (7)
fac = 5040.00d0
case (8)
fac = 40320.00d0
case (9)
fac = 362880.00d0
case (10)
fac = 3628800.00d0
case (11)
fac = 39916800.00d0
case (12)
fac = 479001600.00d0
case default
write (*, *) 'ERROR: no case for given faculty, Max is 12!'
stop
end select
end function fac
! Does the simplest morse transform possible
! one skaling factor + shift
function morse_transform(x, p, pst) result(t)
double precision, intent(in) :: x
double precision, intent(in) :: p(11)
integer, intent(in) :: pst(2)
double precision :: t
if (pst(2) == 11) then
t = 1.00d0 - exp(-abs(p(2))*(x - p(1)))
else
error stop 'in morse_transform key required or wrong number of parameters'
end if
end function morse_transform
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! % FUNCTION F(...) ! MAIK DEPRICATING OVER THE TOP MORSE FUNCTION FOR MYSELF
! %
! % Returns exponent of tunable Morse coordinate
! % exponent is polynomial * gaussian (skewed)
! % ilabel = 1 or 2 selects the parameters a and sfac to be used
! %
! % Background: better representation of the prefector in the
! % exponend of the morse function.
! % Formular: f(r) = lest no3 paper
! %
! % Variables:
! % x: distance of atoms (double)
! % p: parameter vector (double[20])
! % ii: 1 for CCl and 2 for CCH (int)
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pure function f(x, p, ii)
integer , intent(in) :: ii !1 for CCL and 2 for CCH
double precision, intent(in) :: x !coordinate
double precision, intent(in) :: p(11) !parameter-vector
integer i !running index
double precision r !equilibrium distance
double precision gaus !gaus part of f
double precision poly !polynom part of f
double precision skew !tanh part of f
double precision f !prefactor of exponent and returned value
integer npoly(2) !order of polynom
! Maximum polynom order
npoly(1) = 5
npoly(2) = 5
! p(1): position of equilibrium
! p(2): constant of exponent
! p(3): constant for skewing the gaussian
! p(4): tuning for skewing the gaussian
! p(5): Gaussian exponent
! p(6): Shift of Gaussian maximum
! p(7)...: polynomial coefficients
! p(8+n)...: coefficients of Morse Power series
! 1-exp{[p(2)+exp{-p(5)[x-p(6)]^2}[Taylor{p(7+n)}(x-p(6))]][x-p(1)]}
! Tunable Morse function
! Power series in Tunable Morse coordinates of order m
! exponent is polynomial of order npoly * gaussian + switching function
! set r r-r_e
r = x
r = r - p(1)
! set up skewing function:
skew = 0.50d0*p(3)*(dtanh(dabs(p(4))*(r - p(6))) + 1.00d0)
! set up gaussian function:
gaus = dexp(-dabs(p(5))*(r - p(6))**2)
! set up power series:
poly = 0.00d0
do i = 0, npoly(ii) - 1
poly = poly + p(7 + i)*(r - p(6))**i
end do
! set up full exponent function:
f = dabs(p(2)) + skew + gaus*poly
end function
!----------------------------------------------------------------------------------------------------
pure function xproduct(a, b) result(axb)
double precision, intent(in) :: a(3), b(3)
double precision :: axb(3) !crossproduct a x b
axb(1) = a(2)*b(3) - a(3)*b(2)
axb(2) = a(3)*b(1) - a(1)*b(3)
axb(3) = a(1)*b(2) - a(2)*b(1)
end function xproduct
pure function normalized(v) result(r)
double precision, intent(in) :: v(:)
double precision :: r(size(v))
r = v/norm(v)
end function normalized
pure function norm(v) result(n)
double precision, intent(in) :: v(:)
double precision n
n = dsqrt(sum(v(:)**2))
end function norm
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! % FUNCTION Project_Point_Into_Plane(x,n,r0) result(p)
! % return the to n orthogonal part of a vector x-r0
! % p: projected point in plane
! % x: point being projected
! % n: normalvector of plane
! % r0: Point in plane
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pure function project_point_into_plane(x, n, r0) result(p)
double precision, intent(in) :: x(:), n(:), r0(:)
double precision :: p(size(x)), xs(size(x))
xs = x - r0
p = xs - plane_to_point(x, n, r0)
end function project_point_into_plane
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! % Function Plane_To_Point(x,n,r0) result(p)
! % p: part of n in x
! % x: point being projected
! % n: normalvector of plane
! % r0: Point in plane
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pure function plane_to_point(x, n, r0) result(p)
double precision, intent(in) :: x(:), n(:), r0(:)
double precision p(size(x)), xs(size(x)), nn(size(n))
nn = normalized(n)
xs = x - r0
p = dot_product(nn, xs)*nn
end function plane_to_point
subroutine check_coordinates(q)
! check for faulty kartesain coordinates
double precision, intent(in) :: q(:)
integer :: i
if (all(abs(q) <= epsilon(0.00d0))) then
stop 'Error (ctrans): all kartesian coordinates are<=1d-8'
end if
do i = 1, 9, 3
if (all(abs(q(i:i + 2)) <= epsilon(0.00d0))) then
write (*, *) q
stop 'Error(ctrans):kartesian coordinates zero for one atom'
end if
end do
end subroutine
pure function rotor_a_to_z(a, z) result(r)
double precision, intent(in) :: a(3), z(3)
double precision :: r(3, 3)
double precision :: alpha
double precision :: s1(3), s(3, 3), rotor(3, 3)
s1 = xproduct(normalized(a), normalized(z))
alpha = asin(norm(s1))
s(:, 1) = normalized(s1)
s(:, 2) = normalized(z)
s(:, 3) = xproduct(s1, z)
rotor = init_rotor(alpha, 0.00d0, 0.00d0)
r = matmul(s, matmul(rotor, transpose(s)))
end function
! function returning Rz(gamma) * Ry(beta) * Rx(alpha) for basis order xyz
pure function init_rotor(alpha, beta, gamma) result(rotor)
double precision, intent(in) :: alpha, beta, gamma
double precision :: rotor(3, 3)
rotor = 0.00d0
rotor(1, 1) = dcos(beta)*dcos(gamma)
rotor(1, 2) = dsin(alpha)*dsin(beta)*dcos(gamma)&
&- dcos(alpha)*dsin(gamma)
rotor(1, 3) = dcos(alpha)*dsin(beta)*dcos(gamma)&
&+ dsin(alpha)*dsin(gamma)
rotor(2, 1) = dcos(beta)*dsin(gamma)
rotor(2, 2) = dsin(alpha)*dsin(beta)*dsin(gamma)&
&+ dcos(alpha)*dcos(gamma)
rotor(2, 3) = dcos(alpha)*dsin(beta)*dsin(gamma)&
&- dsin(alpha)*dcos(gamma)
rotor(3, 1) = -dsin(beta)
rotor(3, 2) = dsin(alpha)*dcos(beta)
rotor(3, 3) = dcos(alpha)*dcos(beta)
end function init_rotor
pure function create_plane(a, b, c) result(n)
double precision, intent(in) :: a(3), b(3), c(3)
double precision :: n(3)
double precision :: axb(3), bxc(3), cxa(3)
axb = xproduct(a, b)
bxc = xproduct(b, c)
cxa = xproduct(c, a)
n = normalized(axb + bxc + cxa)
end function create_plane
function symmetrize(q1, q2, q3, sym) result(s)
double precision, intent(in) :: q1, q2, q3
character, intent(in) :: sym
double precision :: s
select case (sym)
case ('a')
s = (q1 + q2 + q3)*sq3
case ('x')
s = sq6*(2.00d0*q1 - q2 - q3)
case ('y')
s = sq2*(q2 - q3)
case default
write (*, *) 'ERROR: no rule for symmetrize with sym=', sym
stop
end select
end function symmetrize
subroutine construct_HBend(ex, ey, ph1, ph2, ph3, x_axis, y_axis)
double precision, intent(in) :: ph1(3), ph2(3), ph3(3)
double precision, intent(in) :: x_axis(3), y_axis(3)
double precision, intent(out) :: ex, ey
double precision :: x1, y1, alpha1
double precision :: x2, y2, alpha2
double precision :: x3, y3, alpha3
! get x and y components of projected points
x1 = dot_product(ph1, x_axis)
y1 = dot_product(ph1, y_axis)
x2 = dot_product(ph2, x_axis)
y2 = dot_product(ph2, y_axis)
x3 = dot_product(ph3, x_axis)
y3 = dot_product(ph3, y_axis)
! -> calculate H deformation angles
alpha3 = datan2(y2, x2)
alpha2 = -datan2(y3, x3) !-120*ang2rad
! write(*,*)' atan2'
! write(*,*) 'alpha2:' , alpha2/ang2rad
! write(*,*) 'alpha3:' , alpha3/ang2rad
if (alpha2 .lt. 0) alpha2 = alpha2 + pi2
if (alpha3 .lt. 0) alpha3 = alpha3 + pi2
alpha1 = (pi2 - alpha2 - alpha3)
! write(*,*)' fixed break line'
! write(*,*) 'alpha1:' , alpha1/ang2rad
! write(*,*) 'alpha2:' , alpha2/ang2rad
! write(*,*) 'alpha3:' , alpha3/ang2rad
alpha1 = alpha1 !- 120.00d0*ang2rad
alpha2 = alpha2 !- 120.00d0*ang2rad
alpha3 = alpha3 !- 120.00d0*ang2rad
! write(*,*)' delta alpha'
! write(*,*) 'alpha1:' , alpha1/ang2rad
! write(*,*) 'alpha2:' , alpha2/ang2rad
! write(*,*) 'alpha3:' , alpha3/ang2rad
! write(*,*)
! construct symmetric and antisymmetric H angles
ex = symmetrize(alpha1, alpha2, alpha3, 'x')
ey = symmetrize(alpha1, alpha2, alpha3, 'y')
end subroutine construct_HBend
pure function construct_umbrella(nh1, nh2, nh3, n)&
&result(umb)
double precision, intent(in) :: nh1(3), nh2(3), nh3(3)
double precision, intent(in) :: n(3)
double precision :: umb
double precision :: theta(3)
! calculate projections for umberella angle
theta(1) = dacos(dot_product(n, nh1))
theta(2) = dacos(dot_product(n, nh2))
theta(3) = dacos(dot_product(n, nh3))
! construct umberella angle
umb = sum(theta(1:3))/3.00d0 - 90.00d0*ang2rad
end function construct_umbrella
pure subroutine construct_sphericals&
&(theta, phi, cf, xaxis, yaxis, zaxis)
double precision, intent(in) :: cf(3), xaxis(3), yaxis(3), zaxis(3)
double precision, intent(out) :: theta, phi
double precision :: x, y, z, v(3)
v = normalized(cf)
x = dot_product(v, normalized(xaxis))
y = dot_product(v, normalized(yaxis))
z = dot_product(v, normalized(zaxis))
theta = dacos(z)
phi = -datan2(y, x)
end subroutine construct_sphericals
! subroutine int2kart(internal, kart)
! double precision, intent(in) :: internal(6)
! double precision, intent(out) :: kart(9)
! double precision :: h1x, h1y, h1z
! double precision :: h2x, h2y, h2z
! double precision :: h3x, h3y, h3z
! double precision :: dch0, dch1, dch2, dch3
! double precision :: a1, a2, a3, wci
!
! kart = 0.00d0
! dch1 = dchequi + sq3*internal(1) + 2*sq6*internal(2)
! dch2 = dchequi + sq3*internal(1) - sq6*internal(2) + sq2*internal(3)
! dch3 = dchequi + sq3*internal(1) - sq6*internal(2) - sq2*internal(3)
! a1 = 2*sq6*internal(4)
! a2 = -sq6*internal(4) + sq2*internal(5)
! a3 = -sq6*internal(4) - sq2*internal(5)
! wci = internal(6)
!
! ! Berechnung kartesische Koordinaten
! ! -----------------------
! h1x = dch1*cos(wci*ang2rad)
! h1y = 0.0
! h1z = -dch1*sin(wci*ang2rad)
!
! h3x = dch2*cos((a2 + 120)*ang2rad)*cos(wci*ang2rad)
! h3y = dch2*sin((a2 + 120)*ang2rad)*cos(wci*ang2rad)
! h3z = -dch2*sin(wci*ang2rad)
!
! h2x = dch3*cos((-a3 - 120)*ang2rad)*cos(wci*ang2rad)
! h2y = dch3*sin((-a3 - 120)*ang2rad)*cos(wci*ang2rad)
! h2z = -dch3*sin(wci*ang2rad)
!
! kart(1) = h1x
! kart(2) = h1y
! kart(3) = h1z
! kart(4) = h2x
! kart(5) = h2y
! kart(6) = h2z
! kart(7) = h3x
! kart(8) = h3y
! kart(9) = h3z
! end subroutine int2kart
end module ctrans_mod
!**** Define coordinate transformation applied to the input before fit.
!***
!***
!****Conventions:
!***
!*** ctrans: subroutine transforming a single point in coordinate space
subroutine trans_in(pat_in,ntot)
use ctrans_mod, only: ctrans
implicit none
include 'nnparams.incl'
!include 'nndbg.incl'
!include 'nncommon.incl'
double precision pat_in(maxnin,maxpats)
integer ntot
integer j
do j=1,ntot
call ctrans(pat_in(:,j))
! FIRST ELEMENT OF PAT-IN ARE USED BY NEURON NETWORK
write(62,'(6f16.8)') pat_in(4:9,j)
enddo
end