added a simple slope finder
it's functional but needs cleaning and improving
This commit is contained in:
parent
4d3de3c6f9
commit
71fdb927f7
|
@ -1,2 +1,4 @@
|
||||||
# grassloper
|
# grassloper
|
||||||
an application to estimate the slope of a granular surface flow
|
an application to estimate the slope of a granular surface flow
|
||||||
|
|
||||||
|
|
||||||
|
|
83
main.py
83
main.py
|
@ -5,6 +5,7 @@ from pathlib import Path
|
||||||
import math
|
import math
|
||||||
import h5py
|
import h5py
|
||||||
import time
|
import time
|
||||||
|
import scipy.stats
|
||||||
|
|
||||||
|
|
||||||
def create_slope_image(image_width: int, image_height: int, p1_angle: float, p1_radius: float, bg_color: float = 0.0, fg_color: float = 1.0):
|
def create_slope_image(image_width: int, image_height: int, p1_angle: float, p1_radius: float, bg_color: float = 0.0, fg_color: float = 1.0):
|
||||||
|
@ -85,27 +86,79 @@ def hdf5_to_trac_data(hdf5_file_path: Path):
|
||||||
return trac_data
|
return trac_data
|
||||||
|
|
||||||
|
|
||||||
def create_image(trac_data: TracData, frame_index: int, particle_radius: float):
|
class SlopeFinder():
|
||||||
image = np.zeros(shape=trac_data.image_size, dtype=float)
|
|
||||||
print(trac_data.pts)
|
def __init__(self, beads_radius: float):
|
||||||
frame_pts = trac_data.pts[trac_data.pts[:, 0] == frame_index]
|
self.beads_radius = beads_radius
|
||||||
for x in frame_pts[:, 2:4]:
|
|
||||||
center_coordinates = (int(x[0]), int(x[1]))
|
def find_slope(self, trac_data: TracData, frame_index: int):
|
||||||
# center_coordinates = (10,10)
|
isbead_image = SlopeFinder.create_isbead_image(trac_data, frame_index, self.beads_radius)
|
||||||
print(center_coordinates)
|
cv2.imwrite('isbead_%04d.tif' % frame_index, isbead_image)
|
||||||
cv2.circle(image, center_coordinates, int(particle_radius), color=1.0, thickness=-1)
|
if False:
|
||||||
return image
|
kernel = np.ones((15, 15), np.uint8)
|
||||||
|
closing = cv2.morphologyEx(isbead_image, cv2.MORPH_CLOSE, kernel)
|
||||||
|
cv2.imwrite('closing_%04d.tif' % frame_index, closing)
|
||||||
|
# remove the jumping beads
|
||||||
|
# apply connected component analysis to the thresholded image
|
||||||
|
# thresh = cv2.threshold(isbead_image, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
|
||||||
|
thresh = cv2.compare(isbead_image, 0.5, cv2.CMP_GT)
|
||||||
|
connectivity = 4
|
||||||
|
output = cv2.connectedComponentsWithStats(thresh, connectivity, cv2.CV_32S)
|
||||||
|
(num_labels, labels_image, stats, centroids) = output
|
||||||
|
print('num_labels: ', num_labels)
|
||||||
|
print('labels_image: ', labels_image)
|
||||||
|
print('stats: ', stats)
|
||||||
|
print('centroids: ', centroids)
|
||||||
|
cv2.imwrite('labels_%04d.tif' % frame_index, labels_image)
|
||||||
|
is_non_jumping_bead_image = np.zeros(shape=labels_image.shape, dtype=np.uint8)
|
||||||
|
bead_area = math.pi * self.beads_radius * self.beads_radius
|
||||||
|
for label in range(1, num_labels): # ignore the first label, as it's the background
|
||||||
|
area = stats[label][4]
|
||||||
|
if area > bead_area * 1.1:
|
||||||
|
is_non_jumping_bead_image[labels_image == label] = 255
|
||||||
|
cv2.imwrite('non_jumping_beads_%04d.tif' % frame_index, is_non_jumping_bead_image)
|
||||||
|
# extract the surface points
|
||||||
|
surface_y = np.ndarray(shape=(is_non_jumping_bead_image.shape[1],), dtype=int)
|
||||||
|
surface_y.fill(is_non_jumping_bead_image.shape[0])
|
||||||
|
contours, hierarchy = cv2.findContours(is_non_jumping_bead_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||||
|
print('num contours: ', len(contours))
|
||||||
|
assert(len(contours) == 1)
|
||||||
|
contour = contours[0]
|
||||||
|
for point in contour:
|
||||||
|
x, y = point[0]
|
||||||
|
surface_y[x] = min(surface_y[x], y)
|
||||||
|
print(surface_y)
|
||||||
|
surface_pts = []
|
||||||
|
for x in range(len(surface_y)):
|
||||||
|
y = surface_y[x]
|
||||||
|
if y != is_non_jumping_bead_image.shape[0]:
|
||||||
|
surface_pts.append((x, y))
|
||||||
|
print(surface_pts)
|
||||||
|
x = [pt[0] for pt in surface_pts]
|
||||||
|
y = [pt[1] for pt in surface_pts]
|
||||||
|
lin_regress_result = scipy.stats.linregress(x, y)
|
||||||
|
print(lin_regress_result)
|
||||||
|
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def create_isbead_image(trac_data: TracData, frame_index: int, particle_radius: float):
|
||||||
|
image = np.zeros(shape=trac_data.image_size, dtype=float)
|
||||||
|
print(trac_data.pts)
|
||||||
|
frame_pts = trac_data.pts[trac_data.pts[:, 0] == frame_index]
|
||||||
|
for x in frame_pts[:, 2:4]:
|
||||||
|
center_coordinates = (int(x[0]), int(x[1]))
|
||||||
|
# center_coordinates = (10,10)
|
||||||
|
print(center_coordinates)
|
||||||
|
cv2.circle(image, center_coordinates, int(particle_radius), color=1.0, thickness=-1)
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# python3 ./tractrac.git/Python/tractrac.py -f ./grassloper.git/samples/sample002.avi --output 1 -a --saveplot
|
# python3 ./tractrac.git/Python/tractrac.py -f ./grassloper.git/samples/sample002.avi --output 1 -a --saveplot
|
||||||
trac_data = hdf5_to_trac_data('./grassloper.git/samples/TracTrac/sample002_track.hdf5')
|
trac_data = hdf5_to_trac_data('./grassloper.git/samples/TracTrac/sample002_track.hdf5')
|
||||||
kernel = np.ones((15, 15), np.uint8)
|
slope_finder = SlopeFinder(beads_radius=11.0)
|
||||||
for frame_index in range(1, 2):
|
for frame_index in range(1, 2):
|
||||||
isbead_image = create_image(trac_data, frame_index=frame_index, particle_radius=11.0)
|
slope_finder.find_slope(trac_data, frame_index=frame_index)
|
||||||
closing = cv2.morphologyEx(isbead_image, cv2.MORPH_CLOSE, kernel)
|
|
||||||
cv2.imwrite('isbead_%04d.tif' % frame_index, isbead_image)
|
|
||||||
cv2.imwrite('closing_%04d.tif' % frame_index, closing)
|
|
||||||
|
|
||||||
# slope_image = create_slope_image(image_width=128, image_height=256, p1_angle=0.7, p1_radius=3.0)
|
# slope_image = create_slope_image(image_width=128, image_height=256, p1_angle=0.7, p1_radius=3.0)
|
||||||
# cv2.imwrite(str(Path('toto.tif')), slope_image)
|
# cv2.imwrite(str(Path('toto.tif')), slope_image)
|
||||||
|
|
Loading…
Reference in New Issue