"""preprocessing of synchrotron images based on telemosToolbox.""" from ij import IJ from ij.plugin import ImageCalculator from catalog import ImageCatalog, Sequence def imagej_run_image_command(image, command, options): """performs the given imagej command on the given image :param ImagePlus image: :param str command: imagej command (eg "Gray Morphology") :param str options: imagej options (eg "radius=1 type=square operator=open") wrapper around IJ.run (https://imagej.nih.gov/ij/developer/api/ij/IJ.html#run-ij.ImagePlus-java.lang.String-java.lang.String-) which raises an exception on error """ IJ.run(image, command, options) error_message = IJ.getErrorMessage() if error_message is not None: raise Exception('The command "%s" with options "%s" failed because of the following error : %s' % (command, options, error_message)) def compute_max(images_file_path): """Computes for each pixel position the maximum at this position in all input images. :param list(str) images_file_path: :rtype ImagePlus: """ assert len(images_file_path) > 1 max_image = IJ.openImage(images_file_path[0]) print('max_image', max_image) for image_file_path in images_file_path[2:-1]: other_image = IJ.openImage(image_file_path) print('other_image', other_image) ic = ImageCalculator() ic.run("max", max_image, other_image) print('max_image', max_image) return max_image def replace_border(image, band_width): """Overwrites the outer band of the image by duplicating the value of the pixels that touch this outer band :param ImagePlus image: :param int band_width: width of the outer band, in pixels :rtype ImagePlus: adaptation for the following code from matlab telemosToolbx's estimatedwhiteFluoImageTelemos function outer = white_estimate; white_estimate = white_estimate(4:(end-3),4:(end-3)); outer(1:3,4:(end-3))=repmat(white_estimate(1,:),3,1); # top outer((end-2):end,4:(end-3))=repmat(white_estimate(end,:),3,1); # bottom outer(:,1:3)=repmat(outer(:,4),1,3); # left outer(:,(end-2):end)=repmat(outer(:,end-3),1,3); # right white_estimate = outer; clear outer; """ raise NotImplementedError() return image def perform_gray_morphology(image, operator, structuring_element_shape, structuring_element_radius): """ :param ImagePlus image: :param str operator: eg 'open' :param str structuring_element_shape: eg 'square' :param int structuring_element_radius: """ assert operator not in ['fast open', 'fast erode'], "as of 13/09/2019, fast operators such as 'fast erode' seem broken in fiji (the resulting image is not at all similar to their slow equivalent)" processor = image.getProcessor() convert_to_byte = False if processor.getBitDepth() != 8: convert_to_byte = True min_value = processor.getMin() max_value = processor.getMax() print("warning: downgrading image to byte as imagej's Gray Morphology processing doesn't handle 16bit images (range=[%d, %d])" % (min_value, max_value)) do_scaling = True image.setProcessor(processor.convertToByte(do_scaling)) print("before gray morphology") assert structuring_element_radius < 11, "the radius of the structuring element is too big (%d); using it with Fiji's 'Gray Morphology' tool would result in very long computations." % structuring_element_radius imagej_run_image_command(image, "Gray Morphology", "radius=%d type=%s operator=%s" % (structuring_element_radius, structuring_element_shape, operator)) print("after gray morphology") class WhiteEstimator(object): def __init__(self, open_size, close_size, average_size): self.open_size = open_size self.close_size = close_size self.average_size = average_size def _remove_particles(self, white_estimate): perform_gray_morphology(white_estimate, operator='open', structuring_element_shape='square', structuring_element_radius=(self.open_size + 1) / 2) perform_gray_morphology(white_estimate, operator='close', structuring_element_shape='square', structuring_element_radius=(self.close_size + 1) / 2) def estimate_white(self, sequences, channel_ids, dark=None): """Estimation of the white fluorescence image shape of synchrotron light from experimental images of Telemos microscope. :param list(Sequence) sequences: the sequences to consider :param list(str) channel_ids: the channels to consider, eg ['DM300_327-353_fluo'] :param WhiteEstimatorSettings white_estimator_settings: :param ImagePlus or None dark: :rtype ImagePlus: Code adapted from matlab telemosToolbx's estimatedwhiteFluoImageTelemos function % this function is specific of Telemos images (DISCO line SOLEIL) % acquired using micromanager software linked to imageJ %% input % nothing : interactive function %% output % nothing : the final reference fluorescence image is saved on disk %% principe % NB: MICROMANAGER save images in a structured file folder architecture : % % root folder : name given by the user % % subfolders roi(n)_tile1 : n folders for each selected roi % or pos(n) : n folders for each selected position % % display_and_comments.txt : file describing the channels acquired % % in each subfolder roi(n)_tile1 or Pos(n) : % images files with name img_00000000(n)_DM300_327-353_00(p).tif % n = number of time % p = z focal plane % DM300_327-353 = name of the channel % metadata.txt : files describing all metadata associated with the % acquisition : x, y, z position, camera settings .... etc. % % (Nb: depending on the date of acquisition, an extension fluo is found or % not in the name of fluorescence image. This extension is given in % contrast to the visible image.) % % IMAGES : fluorescence images are considered % % % IMPORTANT: % it is expected that in the folders at least several images cover the whole field of view % illuminated by the synchrtron light % IF IT IS NOT THE CASE, IT WON'T WORK % % BASIC: the estimated white image is the MAX of the selected images % when interactive mode is selected, only first time and first z are % proposed % for automatic computing, all images are taken into account % % WHAT IS DONE: % 0 - the user chosse the channels that are considered in the estimation of the % white fluorescence image % % 1 - spurious pixels (three lines and columns around the image) are not taken % in filtering and replaced by line and column number 4 and end-3 % % 2 - Filtering % the estimated dark image is filtered : % opening to remove white regions brighter than the low frequency signal that should correspond to synchrotron light shape (should be small) % closing to remove black regions that remains (should be small to avoid synchrotron light shape deformation) % average filtering % the image computed should be used to % - to find the best white z plane from the reference white stack % acquired for ex. using the so called "Matthieu lame"% % - correct images for intensities %% use % estimatedwhiteFluoImageTelemos %% Comments % adapted from proposals 20161050 and 20171187 %% Author % MF Devaux % INRA BIA % PVPP %% date % 5 octobre 2017: % 23 mars 2018 % 3 septembre 2018 : comments and general case % 16 avril 2019: name of function and default filtering values % 29 avril 2019 : new comments and spurious pixels % 27 mai 2019 : offset dark % 4 juin 2019 : replace exist by isfolder or isfile % 14 juin : close figure at the end """ images_file_path = [] for sequence in sequences: for channel_id in channel_ids: channel_index = sequence.get_channel_index(channel_id) for frame_index in range(sequence.num_frames): for z_index in range(sequence.num_slices): images_file_path.append(sequence.get_image_file_path(channel_index, frame_index, z_index)) white_estimate = compute_max(images_file_path) # modify spurious pixels on the side of the images try: replace_border(white_estimate, 3) except NotImplementedError as error: print('warning: replace_outer_frame is not implemented yet') self._remove_particles(white_estimate) return white_estimate class InteractiveWhiteEstimator(WhiteEstimator): def __init__(self, open_size, close_size, average_size): WhiteEstimator.__init__(self, open_size, close_size, average_size) def _remove_particles(self, white): """shows the image to a user so that he can visually check that the particles have been removed correctly in the given image """ raise NotImplementedError() # part_rem_settings_are_good = False # while part_rem_settings_are_good == False: # # perform opening to remove white particles # IJ.run( white_estimate, "Gray Morphology", "radius=1 type=square operator=open" ) # # run("Gray Morphology", "radius=1 type=square operator=open"); # # IJ.run( input_image_plus_copy, "Skeletonize (2D/3D)", "" ) # # perform # if white_estimator_settings.particles_are_removed(): # part_rem_settings_are_good = true # else # white_estimator_settings.ask def find_white_reference_image(white_estimate, white_z_stack): """Find the white reference Image among a z stack of reference image the most correlated to the white image estimated from a serie of acquisition. :param Image white_estimate: :param Sequence white_z_stack: % this function is specific of Telemos images (DISCO line SOLEIL) % acquired using micromanager software linked to imageJ %% input % nothing : interactive function %% output % zmax : focal plane %% principe % images were acquired for a given roi which position is found in % metadata.txt file % white and dark images were recorded for the full field of view of the DISCO % TELEMOS camera % % correlation between a estimated white fluorescence image estalished from % actual acquisitions of a given sample and all z plane acquired for the reference TELEMOS white % image (Matthieu slide or any fluorescent homogeneous image) : % The estimated white fluorescence image is generallly obtained bt using function whiteFluoImageTelemosestimation % This is not compulsary as any homogenous sample image hat can roughly show the shape of illumination can be used to find % the white reference image % % % the z plane for which the maximum correlation is observed between estimated white and reference white images is retained. % the white image is then offsetted (its corresponding Dark is subtracted) and copied in the subfolder of the sample % rootfolder to show that it has been specifically selected for the considered experiment %The matlab corrcoeff function is used % % correlation coefficients are saved in a file called % 'corr.txt' in the subfolder 'WhiteReference' % % % expected input folder hierarchy: % % >sampleFolder % > PosFolders or RoiFolders % > WhiteEstimate % >darkFolder % >darkFolder.smooth % >whiteFolder % > darkFolderforWhite % > darkFolderforWhite.smooth % >whiteFolder.smooth % % % expected output folder hierarchy: % % >sampleFolder % > PosFolders or RoiFolders % > WhiteEstimate % > WhiteReference % > white after offset % >darkFolder % >darkFolder.smooth % >whiteFolder % > darkFolderforWhite % > darkFolderforWhite.smooth % >whiteFolder.smooth %% use % [zmax]=findWhiteReferenceImageTelemos %% Comments % written for proposal 20161050 % adapted for proposal 20170043 %% Author % MF Devaux % INRA BIA % PVPP %% date % 5 octobre 2017: % 15 decembre 2017 : adapted to take into account the roi known from % metadata % 27 fevrier 2018 : comments details % 4 septembre 2018: comments and check and naming of folders % 12 mars 2019 : save white reference with the same size as white estimate % 16 avril 2019 : include diagonals to check the relevance of white % reference % 20 mai 2019 : track folder % 27 mai 2019 : offset dark % 4 juin 2019 : replace exist by isfolder or isfile """ raise NotImplementedError() def test_preprocessing(): """Test preprocessing.""" catalog = ImageCatalog('/Users/graffy/ownCloud/ipr/lipase/raw-images') sequence = catalog.sequences['res_soleil2018/GGH/GGH_2018_cin2_phiG_I_327_vis_-40_1/Pos2'] white_estimator = WhiteEstimator(open_size=75, close_size=75, average_size=75) white_estimate = white_estimator.estimate_white([sequence], ['DM300_327-353_fluo']) find_white_reference_image(white_estimate, sequence.get_white()) if __name__ == '__main__': test_preprocessing()