\documentclass[a4paper, 10pt]{article} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage{subcaption} \usepackage[htt]{hyphenat} % allow hyphen inside texttt to avoid overfull hbox warnings \usepackage[english, french]{babel} \usepackage[margin=0.5in]{geometry} % default margins are too big for my taste: too much wasted space http://kb.mit.edu/confluence/pages/viewpage.action?pageId=3907057 \usepackage{amsmath} % provides underset \hyphenation{tu-yau} \title{lipase} \author{Guillaume Raffy \and Véronique Vié } \begin{document} \selectlanguage{english} \maketitle \section{catalog images} image prefix : \selectlanguage{french} \begin{description} \item[AF] \item[blé] coupes de blé \item[CA] coupe d'amande \item[FE] feuille d'épinard \item[GGH] globule gras humain \item[CRF] chloroplastes de feuille d'épinard \item[OL] oléosome \item[DARK] dark \item[white] \end{description} \begin{description} \item[cin1] cinétique 1 \begin{description} \item[\texttt{phiG\_40x\_1}] cinétique avant et après injection enzyme gastrique \item[\texttt{phiG\_40x\_Zstack20um\_1}] stack \end{description} \begin{tabular}{l|r|p{0.4\textwidth}} file name & time & action \\ \hline \texttt{phiG\_40x\_1} & 0 mn & on commence à enregistrer et on attend 10mn (pour le bleaching)\\ & 10 mn & debut injection phase gastrique (poussée) \\ & 13 mn & la phase gastrique (le petit tuyau contient $20 \mu l$) arrive dans la cellule d'un coup (1 nanol) \\ & 15 mn & on arrête l'injection \\ \cline{1-1} \texttt{phiG\_40x\_Zstack20um\_1} & 50 mn & on fait un stack\\ \cline{1-1} \texttt{phiG\_I\_40x\_1} & 51 mn & début d'injection phase intestinale (poussée)\\ & x mn & on arrête l'injection \\ \cline{1-1} \texttt{phiG\_I\_40x\_Zstack20um\_1} & 90 mn & on fait un stack \end{tabular} \item[cin2] autre échantillon similaire à cin1 \item[cond5678] condition non réalistes \end{description} \selectlanguage{english} \section{computing background image for trap sequences} Trap sequences show traps at fixed positions with particles that move over time, as shown in figure \ref{fig:trap_sequence1}. In order to detect the particles, we can subtract from each image a background image, which is an image of the scene without any particle. If we suppose that particles are moving fast enough, we can estimate this background image $B$, as : \begin{equation} B(x,y) = \underset{t\in {1 \ldots T_{max}}}{\mathrm{median}} \{I(x,y,t)\} \end{equation} where $I(x,y,t)$ is the value of the input sequence at time $t$ and on pixel position $(x,y)$ and $T_{max}$ is the number of frames in the sequence. \begin{figure} \centering \begin{subfigure}[b]{0.3\textwidth} \includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000000_DM300_nofilter_vis_000.png} %\includegraphics[width=\textwidth]{1.png} \caption{Frame 0} %\label{fig:1} \end{subfigure} ~ \begin{subfigure}[b]{0.3\textwidth} \includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000019_DM300_nofilter_vis_000.png} %\includegraphics[width=\textwidth]{1.png} \caption{Frame 19} %\label{fig:1} \end{subfigure} ~ \begin{subfigure}[b]{0.3\textwidth} \includegraphics[width=1.0\textwidth]{graphics/res_soleil2018_GGH_GGH_2018_cin2_phiG_I_327_vis_-40_1_Pos0_img_000000039_DM300_nofilter_vis_000.png} %\includegraphics[width=\textwidth]{1.png} \caption{Frame 39} %\label{fig:1} \end{subfigure} \caption{Example of trap sequence (\texttt{res\_soleil2018/GGH/GGH\_2018\_cin2\_phiG\_I\_327\_vis\_-40\_1/Pos0})} \label{fig:trap_sequence1} \end{figure} \end{document}