"""This script is supposed to be launched from fiji's jython interpreter """ # # note: fiji's jython doesn't support encoding keyword # https://imagej.net/Scripting_Headless #@ String raw_images_root_path import unittest # unittest2 doesn't exist in fiji import sys from lipase.imageengine import IImageEngine, PixelType, Aabb, NullDebugger, FileBasedDebugger # pylint: disable=import-error from lipase.imagej.ijimageengine import IJImageEngine, IJImage # pylint: disable=import-error from lipase.telemos import WhiteEstimator, correct_non_uniform_lighting # pylint: disable=import-error from lipase.maxima_finder import MaximaFinder # pylint: disable=import-error from lipase.template_matcher import TemplateMatcher # pylint: disable=import-error from lipase.traps_detector import TrapsDetector # pylint: disable=import-error from lipase.catalog import ImageCatalog, Sequence # pylint: disable=import-error from lipase.lipase import Lipase, ImageLogger # pylint: disable=import-error class TestLipase(unittest.TestCase): RAW_IMAGES_ROOT_PATH = raw_images_root_path # eg '/Users/graffy/ownCloud/ipr/lipase/raw-images' pylint: disable=undefined-variable # we need to know if the test succeeded or not https://stackoverflow.com/questions/4414234/getting-pythons-unittest-results-in-a-teardown-method # CURRENT_RESULT = None # holds last result object passed to run method def setUp(self): print("initializing TestLipase instance") IImageEngine.set_instance(IJImageEngine(debugger=FileBasedDebugger('./debug-images'))) self.catalog = ImageCatalog(self.RAW_IMAGES_ROOT_PATH) def tearDown(self): print("uninitializing TestLipase instance") self.catalog = None def test_estimate_white(self): sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos2'] white_estimator = WhiteEstimator(open_size=75, close_size=75, average_size=75) white_estimate = white_estimator.estimate_white([sequence], ['DM300_327-353_fluo']) # find_white_reference_image(white_estimate, sequence.get_white()) print(white_estimate) IImageEngine.get_instance().debugger.on_image(white_estimate, 'white_estimate') # assert False, "hellooooo" print('end of test_estimate_white') def test_uniform_lighting_correction(self): non_uniform_sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0'] uniform_sequence = correct_non_uniform_lighting(non_uniform_sequence, 'DM300_nofilter_vis', white_estimator=WhiteEstimator(open_size=75, close_size=75, average_size=75)) # pylint: disable=unused-variable def test_template_matcher(self): sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0'] stack = sequence.as_hyperstack(['DM300_nofilter_vis'], selected_frames=[0]) first_image = stack.get_image(frame_index=0) x_min = 423 x_max = 553 y_min = 419 y_max = 533 template_trap_aabb = Aabb(x_min, y_min, x_max, y_max) template_trap_image = first_image.get_subimage(template_trap_aabb) for image in [first_image, template_trap_image]: print(image.get_pixel_type(), image.get_width(), image.get_height()) # the typical value of peaks is -2.e10 and the value between peaks is below -8.0e10 threshold = -3.0e10 tolerance = 1.0e10 maxima_finder = MaximaFinder(threshold, tolerance) template_matcher = TemplateMatcher(maxima_finder) matches = template_matcher.match_template(first_image, template_trap_image) num_traps = len(matches) print("number of traps found : %d" % num_traps) num_expected_traps = 13 # 13 traps are completely visible in the first image self.assertAlmostEqual(len(matches), num_expected_traps, delta=1.0) def test_traps_detector(self): # the typical value of peaks is -500 and the value between peaks is below -2500 threshold = -1500.0 tolerance = 1500 maxima_finder = MaximaFinder(threshold, tolerance) template_matcher = TemplateMatcher(maxima_finder) traps_detector = TrapsDetector(template_matcher) sequence = self.catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos0'] x_min = 423 x_max = 553 y_min = 419 y_max = 533 trap_aabb = Aabb(x_min, y_min, x_max, y_max) traps_mask = traps_detector.compute_traps_mask(sequence, 'DM300_nofilter_vis', trap_aabb) measured_mean_value = traps_mask.get_mean_value() expected_traps_coverage = 0.07909 traps_pixel_value = 255.0 expected_mean_value = expected_traps_coverage * traps_pixel_value print("expected_mean_value: %f" % expected_mean_value) print("measured_mean_value: %f" % measured_mean_value) self.assertAlmostEqual(measured_mean_value, expected_mean_value, delta=0.01) # def test_lipase_process(self): # lipase = Lipase(self.catalog, debugger=NullDebugger()) def run_script(): # unittest.main() # this would result in : ImportError: No module named __main__ # solution from : https://discourse.mcneel.com/t/using-unittest-in-rhino-python-not-possible/15364 suite = unittest.TestLoader().loadTestsFromTestCase(TestLipase) stream = sys.stdout # by default it's sys.stderr, which doesn't appear in imagej's output test_result = unittest.TextTestRunner(stream=stream, verbosity=2).run(suite) print('test_result : %s' % test_result) # store summary of the result in a file so that the caller of imagej can detect that this python script failed (imagej seems to always return error code 0, regardless the error returned by the python script it executes : even sys.exit(1) doesn't change this) with open('/tmp/test_result.txt', 'w') as f: f.write('%d' % {True: 0, False: 1}[test_result.wasSuccessful()]) print('end of run_script') # note : when launched from fiji, __name__ doesn't have the value "__main__", as when launched from python run_script()